1
|
Feng W, Yang K, Zou Y, Xiao Z, Qian R, Qian R. Progress of ursolic acid on the regulation of macrophage: summary and prospect. Front Immunol 2025; 16:1576771. [PMID: 40421013 PMCID: PMC12104263 DOI: 10.3389/fimmu.2025.1576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/15/2025] [Indexed: 05/28/2025] Open
Abstract
Ursolic acid (UA), a prevalent pentacyclic triterpenoid found in numerous fruits and herbs, has garnered significant attention for its vital role in anti-inflammatory processes and immune regulation. The study of immune cells has consistently been a focal point, particularly regarding macrophages, which play crucial roles in antigen presentation, immunomodulation, the inflammatory response, and pathogen phagocytosis. This paper reveals the underlying regulatory effects of UA on the function of macrophages and the specific therapeutic effects of UA on a variety of diseases. Owing to the superior effect of UA on macrophages, different types of macrophages in different tissues have been described. Through the multifaceted regulation of macrophage function, UA may provide new ideas for the development of novel anti-inflammatory and immunomodulatory drugs. However, to facilitate its translation into actual medical means, the specific mechanism of UA in macrophages and its clinical application still need to be further studied.
Collapse
Affiliation(s)
- Wenjing Feng
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Kehong Yang
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Zou
- Department of Anatomy, Anatomy Teaching Center of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaohua Xiao
- Xiangya Hospital, Central South University, Changsha, China
| | - Rongkang Qian
- Department of Integrated Traditional Chinese and Western Medicine, Qian Rongkang Clinic, Loudi, China
| | - Ronghua Qian
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
He T, Xiang Y, Quan H, Liu Y, Guo C, Quan T. Ursolic Acid Inhibits Collagen Production and Promotes Collagen Degradation in Skin Dermal Fibroblasts: Potential Antifibrotic Effects. Biomolecules 2025; 15:365. [PMID: 40149901 PMCID: PMC11939892 DOI: 10.3390/biom15030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Tissue fibrosis, characterized by excessive collagen accumulation, leads to impaired organ function and is a hallmark of various chronic diseases. Fibroblasts play a central role in collagen production and deposition. This study examines the impact of ursolic acid, a pentacyclic triterpenoid compound present in various fruits and vegetables, on collagen homeostasis in primary human dermal fibroblasts. Ursolic acid (UA) was observed to significantly reduce collagen production while markedly increasing the activity of matrix metalloproteinase-1 (MMP-1), an enzyme responsible for collagen degradation. Mechanistically, ursolic acid was found to inhibit TGF-β/Smad signaling, leading to decreased collagen production, and to activate mitogen-activated protein kinase (MAPK) pathways and activator protein 1 (AP-1), resulting in enhanced MMP-1 production. These in vitro findings were further validated in an in vivo mouse model of fibrosis, where ursolic acid significantly mitigated bleomycin-induced skin fibrosis. These results suggest that UA could be a promising candidate for treating skin fibrosis due to its dual effects on collagen homeostasis: inhibiting collagen production and promoting collagen degradation.
Collapse
Affiliation(s)
- Tianyuan He
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.H.); (Y.X.); (Y.L.); (C.G.)
| | - Yaping Xiang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.H.); (Y.X.); (Y.L.); (C.G.)
| | - Hehui Quan
- Lenox Hill Hospital, 100 E 77th St., New York, NY 10075, USA;
| | - Yingchun Liu
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.H.); (Y.X.); (Y.L.); (C.G.)
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.H.); (Y.X.); (Y.L.); (C.G.)
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.H.); (Y.X.); (Y.L.); (C.G.)
| |
Collapse
|
3
|
Feng Q, Zhao Q, Qu S, Zhao Y, Li K, Yuan B, Chang Q, Xu J, Wang H, Zhu Y, Fu K, Liu J. Qianggan Ruanjian Pill ameliorates liver fibrosis through regulation of the TGF-β1/Smad and PI3K/AKT signalling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118893. [PMID: 39362322 DOI: 10.1016/j.jep.2024.118893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a critical pathological process in the progression of chronic liver injury, ultimately resulting in cirrhosis, for which currently available therapeutic interventions remain inadequate. Among these, the Qianggan Ruanjian Pill (QGRJP) has emerged as a clinically experienced formula with notable therapeutic efficacy against liver fibrosis. However, the precise underlying mechanisms require further investigation. AIM OF THE STUDY In this study, we investigated the key pathways and target genes of QGRJP that attenuate liver fibrosis and elucidated the underlying mechanisms. MATERIALS AND METHODS High-performance liquid chromatography-mass spectrometry (HPLC-MS) was used to identify the major components of the QGRJP. Mouse models of liver fibrosis were established by injecting olive oil containing 25% carbon tetrachloride (CCl4), which was administered at different doses of QGRJP by gavage. Liver damage and function were assessed using serum biochemical detection, ultrasound imaging, and histopathological examination. The anti-fibrosis effect was assessed using immunohistochemistry, western blotting, and quantitative real-time PCR (qRT-PCR). The in vivo safety of the QGRJP was evaluated using weight monitoring and biopsy. Potential anti-liver fibrosis signalling pathways and key targets of QGRJP were identified using RNA-seq analysis and network pharmacology. The predicted targets and pathways were validated using in vitro and in vivo experiments. RESULTS QGRJP significantly ameliorated CCl4-induced liver fibrosis, and its mechanism was correlated with the inhibition of hepatic stellate cell (HSC) activation and the inflammatory response via inhibition of the TGF-β1/Smad and PI3K/AKT pathways, leading to a significant reduction in the expression of collagen and other fibrosis-related proteins. Additionally, no obvious toxic side effects were observed in the major organs of the mice or in activated HSCs (aHSCs). CONCLUSION This study demonstrated that QGRJP mitigated liver injury, inflammation, and fibrosis by inhibiting the TGF-β1/Smad and PI3K/AKT signalling pathways.
Collapse
Affiliation(s)
- Qunying Feng
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Qinghua Zhao
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Shuaiyong Qu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Yiju Zhao
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Kunlun Li
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Bo Yuan
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Qinzheng Chang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Jingjiang Xu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Hongxia Wang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Yongqin Zhu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Kai Fu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Jingsheng Liu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China.
| |
Collapse
|
4
|
Liu Q, Liu LX, Li BM, Zhang W, Zhang Y, Chen P, Huang CK, Nie Y, Zhu X. Exploring the mechanism of ursolic acid in preventing liver fibrosis and improving intestinal microbiota based on NOX2/NLRP3 inflammasome signaling pathway. Chem Biol Interact 2025; 405:111305. [PMID: 39500482 DOI: 10.1016/j.cbi.2024.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/10/2024]
Abstract
Early-stage liver fibrosis can be reversed; however, the underlying mechanisms remain incompletely understood. The intestinal tract hosts a substantial and diverse microbiota involved in various physiological activities and is closely linked to chronic liver disease. Previous studies have indicated that ursolic acid (UA), derived from herbal plants, possesses anti-inflammatory and antifibrotic properties; however, its precise mechanism remains to be elucidated. Consequently, liver fibrosis models were constructed utilizing both the methionine/choline deficieny (MCD) diet and carbon tetrachloride (CCl4) intraperitoneal injections. 16S rRNA was conducted to analyze the intestinal microbiota. Results indicated that UA attenuated liver injury and fibrosis, reduced indices related to liver fibrosis, and decreased the expression levels of NADPH oxidase 2 (NOX2) and NOD like receptor protein 3 (NLRP3). Hepatic fibrosis was alleviated in post-model NOX2 and NLRP3 gene knockout (NOX2-/- and NLRP3-/-) mice in comparison to post-model wild-type (WT) mice. Nonetheless, neither UA treatment nor control treatment significantly improved liver fibrosis in comparison to post-model knockout mice. Furthermore, the liver of NOX2-/- mice exhibited lower levels of NLRP3 expression. Importantly, knockout mice displayed a higher diversity of intestinal microbiota, characterized by an increased presence of beneficial bacteria and a reduced presence of harmful bacteria compared to WT mice. In conclusion, UA exerts antifibrotic effects through the inhibition of the NOX2/NLRP3 inflammasome signaling pathway. UA has the potential to reverse liver fibrosis by modulating this signaling pathway, thereby enhancing the gut microbiota.
Collapse
Affiliation(s)
- Qi Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Department of Critical Care Medicine, Ji'an Central People's Hospital, Ji'an, Jiangxi, China
| | - Lin-Xiang Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bi-Min Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wang Zhang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Zhang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Peng Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chen-Kai Huang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Nie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xuan Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Hosseiny SS, Esmaeili Z, Neshati Z. Assessment of ursolic acid effect on in vitro model of cardiac fibrosis. Toxicol In Vitro 2024; 101:105924. [PMID: 39218321 DOI: 10.1016/j.tiv.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to evaluate the effects of ursolic acid (UA) on Angiotensin II (Ang II)-treated neonatal rat cardiac fibroblasts (rCFs) as an in vitro model of cardiac fibrosis. The rCFs were isolated from two-day-old neonatal rats. An in vitro model of cardiac fibrosis was established using 500 nm Ang II treatment for 48 h. The cells were then treated with 5 and 10 μM of UA for 24 and 48 h. Masson's trichrome staining, hydroxyproline content assay, scratch assay, apoptosis assay, measurements of superoxide dismutase (SOD) and malondialdehyde (MDA) levels, real-time PCR, immunocytology and western blotting, were employed to assess the impact of UA. Ang II induced fibrosis in rCFs, as evidenced by the examination of various fibrotic markers. Upon treatment with 5 and 10 μM of UA, the amount of fibrosis in Ang II-treated rCFs was significantly decreased, so that the hydroxyproline concentration was reduced to 0.3 and 0.7 times, respectively. The RNA expression of the Col1a1, Col3a1, Tgfb1, Acta2 and Mmp2 genes had a decrease as well as Nrf2 and HO-1 had an increase after UA treatment. UA could lessen the harmful effects of cardiac fibrosis in a dose- and time-dependent manner, due to its antiapoptotic, antioxidant and cardioprotective properties. This suggests the potential of UA for treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Samane Sadat Hosseiny
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Esmaeili
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Peng C, Kang S, Jiang M, Yang M, Gong X. Antioxidant Carbon Dots and Ursolic Acid Co-Encapsulated Liposomes Composite Hydrogel for Alleviating Adhesion Formation and Enhancing Tendon Healing in Tendon Injury. Int J Nanomedicine 2024; 19:8709-8727. [PMID: 39220191 PMCID: PMC11365533 DOI: 10.2147/ijn.s466312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background The formation of adhesion after tendon injury represents a major obstacle to tendon repair, and currently there is no effective anti-adhesion method in clinical practice. Oxidative stress, inflammation, and fibrosis can occur in tendon injury and these factors can lead to tendon adhesion. Antioxidant carbon dots and ursolic acid (UA) both possess antioxidant and anti-inflammatory properties. In this experiment, we have for the first time created RCDs/UA@Lipo-HAMA using red fluorescent carbon dots and UA co-encapsulated liposomes composite hyaluronic acid methacryloyl hydrogel. We found that RCDs/UA@Lipo-HAMA could better attenuate adhesion formation and enhance tendon healing in tendon injury. Materials and Methods RCDs/UA@Lipo-HAMA were prepared and characterized. In vitro experiments on cellular oxidative stress and fibrosis were performed. Reactive oxygen species (ROS), and immunofluorescent staining of collagens type I (COL I), collagens type III (COL III), and α-smooth muscle actin (α-SMA) were used to evaluate anti-oxidative and anti-fibrotic abilities. In vivo models of Achilles tendon injury repair (ATI) and flexor digitorum profundus tendon injury repair (FDPI) were established. The major organs and blood biochemical indicators of rats were tested to determine the toxicity of RCDs/UA@Lipo-HAMA. Biomechanical testing, motor function analysis, immunofluorescence, and immunohistochemical staining were performed to assess the tendon adhesion and repair after tendon injury. Results In vitro, the RCDs/UA@Lipo group scavenged excessive ROS, stabilized the mitochondrial membrane potential (ΔΨm), and reduced the expression of COL I, COL III, and α-SMA. In vivo, assessment results showed that the RCDs/UA@Lipo-HAMA group improved collagen arrangement and biomechanical properties, reduced tendon adhesion, and promoted motor function after tendon injury. Additionally, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the RCDs/UA@Lipo-HAMA group increased; the levels of cluster of differentiation 68 (CD68), inducible Nitric Oxide Synthase (iNOS), COL III, α-SMA, Vimentin, and matrix metallopeptidase 2 (MMP2) decreased. Conclusion In this study, the RCDs/UA@Lipo-HAMA alleviated tendon adhesion formation and enhanced tendon healing by attenuating oxidative stress, inflammation, and fibrosis. This study provided a novel therapeutic approach for the clinical treatment of tendon injury.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Shiqi Kang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Meijun Jiang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mingxi Yang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
7
|
Zhang C, Chen Y, Yin L, Deng G, Xia X, Tang X, Zhang Y, Yan J. Investigating the Impact of Estrogen Levels on Voiding Characteristics, Bladder Structure, and Related Proteins in a Mouse Model of Menopause-Induced Lower Urinary Tract Symptoms. Biomolecules 2024; 14:1044. [PMID: 39334811 PMCID: PMC11429749 DOI: 10.3390/biom14091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Lower urinary tract symptoms (LUTS) are common in postmenopausal women. These symptoms are often linked to decreased estrogen levels following menopause. This study investigated the relationship between estrogen levels, alterations in bladder tissue structure, bladder function, and the incidence of urinary frequency. An age-appropriate bilateral ovariectomized mouse model (OVX) was developed to simulate conditions of estrogen deficiency. Mice were divided into three groups: a sham-operated control group, OVX, and an estradiol-treated group. The assessments included estrogen level measurement, urination frequency, cystometry, histological analysis, immunofluorescence staining, and real-time quantitative PCR. Additionally, we quantified the expression of the mechanosensitive channel proteins Piezo1 and TRPV4 in mouse bladder tissues. Lower estrogen levels were linked to increased voiding episodes and structural changes in mouse bladder tissues, notably a significant increase in Collagen III fiber deposition. There was a detectable negative relationship between estrogen levels and the expression of Piezo1 and TRPV4, mechanosensitive proteins in mouse bladder tissues, which may influence voiding frequency and nocturia. Estrogen treatment could improve bladder function, decrease urination frequency, and reduce collagen deposition in the bladder tissues. This study explored the connection between estrogen levels and urinary frequency, potentially setting the stage for novel methods to address frequent urination symptoms in postmenopausal women.
Collapse
Affiliation(s)
- Chenglong Zhang
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuangui Chen
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Lingxuan Yin
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Guoxian Deng
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Xiaowen Xia
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Xiaoshuang Tang
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Yifeng Zhang
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Junan Yan
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
8
|
Liu C, Yu X, Zhang M, Wang S, Ni J, Yuan X, Han H. Antioxidant and Hepatoprotective Effect of Rosa davurica Pall Seed Oil on CCl 4-Induced Acute Liver Injury in Mice. J Med Food 2024; 27:636-650. [PMID: 38722249 DOI: 10.1089/jmf.2024.k.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Caiyan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaojin Yu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Wang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiating Ni
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Shaban NZ, El Swify LA, Abu-Serie MM, Maher AM, Habashy NH. A comparative study on the protective effects of cuminaldehyde, thymoquinone, and gallic acid against carbon tetrachloride-induced pulmonary and renal toxicity in rats by affecting ROS and NF-κB signaling. Biomed Pharmacother 2024; 175:116692. [PMID: 38701569 DOI: 10.1016/j.biopha.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
CCl4 toxicity is a fatal condition that can cause numerous organ dysfunctions. We evaluated and compared the protective effects of cuminaldehyde (CuA), thymoquinone (TQ), and gallic acid (GA) on CCl4-induced pulmonary and renal toxicity in rats. The impacts of these compounds on CCl4-induced oxidative stress, inflammation, and morphological alterations were examined. The results showed that the compounds under investigation prevented CCl4 from significantly increasing pulmonary and renal lipid peroxidation and NO levels, as well as massively depleting GSH levels and GPX and SOD activities. Moreover, they suppressed the CCl4-induced increase in mucus secretion in the lung and upregulated the gene expression of pulmonary and renal NF-ҡB, iNOS, TNF-α, and COX-2. The heatmap cluster plots showed that GA and TQ had better protective potencies than CuA. The external organ morphology, histopathological results, and chest X-ray analysis confirmed the toxicity of CCl4 and the protective influences of the tested compounds in both the lungs and kidneys of rats. These compounds displayed predicted competitive inhibitory effects on iNOS activity and may block the IL-13α2 receptor, as revealed by molecular docking analysis. Thus, CuA, TQ, and GA, particularly the latter two, are prospective protective compounds against the pulmonary and renal toxicity caused by CCl4.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamiaa A El Swify
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
10
|
Adams VR, Collins LB, Williams TI, Holmes J, Hess P, Atkins HM, Scheidemantle G, Liu X, Lodge M, Johnson AJ, Kennedy A. Myeloid cell MHC I expression drives CD8 + T cell activation in nonalcoholic steatohepatitis. Front Immunol 2024; 14:1302006. [PMID: 38274832 PMCID: PMC10808415 DOI: 10.3389/fimmu.2023.1302006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background & aims Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.
Collapse
Affiliation(s)
- Victoria R. Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Leonard B. Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
- Department of Chemistry, NC State University, Raleigh, NC, United States
| | - Jennifer Holmes
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Paul Hess
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Hannah M. Atkins
- Center for Human Health and Environment, NC State University, Raleigh, NC, United States
- Division of Comparative Medicine, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| |
Collapse
|
11
|
Huang T, Wu Y, Huang L, Lin R, Li Z, Wang X, Wu P, Huang L. Mechanism of the Effect of Compound Anoectochilus roxburghii (Wall.) Lindl. Oral Liquid in Treating Alcoholic Rat Liver Injury by Metabolomics. Drug Des Devel Ther 2023; 17:3409-3428. [PMID: 38024538 PMCID: PMC10659148 DOI: 10.2147/dddt.s427837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Compound Anoectochilus roxburghii (Wall.) Lindl oral liquid (CAROL) is often as a hepatoprotective agent. The present study aimed to elucidate the protective mechanism of CAROL against alcoholic liver injury in rats by untargeted metabolomics combined with multivariate statistical analysis. Methods An alcoholic liver disease model was established in sprague-dawley (SD) rats by gavage of alcohol, and CAROL treatment was administered. The hepatoprotective effect of CAROL was evaluated by examining liver tissues changes and detecting biochemical index activities and cytokines in serum and liver homogenates. The metabolites in serum samples were examined using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and multivariate statistical analysis to screen for differentially expressed metabolites and Kyoto Encyclopedia of Genes and Genomes (KEGG) to assess potential metabolic pathways. Results CAROL has the potential to downregulate inflammation levels and alleviate oxidative stress. The differential metabolites are mainly engaged in riboflavin metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis metabolism, phenylalanine metabolism, pyrimidine metabolism, and vitamin B6 metabolism to achieve hepatoprotective effects. Conclusion CAROL may exhibit beneficial hepatoprotective effects by reducing inflammation, mitigating oxidative stress, and modulating metabolites and their metabolic pathways.This study has important implications for advancing the clinical application of CAROL.
Collapse
Affiliation(s)
- Tingxuan Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Renyi Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Zhenyue Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoxiao Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Pingping Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
12
|
Li L, Tu Y, Dai X, Xiao S, Tang Z, Wu Y, Fouad D, Ataya FS, Mehmood K, Li K. The effect of Abrus cantoniensis Hance on liver damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115560. [PMID: 37827094 DOI: 10.1016/j.ecoenv.2023.115560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The liver is a well-known organ contributing to digestion, hemostasis and detoxification, while liver injury is a world-widely distributed health problem with limited treatment choices. We detected the protective effect of Abrus cantoniensis Hance (ACH) on Carbon tetrachloride-induced (CCl4) liver injury in mice. Fifty ICR (Institute of Cancer Research) animals were grouped into five groups of control (a), CCl4 (d), ACH (25 mg/kg) treated group (c), ACH (50 mg/kg) treated group (b), and ACH (100 mg/kg) treated group (e). Mice in groups d, c, b, and e were given CCl4 every four days, and treated animals received daily ACH supplementation. The results showed that the daily body weights in CCl4-induced animals were slightly lower; however, the weight of ACH-treated mice increased, particularly in the higher dose group. Treatment with CCl4 led to increased liver weight and liver indices in mice, whereas supplementation with ACH reduced both liver weights and liver indices in animals. Histo-pathological analysis indicated that CCl4 led to inflammatory cell infiltration and hepatocellular degeneration, with collagenous fibers proliferation in ICR animals. In contrast, supplementation with ACH prominently decreased inflammatory cells and degeneration of hepatocytes and inhibited collagen fiber hyperplasia. Furthermore, the levels or concentrations of AST (p < 0.0001), ALT (p < 0.0001), MDA (p < 0.0001), IL-1β (p < 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01) were significantly higher in CCl4 induced ICR animals in group d. However, mice treated with ACH showed lower levels or concentrations of those indices in dose dependent manner. The levels of GSH-px (p < 0.0001), CAT (p < 0.0001) and SOD (p < 0.0001) were significantly reduced in CCl4 group; however, all these three enzymes exhibited significant (p < 0.05) increase in animals supplemented with ACH in dose dependent manner. The microbiome sequencing generated 1,168,327 filtered reads in the mice samples. A notable difference was observed in the composition of 6 phyla and 37 genera among the five ICR animal groups. Supplementation with ACH increased the abundance of beneficial genera of Coprococcus, Blautia and Clostridium, while concurrently decreased the presence of pathogenic genera of Mycoplasma and Helicobacter. In conclusion, we revealed that Abrus cantoniensis Hance has the potential to relieve liver damage induced by CCl4, through the reduction of inflammation, enhancement of antioxidant capacity, and regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Yangli Tu
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Xiangjie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Shengjia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zhiyi Tang
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE JoInt. International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, the Islamia University of Bahawalpur, 63100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE JoInt. International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
14
|
Deng J, Qin L, Zhou Z. Network Pharmacology and Molecular Docking Reveal the Mechanism of Isodon ternifolius (D. Don) Kudo Against Liver Fibrosis. Drug Des Devel Ther 2023; 17:2335-2351. [PMID: 37576085 PMCID: PMC10416792 DOI: 10.2147/dddt.s412818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Aim Many studies have demonstrated the hepatoprotective or anti-fibrotic effects of Isodon ternifolius, but its pharmacological basis and mechanism remain unclear. In this study, we used in vitro models to validate the predicted results and revealed the potential mechanism of action and active ingredients through network pharmacology methods and molecular docking. Methods The chemical components of Isodon ternifolius were identified by literatures. Potential targets of Isodon ternifolius were predicted by Swiss Target Prediction. The disease targets were collected through the databases of Gene Card. Common targets of Isodon ternifolius and liver fibrosis were obtained by online tool Venny 2.1. PPI protein interaction network was obtained using String database, and target protein interaction network was drawn using Cytoscape software. Signaling pathway enrichment analysis was performed on drug-disease targets with of DAVID database. Results Twenty-one potential active ingredients and 298 potential targets were predicted by Swiss Target Prediction platform. Ninety pathways related to liver fibrosis were obtained by KEGG enrichment. The TLR4, MAPK and PI3K-Akt signaling pathways are mostly associated with liver fibrosis. Molecular docking techniques were used to validate the core target proteins TNF, Akt1, MAPK1, EGFR and TLR4 binding to the ingredients of Isodon ternifolius, which showed that a multitude of ingredients of Isodon ternifolius were able to bind to the above target proteins, especially 2α-hydroxy oleanolic acid and (-)-Lambertic acid. Our experimental validation results showed that Isodon ternifolius inhibited the activation of PI3K-Akt and ERK1/2 signaling pathways. Conclusion Through a network pharmacology approach and in vitro cell assay, we predicted and validated the active compounds of Isodon ternifolius and its potential targets for LF treatment. The results suggest that the mechanism of Isodon ternifolius treating LF by inhibiting angiogenesis may be related to the ERK1/2 and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, People’s Republic of China
| |
Collapse
|
15
|
Li TZ, Bai CY, Wu B, Zhang CY, Wang WT, Shi TW, Zhou J. The Elk-3 target Abhd10 ameliorates hepatotoxic injury and fibrosis in alcoholic liver disease. Commun Biol 2023; 6:682. [PMID: 37400491 DOI: 10.1038/s42003-023-05055-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and other forms of chronic hepatotoxic injury can lead to transforming growth factor β1 (TGFβ1)-induced hepatic fibrosis and compromised liver function, underscoring the need to develop novel treatments for these conditions. Herein, our analyses of liver tissue samples from severe alcoholic hepatitis (SAH) patients and two murine models of ALD reveals that the ALD phenotype was associated with upregulation of the transcription factor ETS domain-containing protein (ELK-3) and ELK-3 signaling activity coupled with downregulation of α/β hydrolase domain containing 10 (ABHD10) and upregulation of deactivating S-palmitoylation of the antioxidant protein Peroxiredoxin 5 (PRDX5). In vitro, we further demonstrate that ELK-3 can directly bind to the ABHD10 promoter to inhibit its transactivation. TGFβ1 and epidermal growth factor (EGF) signaling induce ABHD10 downregulation and PRDX5 S-palmitoylation via ELK-3. This ELK-3-mediated ABHD10 downregulation drives oxidative stress and disrupts mature hepatocyte function via enhancing S-palmitoylation of PRDX5's Cys100 residue. In vivo, ectopic Abhd10 overexpression ameliorates liver damage in ALD model mice. Overall, these data suggest that the therapeutic targeting of the ABHD10-PRDX5 axis may represent a viable approach to treating ALD and other forms of hepatotoxicity.
Collapse
Affiliation(s)
- Tian-Zhu Li
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China.
| | - Chun-Ying Bai
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Bao Wu
- Department of Tissue and Embryology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Cong-Ying Zhang
- Department of Pharmacy, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Wen-Tao Wang
- Department of Pathogenic Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Tie-Wei Shi
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Jing Zhou
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
16
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
17
|
Wan Y, Zhang W, Huang C, Jian J, Zhang Y, Liu Q, Chen P, Zhu X. Ursolic acid alleviates Kupffer cells pyroptosis in liver fibrosis by the NOX2/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 113:109321. [DOI: 10.1016/j.intimp.2022.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
18
|
Qu YJ, Ding MR, Gu C, Zhang LM, Zhen RR, Chen JF, Hu B, An HM. Acteoside and ursolic acid synergistically protects H 2O 2-induced neurotrosis by regulation of AKT/mTOR signalling: from network pharmacology to experimental validation. PHARMACEUTICAL BIOLOGY 2022; 60:1751-1761. [PMID: 36102631 PMCID: PMC9487927 DOI: 10.1080/13880209.2022.2098344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Ursolic acid (UA) and acteoside (ATS) are important active components that have been used to treat Alzheimer's disease (AD) because of their neuroprotective effects, but the exact mechanism is still unclear. OBJECTIVE Network pharmacology was used to explore the mechanism of UA + ATS in treating AD, and cell experiments were used to verify the mechanism. MATERIALS AND METHODS UA + ATS targets and AD-related genes were retrieved from TCMSP, STITCH, SwissTargetPrediction, GeneCards, DisGeNET and GEO. Key targets were obtained by constructing protein interaction network through STRING. The neuroprotective effects of UA + ATS were verified in H2O2-treated PC12 cells. The subsequent experiments were divided into Normal, Model (H2O2 pre-treatment for 4 h), Control (H2O2+ solvent pre-treatment), UA (5 μM), ATS (40 μM), UA (5 μM) + ATS (40 μM). Then apoptosis, mitochondrial membrane potential, caspase-3 activity, ATG5, Beclin-1 protein expression and Akt, mTOR phosphorylation levels were detected. RESULTS The key targets of UA + ATS-AD network were mainly enriched in Akt/mTOR pathway. Cell experiments showed that UA (ED50: 5 μM) + ATS (ED50: 40 μM) could protect H2O2-induced (IC50: 250 μM) nerve damage by enhancing cells viability, combating apoptosis, restoring MMP, reducing the activation of caspase-3, lessening the phosphorylation of Akt and mTOR, and increasing the expression of ATG5 and Beclin-1. CONCLUSIONS ATS and UA regulates multiple targets, bioprocesses and signal pathways against AD pathogenesis. ATS and UA synergistically protects H2O2-induced neurotrosis by regulation of AKT/mTOR signalling.
Collapse
Affiliation(s)
- Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Min Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong-Rong Zhen
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Fang Chen
- Department of Oncology, Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Hu
- Department of Oncology, Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Al-kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GES. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 2022; 30:1493-1501. [PMID: 35922738 PMCID: PMC9362167 DOI: 10.1007/s10787-022-01038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW Australia
- AFNP Med, Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AL Beheira, Damanhour, 22511 Egypt
| |
Collapse
|
20
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Shin HB, Jeong YJ. Hepatoprotective Effects of a Natural Flavanol 3,3'-Diindolylmethane against CCl 4-Induced Chronic Liver Injury in Mice and TGFβ1-Induced EMT in Mouse Hepatocytes via Activation of Nrf2 Cascade. Int J Mol Sci 2022; 23:ijms231911407. [PMID: 36232707 PMCID: PMC9569868 DOI: 10.3390/ijms231911407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a form of irregular wound-healing response with acute and chronic injury triggered by the deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) is a dynamic process that plays a crucial role in the fibrogenic response and pathogenesis of liver fibrosis. In the present study, we postulated a protective role of 3,3'-diindolylmethane (DIM) against TGF-β1 mediated epithelial-mesenchymal transition (EMT) in vitro and carbon tetrachloride (CCl4)-induced liver fibrosis in mice. TGF-β1-induced AML-12 hepatocyte injury was evaluated by monitoring cell morphology, measuring reactive oxygen species (ROS) and mitochondrial membrane potential, and quantifying apoptosis, inflammatory, and EMT-related proteins. Furthermore, CCl4-induced liver fibrosis in mice was evaluated by performing liver function tests, including serum ALT and AST, total bilirubin, and albumin to assess liver injury and by performing H&E and Sirius red staining to determine the degree of liver fibrosis. Immunoblotting was performed to determine the expression levels of inflammation, apoptosis, and Nrf2/HO-1 signaling-related proteins. DIM treatment significantly restored TGF-β1-induced morphological changes, inhibited the expression of mesenchymal markers by activating E-cadherin, decreased mitochondrial membrane potential, reduced ROS intensity, and upregulated levels of Nrf2-responsive antioxidant genes. In the mouse model of CCl4-induced liver fibrosis, DIM remarkably attenuated liver injury and liver fibrosis, as reflected by the reduced ALT and AST parameters with increased serum Alb activity and fewer lesions in H&E staining. It also mitigated the fibrosis area in Sirius red and Masson staining. Taken together, our results suggest a possible molecular mechanism of DIM by suppressing TGF-β1-induced EMT in mouse hepatocytes and CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Hyun Beak Shin
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence:
| |
Collapse
|
21
|
Chu S, Lu Y, Liu W, Ma X, Peng J, Wang X, Jiang M, Bai G. Ursolic acid alleviates tetrandrine-induced hepatotoxicity by competitively binding to the substrate-binding site of glutathione S-transferases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154325. [PMID: 35820303 DOI: 10.1016/j.phymed.2022.154325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, is the only approved medicine in China for silicosis. However, TET-induced hepatotoxicity has raised safety concerns. The underlying toxic targets and mechanism induced by TET remain unclear; there are no targeted detoxification strategies developed for TET-induced hepatotoxicity. Ursolic acid (UA), a pentacyclic triterpene with liver protective effects, may have detoxification effects on TET-induced hepatotoxicity. PURPOSE This study aims to explore toxic targets and mechanism of TET and present UA as a potential targeted therapy for alleviating TET-induced hepatotoxicity. METHODS A TET-induced liver-injury model was established to evaluate TET toxicity and the potential UA detoxification effect. Alkenyl-modified TET and UA probes were designed to identify potential liver targets. Pharmacological and molecular biology methods were used to explore the underlying toxicity/detoxification mechanism. RESULTS TET induced liver injury by covalently binding to the substrate-binding pocket (H-site) of glutathione S-transferases (GSTs) and inhibiting GST activity. The covalent binding led to toxic metabolite accumulation and caused redox imbalance and liver injury. UA protected the liver from TET-induced damage by competitively binding to the GST H-site. CONCLUSION The mechanism of TET-induced hepatotoxicity is related to irreversible binding with the GST H-site and GST-activity inhibition. UA, a natural antidote, competed with TET on H-site binding and reversed the redox imbalance. This study revealed the hepatotoxic mechanism of TET and provided a targeted detoxifying agent, UA, to alleviate hepatotoxicity caused by GST inhibition.
Collapse
Affiliation(s)
- Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Jiamin Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| |
Collapse
|
22
|
Yang G, Li S, Jin J, Xuan Y, Ding L, Huang M, Liu J, Wang B, Lan T. Protective effects of Longhu Rendan on chronic liver injury and fibrosis in mice. LIVER RESEARCH (BEIJING, CHINA) 2022; 6:93-102. [PMID: 39958622 PMCID: PMC11791823 DOI: 10.1016/j.livres.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 02/16/2023]
Abstract
Background and aim Liver fibrosis resulting from persistent liver injury represents a major healthcare problem globally. Traditional Chinese medicine has played an essential role in the treatment of liver fibrosis in recent years. Thus, this study aims to assess the effect of Longhu Rendan (LHRD), a Chinese traditional patent medicine, on liver fibrosis and its potential mechanism. Methods The liver fibrosis in mice was induced via the intraperitoneal injection of carbon tetrachloride (CCl4) for 6 weeks or bile duct ligation for 15 days. Various methods were used to judge the therapeutic effect of LHRD. Results LHRD significantly suppressed the activity of serum index of abnormal liver function, liver cell apoptosis, and necrosis, attenuating liver injury. Moreover, LHRD treatment alleviated liver fibrotic features, such as the reduction of collagen deposition and hepatic stellate cell activation as well as profibrotic gene expression. Mechanistically, LHRD treatment inhibited nuclear transcription factor-kappa B signaling and inflammatory gene expression and diminished the production of reactive oxygen species and 4-hydroxynonenal, along with the downregulation of NADPH oxidase 4. Conclusions Overall, the present study demonstrates that LHRD ameliorates liver injury and fibrosis via the inhibition of inflammation and oxidative stress in mice, indicating that LHRD is a potential medicine for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengwen Li
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiahua Jin
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Yuanyuan Xuan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Liqin Ding
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Minxia Huang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jun Liu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Biye Wang
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Zhang L, Xu JY, Yuan L, Yin XB, Li YH, Qin LQ. Protective effects of epigallocatechin-3-o-gallate combined with organic selenium against transforming growth factor-beta 1-induced fibrosis in LX-2 cells. J Food Biochem 2022; 46:e14223. [PMID: 35586925 DOI: 10.1111/jfbc.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the protective effects and possible mechanism of epigallocatechin-3-o-gallate (EGCG) combined with organic selenium in transforming growth factor (TGF)-β1-activated LX-2 cells. After 12 h of starvation, LX-2 cells were treated with 10 ng/ml of recombinant TGF-β1 and different concentrations of EGCG, L-selenomethionine (L-SeMet), or L-selenomethylcysteine (L-SeMC) for 24 h. We found that 100 and 200 μM EGCG combined with 1 mM L-SeMet or L-SeMC showed a synergistic effect in decreasing the survival rate of activated LX-2 cells. In addition, the combination of 100 mM EGCG and 1 mM L-SeMet or L-SeMC promoted the apoptosis of activated LX-2 cells. Compared with the EGCG treatment group, the combination intervention group had significantly suppressed levels of hepatic stellate cell activation markers including alpha-smooth muscle actin, collagen type I alpha 1, collagen type III alpha 1, 5-hydroxytryptophan (5-HT), and 5-HT receptors 2A and 2B. Moreover, interleukin-10 levels were decreased, while TGF-β1 levels were increased after TGF-β1 activation in LX-2 culture medium, whereas the combin1ation intervention reversed this phenomenon. The combination treatment had a more pronounced effect than any single treatment at the same dose. These results demonstrated that the combination of EGCG and organic selenium synergistically improves the TGF-β1-induced fibrosis of LX-2 cells to some extent by promoting apoptosis and inhibiting cell activation. PRACTICAL APPLICATIONS: Here, we found that the effects of epigallocatechin-3-o-gallate (EGCG) + L-selenomethionine or L-selenomethylcysteine were more pronounced than those of EGCG alone. Future studies should investigate the protective effects of green tea and selenium-enriched green tea against hepatic fibrosis and explore the differences in their molecular mechanisms. The results of this study will be helpful for the development and utilization of selenium-enriched tea for food processing and health supplement production.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xue-Bin Yin
- Key Laboratory for Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Feng X, Cheng Q, Fang L, Liu W, Liu L, Sun C, Lu Z, Li G, Gu R. Corn oligopeptides inhibit Akt/
NF‐κB
signaling pathway and inflammatory factors to ameliorate
CCl
4
‐induced hepatic fibrosis in mice. J Food Biochem 2022; 46:e14162. [DOI: 10.1111/jfbc.14162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Xiao‐Wen Feng
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Qing‐Li Cheng
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Lei Fang
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Wen‐Ying Liu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering China Agricultural University Beijing People’s Republic of China
| | - Liang‐Wei Liu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
- College of Food Science Northeast Agricultural University Harbin People’s Republic of China
| | - Chuan‐Qiang Sun
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
- College of Food Science Northeast Agricultural University Harbin People’s Republic of China
| | - Zhi‐Hao Lu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Guo‐Ming Li
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| | - Rui‐Zeng Gu
- Beijing Engineering Research Center of Protein and Functional Peptides China National Research Institute of Food and Fermentation Industries Beijing People’s Republic of China
| |
Collapse
|
25
|
Leilei L, Wenke Q, Yuyuan L, Sihang L, Xue S, Weiqiang C, Lianbao Y, Ying W, Yan L, Ming L. Oleanolic acid-loaded nanoparticles attenuate activation of hepatic stellate cells via suppressing TGF-β1 and oxidative stress in PM2.5-exposed hepatocytes. Toxicol Appl Pharmacol 2022; 437:115891. [PMID: 35077758 DOI: 10.1016/j.taap.2022.115891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Liver fibrosis has the potential to progress into liver cirrhosis, liver failure, and even death. Hepatic stellate cells (HSCs) activation play a central role in liver fibrosis, and persistently damaged hepatocytes secrete soluble factors that activate transdifferentiation of HSCs into myofibroblasts. Our previous studies indicated that fine particulate matter (PM2.5) can activate HSCs by stimulating hepatocytes to secrete TGF-β1. However, whether PM2.5 activates HSCs by regulating oxidative stress in hepatocytes remains uncertain. Oleanolic acid (OA) has been widely used in the clinic for hepatoprotection in Chinese medicine. In the present study, OA-loaded nanoparticles (OA-NP) with high solubility were used to attenuate the activation of HSCs induced by PM2.5-treated hepatocytes, and further studies were performed to explore the mechanism in which OA-NP plays a vital part. Our results showed that consistently PM2.5 treatment induced oxidative stress in hepatocytes. Moreover, the activation of HSCs induced by PM2.5-treated hepatocytes was reversed by antioxidant N-acetylcysteine treatment. Hence, PM2.5 may participate in the activation of HSCs by regulating oxidative stress in hepatocytes. Using a co-cultivation system, our results proved pretreatment with OA-NP significantly attenuates the activation of HSCs induced by PM2.5-exposed hepatocytes. In addition, the TGF-β1 expression and oxidative stress in hepatocytes with PM2.5 treated were reduced by the incubation with OA-NP. These observations demonstrated that OA-NP protects against the activation of HSCs by decreasing the TGF-β1 level and oxidative stress in PM2.5-exposed hepatocytes.
Collapse
Affiliation(s)
- Lin Leilei
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Qiu Wenke
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Luo Yuyuan
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China; First Affiliated Hospital, Guangzhou Medical University, Guangdong, China
| | - Lin Sihang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Sun Xue
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chen Weiqiang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Ye Lianbao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Wang Ying
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Li Yan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Li Ming
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China.
| |
Collapse
|
26
|
Bian Z, Liu H, Xu F, Du Y. Ursolic acid protects against anoxic injury in cardiac microvascular endothelial cells by regulating intercellular adhesion molecule-1 and toll-like receptor 4/MyD88/NF-κB pathway. Hum Exp Toxicol 2022; 41:9603271221093626. [PMID: 35438581 DOI: 10.1177/09603271221093626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac microvascular endothelial cells (CMECs) are rapidly damaged after myocardial ischemia or hypoxia. In this study, we intend to explore whether ursolic acid (UA) can protect CMECs against hypoxia/reoxygenation (H/R) injury and to detect related molecular mechanism. METHODS CMECs were subjected to H/R condition in the absence or presence of UA. Cell behaviors were measured by Cell Counting Kit-8, transwell, ELISA and western blot assays. siRNA was applied to reduce ICAM1 expression, then the effect of co-treatment of UA and si-ICAM1 on CMECs has been detected by biological experiments. RESULTS Under H/R stimulation, the proliferation and migration of CMECs were inhibited, as well as the inflammation and oxidative stress were enhanced. UA treatment obviously reversed these H/R-induced injuries and reduced ICAM1 expression. Moreover, knockdown of ICAM1 could alleviate the H/R-induced injuries and strengthen the protective effect of UA on CMECs under H/R condition. Additionally, the protein levels of TLR4, MyD88 and p-P65 NF-κB were obviously increased after H/R stimulation, whereas the addition of UA could alter the phenomena by reducing TLR4, MyD88, and p-P65 NF-κB expression. CONCLUSIONS Our results insinuated that UA could alleviate H/R-induced injuries in CMECs by regulating ICAM1 and TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Zhongrui Bian
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hui Liu
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Fei Xu
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yimeng Du
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
27
|
Zhang G, Jiang Y, Liu X, Deng Y, Wei B, Shi L. Lingonberry Anthocyanins Inhibit Hepatic Stellate Cell Activation and Liver Fibrosis via TGFβ/Smad/ERK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13546-13556. [PMID: 34735147 DOI: 10.1021/acs.jafc.1c05384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phytochemicals from lingonberry have rich pharmacological value and may play an essential role in treating liver diseases. We investigated the regulatory role of lingonberry anthocyanins (LA) on HSC activation in vitro and liver fibrogenesis in vivo. The viability of HSCs treated with LA was significantly reduced in a dose-dependent manner at the concentration of 25-100 μg/mL, in which the monomers of LA also reduced the proliferation of HSCs via IC50 assay. The inducer transforming growth factor β1 (TGFβ1) and the effector α-smooth muscle actin (α-SMA) of HSC activation were all decreased both in protein and RNA levels treated by LA. Moreover, LA alleviated CCl4-induced liver fibrosis in rats, reducing collagen aggregation and production and decreasing the hydroxyproline (HYP) and malondialdehyde (MDA) levels in the liver tissue. Moreover, LA reduced the indexes of serum liver fibrosis and reversed the index of serum liver function in CCl4-induced rats. Furthermore, the antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), in the liver tissue and serum were significantly increased upon treatment with LA. Importantly, LA promoted hepatic parenchymal cell proliferation and inhibited the expression of TGFβ/Smad/extracellular regulated protein kinase (ERK) signaling pathway-related genes. This study demonstrates the anti-liver fibrosis activity of LA and investigates its mechanism, which may provide a novel strategy for treating liver fibrosis using lingonberry.
Collapse
Affiliation(s)
- Guokun Zhang
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin 130112, China
| | - Yunyao Jiang
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Xin Liu
- Shenyang Ligong University, Shenyang, Liaoning 110159, China
| | - Yongyan Deng
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Bin Wei
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin 130000, China
| | - Liyan Shi
- Changchun Sci-Tech University, Changchun, Jilin 130600, China
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, China
| |
Collapse
|
28
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Liu C, Hao K, Liu Z, Liu Z, Guo N. Epigallocatechin gallate (EGCG) attenuates staphylococcal alpha-hemolysin (Hla)-induced NLRP3 inflammasome activation via ROS-MAPK pathways and EGCG-Hla interactions. Int Immunopharmacol 2021; 100:108170. [PMID: 34562843 DOI: 10.1016/j.intimp.2021.108170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Alpha-hemolysin (Hla), the virulence factor secreted by Staphylococcus aureus (S. aureus), plays a critical role in infection and inflammation, which is a severe health burden worldwide. Therefore, it is necessary to develop a drug against Hla. Epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, has excellent anti-inflammatory activity. In this study, we investigated the inhibitory effect of EGCG on Hla-induced NLRP3 inflammasome activation in vitro and in vivo and elucidated the potential molecular mechanism. We found that EGCG attenuated the hemolysis of Hla by inhibiting its secretion. Besides, EGCG significantly decreased overproduction of ROS and activation of MAPK signaling pathway induced by Hla, thereby markedly attenuating the expression of NLRP3 inflammasome-related proteins in THP-1 cells. Notably, EGCG could spontaneously bind to Hla with affinity constant of 1.71 × 10-4 M, thus blocking the formation of the Hla heptamer. Moreover, Hla-induced expression of NLRP3, ASC and caspase-1 protein and generation of IL-1β and IL-18 in the damaged liver tissue of mice were also significantly suppressed by EGCG in a dose-dependent manner. Collectively, EGCG could be a promising candidate for alleviating Hla-induced the activation of NLRP3 inflammasome, depending on ROS mediated MAPK signaling pathway, and inhibition of Hla secretion and heptamer formation. These findings will enlighten the applications of EGCG to reduce the S. aureus infection by targeting Hla in food and related pharmaceutical fields.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kun Hao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zonghui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
30
|
Zhang YX, Li C, Liang XR, Jin JQ, Zhang Y, Xu F, Guan J, Ma YY, Ma XN, Liu RK, Fu JH. Role of 5-HT degradation in acute liver injury induced by carbon tetrachloride. Eur J Pharmacol 2021; 908:174355. [PMID: 34280394 DOI: 10.1016/j.ejphar.2021.174355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
5-hydroxytryptamine (5-HT) is involved in the pathological processes of several liver diseases. Acute liver injury underlies the development of many liver diseases, but the mechanism remains unclear. We aimed to investigate the role of 5-HT in carbon tetrachloride (CCl4)-induced acute liver injury. Acute liver injury was induced with CCl4 (10 mg/kg) in mice pretreated with the 5-HT2A receptor antagonist sarpogrelate hydrochloride (SH) and the 5-HT synthesis inhibitor carbidopa (CDP). LO2 cells were treated with CCl4, 5-HT or 2,5-dimethoxy-4-idopametamine and pretreated with SH, CDP or the monoamine oxidase A (MAO-A) inhibitor clorgyline. Hematoxylin-eosin staining, immunohistochemistry, Real-time quantitative PCR, western blotting, fluorescent probe and biochemical markers were used to evaluate liver compromise. 5-HT2A receptor, 5-HT synthetase and MAO-A were expressed in hepatocytes; their gene and protein expression were upregulated by CCl4, which led to the degradation of mitochondrial 5-HT and overproduction of reactive oxygen species (ROS). Hepatic injury may be aggravated by ROS, which induce oxidative stress and the phosphorylation of p38 mitogen-activated protein kinase, Jun N-terminal kinase, extracellular regulated protein kinase, signal transducer and activator of transcription 3 and nuclear factor kappa-B. 5-HT2A receptor may contribute to acute liver injury by modulating 5-HT synthase and MAO-A expression. The synergistic action of SH and CDP treatment may inhibit CCl4-induced acute liver injury in a dose-dependent manner. Hence, CCl4-induced acute liver injury is due to an increase in mitochondrial ROS production caused by increased 5-HT degradation and probably involves increases in 5-HT2A receptor expression and 5-HT synthesis.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Chen Li
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiu-Rui Liang
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia-Qi Jin
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Zhang
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fan Xu
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Guan
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Ying Ma
- Laboratory of Cardiovascular Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Nan Ma
- Cellular and Molecular Biology Center of China Pharmaceutical University, Nanjing, 210000, China
| | - Run-Kun Liu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Ji-Hua Fu
- Department of Physiology, China Pharmaceutical University, Nanjing, 210000, China.
| |
Collapse
|
31
|
Withaferin A Exerts Preventive Effect on Liver Fibrosis through Oxidative Stress Inhibition in a Sirtuin 3-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2452848. [PMID: 33029279 PMCID: PMC7532400 DOI: 10.1155/2020/2452848] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/14/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022]
Abstract
Sirtuin 3 (SIRT3) is a deacetylase involved in the development of many inflammation-related diseases including liver fibrosis. Withaferin A (WFA) is a bioactive constituent derived from the Withania somnifera plant, which has extensive pharmacological activities; however, little is known about the regulatory role of SIRT3 in the WFA-induced antifibrogenic effect. The current study is aimed at investigating the role of SIRT3 in WFA-induced antioxidant effects in liver fibrosis. Our study verified that WFA attenuated platelet-derived growth factor BB- (PDGF-BB-) induced liver fibrosis and promoted PDGF-BB-induced SIRT3 activity and expression in JS1 cells. SIRT3 silencing attenuated the antifibrogenic and antioxidant effects of WFA in activated JS1 cells. Moreover, WFA inhibited carbon tetrachloride- (CCl4-) induced liver injury, collagen deposition, and fibrosis; increased the SIRT3 expression; and suppressed the CCl4-induced oxidative stress in fibrotic livers of C57/BL6 mice. Furthermore, the antifibrogenic and antioxidant effects of WFA could be available in CCl4-induced WT (129S1/SvImJ) mice but were unavailable in CCl4-induced SIRT3 knockout (KO) mice. Our study suggested that WFA inhibited liver fibrosis through the inhibition of oxidative stress in a SIRT3-dependent manner. WFA could be a potential compound for the treatment of liver fibrosis.
Collapse
|
32
|
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020; 888:173578. [PMID: 32976828 DOI: 10.1016/j.ejphar.2020.173578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The discovery of drugs to treat liver fibrosis has long been a challenge over the past decades due to its complicated pathogenesis. As a primary approach for drug development, natural products account for 30% of clinical drugs used for disease treatment. Therefore, natural products are increasingly important for their medicinal value in liver fibrosis therapy. In this part of the review, special focus is placed on the effect and mechanism of natural compounds, including alkaloids, terpenoids, glycosides, coumarins and others. A total of 36 kinds of natural compounds demonstrate significant antifibrotic effects in various liver fibrosis models in vivo and in hepatic stellate cells (HSCs) in vitro. Revealing the mechanism will provide further basis for clinical conversion, as well as accelerate drug discovery. The mechanism was further summarized with the finding of network regulation by several natural products, such as oxymatrine, paeoniflorin, ginsenoside Rg1 and taurine. Moreover, there are still improvements needed in investigating clinical efficacy, determining mechanisms, and combining applications, as well as semisynthesis and modification. Therefore, natural products area promising resource for agents that protect against liver fibrosis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
33
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
34
|
Tsai FJ, Yang PY, Chen CJ, Li JP, Li TM, Chiou JS, Cheng CF, Chuang PH, Lin TH, Liao CC, Huang SM, Ban B, Liang WM, Lin YJ. Decreased overall mortality rate with Chinese herbal medicine usage in patients with decompensated liver cirrhosis in Taiwan. BMC Complement Med Ther 2020; 20:221. [PMID: 32664975 PMCID: PMC7362535 DOI: 10.1186/s12906-020-03010-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Liver cirrhosis is one of the main causes of the morbidity and mortality in liver diseases. Chinese herbal medicine (CHM) has long been used for the clinical treatment of liver diseases. This study was designed to explore the usage frequency and prescription patterns of CHM for patients with decompensated liver cirrhosis and to evaluate the long-term effects of CHM on overall mortality. Methods Two thousand four hundred sixty-seven patients with decompensated liver cirrhosis (ICD-9-CM code: 571.2, 571.5, and 571.6) diagnosed between 2000 and 2009 in Taiwan were identified from the registry for catastrophic illness patients. Of these, 149 CHM users and 298 CHM non-users were matched for age, gender, and Charlson comorbidity index score. The chi-squared test, paired Student’s t-test, Cox proportional hazard model, and Kaplan–Meier method were applied for various comparisons between these groups of patients. Results CHM-treated patients showed a lower overall mortality risk compared with non-treated patients (Multivariable: p < 0.0001; HR: 0.54, 95% CI: 0.42–0.69). The cumulative incidence of overall mortality was lower in the CHM-treated group (stratified log-rank test, p = 0.0002). The strongest CHM co-prescription pattern- Yin-Chen-Hao-Tang (YCHT) → Long-Dan-Xie-Gan-Tang (LDXGT) had the highest support, followed by Zhi-Zi (ZZ) → Yin-Chen-Wu-Ling-San (YCWLS) and Bai-Hua-She-She-Cao (BHSSC) → Da-Huang (DaH). Conclusion CHM, as adjunct therapy, might decrease the risk of overall mortality in patients with decompensated liver cirrhosis. CHM co-prescription patterns and network analysis showed that comprehensive herbal medicines have a protective role against liver fibrosis. Further studies are required to enhance the knowledge of safety and efficacy of CHM in patients with decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Asia University, Taichung, Taiwan
| | - Pei-Yuu Yang
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan.,Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biostatistics, School of Public Health, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan
| | - Po-Heng Chuang
- Division of Hepato-gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Bo Ban
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, China
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan. .,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
35
|
Li X, Shao S, Li H, Bi Z, Zhang S, Wei Y, Bai J, Zhang R, Ma X, Ma B, Zhang L, Xie C, Ning W, Zhou H, Yang C. Byakangelicin protects against carbon tetrachloride-induced liver injury and fibrosis in mice. J Cell Mol Med 2020; 24:8623-8635. [PMID: 32643868 PMCID: PMC7412405 DOI: 10.1111/jcmm.15493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a disease caused by long-term damage that is related to a number of factors. The current research on the treatment of liver fibrosis mainly focuses on the activation of hepatic stellate cell, in addition to protecting liver cells. byakangelicin has certain anti-inflammatory ability, but its effect on liver fibrosis is unclear. This study aims to explore whether byakangelicin plays a role in the development of liver fibrosis and to explore its mechanism. We determined that byakangelicin has a certain ability to resist fibrosis and reduce liver cell damage in a model of carbon tetrachloride-induced liver fibrosis in mice. Thereafter, we performed further verification in vitro. The signalling pathways of two important pro-fibrotic cytokines, transforming growth factor-β and platelet-derived growth factor, were studied. Results showed that byakangelicin can inhibit related pathways. According to the hepatoprotective effect of byakangelicin observed in animal experiments, we studied the effect of byakangelicin on 4-HNE-induced hepatocyte (HepG2) apoptosis and explored its related pathways. The results showed that byakangelicin could attenuate 4-HNE-induced hepatocyte apoptosis via inhibiting ASK-1/JNK signalling. In conclusion, byakangelicin could improve carbon tetrachloride-induced liver fibrosis and liver injury by inhibiting hepatic stellate cell proliferation and activation and suppressing hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuaibo Shao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shanshan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yiying Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jiakun Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruotong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoyang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bowei Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
36
|
Wan S, Luo F, Huang C, Liu C, Luo Q, Zhu X. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging (Albany NY) 2020; 12:10614-10632. [PMID: 32496208 PMCID: PMC7346053 DOI: 10.18632/aging.103282] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the reversible deposition of extracellular matrix (ECM) and scar formation after liver damage by various stimuli. The interaction between NOX4/ROS and RhoA/ROCK1 in liver fibrosis is not yet clear. Ursolic acid (UA) is a traditional Chinese medicine with anti-fibrotic effects, but the molecular mechanism underlying these effects is still unclear. We investigated the interaction between NOX4/ROS and RhoA/ROCK1 during liver fibrosis and whether these molecules are targets for the anti-fibrotic effects of UA. First, we confirmed that UA reversed CCl4-induced liver fibrosis. In the NOX4 intervention and RhoA intervention groups, related experimental analyses confirmed the decrease in CCl4-induced liver fibrosis. Next, we determined that the expression of NOX4 and RhoA/ROCK1 was decreased in UA-treated liver fibrotic mice. Furthermore, RhoA/ROCK1 expression was decreased in the NOX4 intervention group, but there was no significant change in the expression of NOX4 in the RhoA intervention group. Finally, we found that liver fibrotic mice showed a decline in their microbiota diversity and abundance, a change in their microbiota composition, and a reduction in the number of potential beneficial bacteria. However, in UA-treated liver fibrotic mice, the microbiota dysbiosis was ameliorated. In conclusion, the NOX4/ROS and RhoA/ROCK1 signalling pathways are closely linked to the development of liver fibrosis. UA can reverse liver fibrosis by inhibiting the NOX4/ROS and RhoA/ROCK1 signalling pathways, which may interact with each other.
Collapse
Affiliation(s)
- Sizhe Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fangyun Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenkai Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingtian Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Ni Y, Zhuge F, Nagashimada M, Nagata N, Xu L, Yamamoto S, Fuke N, Ushida Y, Suganuma H, Kaneko S, Ota T. Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice. Free Radic Biol Med 2020; 152:571-582. [PMID: 31790829 DOI: 10.1016/j.freeradbiomed.2019.11.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid uptake-induced oxidative stress causes liver injury and the consecutive recruitment of inflammatory immune cells, thereby promoting the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Lycopene, the most effective singlet oxygen scavenger of the antioxidant carotenoids, has anti-inflammatory activity. Here, we investigated the preventive and therapeutic effects of lycopene in a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet. Lycopene alleviated excessive hepatic lipid accumulation and enhanced lipolysis, decreased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis, and subsequently reduced the recruitment of CD4+ and CD8+ T cells in the liver. Importantly, lycopene reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. In parallel, lycopene decreased LPS-/IFN-γ-/TNFα-induced M1 marker mRNA levels in peritoneal macrophages, as well as TGF-β1-induced expression of fibrogenic genes in a stellate cell line, in a dose-dependent manner. These results were associated with decreased oxidative stress in cells, which might be mediated by the expression of NADPH oxidase subunits. In summary, lycopene prevented and reversed lipotoxicity-induced inflammation and fibrosis in NASH mice by reducing oxidative stress. Therefore, it might be a novel and promising treatment for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Mayumi Nagashimada
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Health Science, Graduate of Medical Science, Kanazawa University, Kanazawa, 920-0942, Japan
| | - Naoto Nagata
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Liang Xu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sayo Yamamoto
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Nobuo Fuke
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | | | - Shuichi Kaneko
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tsuguhito Ota
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| |
Collapse
|
38
|
Wan S, Huang C, Wang A, Zhu X. Ursolic acid improves the bacterial community mapping of the intestinal tract in liver fibrosis mice. PeerJ 2020; 8:e9050. [PMID: 32355580 PMCID: PMC7185030 DOI: 10.7717/peerj.9050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis often appears in chronic liver disease, with extracellular matrix (ECM) deposition as the main feature. Due to the presence of the liver-gut axis, the destruction of intestinal homeostasis is often accompanied by the development of liver fibrosis. The inconsistent ecological environment of different intestinal sites may lead to differences in the microbiota. The traditional Chinese medicine ursolic acid (UA) has been proven to protect the liver from fibrosis. We investigated the changes in the microbiota of different parts of the intestine during liver fibrosis and the effect of UA on these changes based on high-throughput sequencing technology. Sequencing results suggest that the diversity and abundance of intestinal microbiota decline and the composition of the microbiota is disordered, the potentially beneficial Firmicutes bacteria are reduced, and the pathways for functional prediction are changed in the ilea and anal faeces of liver fibrosis mice compared with normal mice. However, in UA-treated liver fibrosis mice, these disorders improved. It is worth noting that the bacterial changes in the ilea and anal faeces are not consistent. In conclusion, in liver fibrosis, the microbiota of different parts of the intestines have different degrees of disorder, and UA can improve this disorder. This may be a potential mechanism for UA to achieve anti-fibrosis. This study provides theoretical guidance for the UA targeting of intestinal microbiota for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Sizhe Wan
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenkai Huang
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anjiang Wang
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Kong D, Chen L, Huang W, Zhang Z, Wang L, Zhang F, Zheng S. Combined therapy with ligustrazine and paeonol mitigates hepatic fibrosis through destroying mitochondrial integrity of stellate cell. Am J Transl Res 2020; 12:1255-1266. [PMID: 32355539 PMCID: PMC7191175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the inhibitory effect and potential mechanism of ligustrazine combined with paeonol on hepatic fibrosis, as to provide a new therapeutic strategy for clinical hepatic fibrosis. The degree of liver injury collagen deposition and inflammation was assessed by hematoxylin and eosin staining, Masson, Sirius red staining and biochemically serum analysis. ATP and ROS levels in each group were detected by chemical fluorescence method. The apoptotic rate was measured by Tunel assay. Mito-Tacker fluorescence staining and mitochondrial DNA copy number were measured to observe the effect of ligustrazine or/and paeonol on mitochondrial function of hepatic stellate cell (HSC). The expression of relevant proteins and genes were evaluated by using immunofluorescence RT-PCR and western blot. Ligustrazine or/and paeonol significantly improve the pathological changes in liver tissue induced by CCl4, however, they reduced the levels of liver and fibrosis markers in tissue and serum. ROS, NOX1 and NOX2 were significantly increased and GSH was decreased in HSC, with the intervention of Ligustrazine or/and paeonol. We further found that Ligustrazine or/and paeonol can effectively inhibit liver inflammation in vivo. The expression of TNF-α, IL-6 and IL-8 was upregulated in HSC. Moreover, Ligustrazine or/and paeonol promotes apoptosis and inhibit proliferation of HSC. Additionally, the inhibiting effects of the drug on collagen deposition was due to the interference with the expression of signaling pathway related proteins and genes such as, MMPS, TGF-β, PDGF and BMP-2 in HSC. Mitochondrial activity of HSC was inhibited by Ligustrazine or/and paeonol. The inhibitory effects of ligustrazine or/and Paeonol on mitochondrial function is partially balanced by mitochondrial protective agent SS-31. Ligustrazine combined with paeonol exerts significant anti-hepatic fibrosis effect in vivo and in vitro. This may due to the disruption of HSC mitochondrial function, thereby induced promoting oxidative stress, apoptosis, inflammation and inhibiting the formation and deposition of extracellular matrix.
Collapse
Affiliation(s)
- Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese MedicineNanjing 210022, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjing 210023, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Liping Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese MedicineNanjing 210022, China
| | - Weifang Huang
- Department of Pharmacology, School of Integral Medicine, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjing 210023, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjing 210023, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjing 210023, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese MedicineNanjing 210023, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjing 210023, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese MedicineNanjing 210023, China
| |
Collapse
|
40
|
Cheng JX, Zhang BD, Zhu WF, Zhang CF, Qin YM, Abe M, Akihisa T, Liu WY, Feng F, Zhang J. Traditional uses, phytochemistry, and pharmacology of Ficus hispida L.f.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112204. [PMID: 31669442 DOI: 10.1016/j.jep.2019.112204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hispida L.f. (Moraceae) has long been used as a traditional medicine in India, China, Sri Lanka, Australia, and Myanmar in the treatment of diarrhea, ulcer, anemia, diabetes, inflammation, and cancer. AIM OF THE REVIEW This review provides a systematic comment on the botany, traditional uses, and phytochemical and pharmacological studies of F. hispida, with an aim to make critical update of the current knowledge and obtain opportunities for further therapeutic potential. MATERIALS AND METHODS The information was derived from scientific literature databases including PubMed, Baidu Scholar, Google Scholar, Web of Science, and Science Direct. Additional information was gathered from books, Ph.D. and M.Sc. dissertations, and unpublished materials. RESULTS AND DISCUSSION F. hispida is used especially in Chinese and Indian traditional medical systems as a remedy for skin disorders, respiratory diseases, and urinary diseases. Wound healing, anti-inflammatory, antinociceptive, sedative, antidiarrheal, antiulcer, antimicrobial, antioxidant, hepatoprotective, antineoplastic, and antidiabetic activities have been reported for crude extracts and isolated metabolites, but the methodologies in these studies often have inadequate design and low technical quality. More than 76 compounds have been isolated from F.hispida, including sesquiterpenoids and triterpenoids, flavonoids, coumarins, phenylpropionic acids, benzoic acid derivatives, alkaloids, steroids, other glycosides, and alkanes, but the method of bioassay-guided fractionation is seldom applied in the isolation from F. hispida. CONCLUSION F. hispida is used widely in traditional medicines and has multiple pharmacological effects that could support traditional uses. However, pharmacological studies should be viewed with caution because of the inappropriate experimental design. More in vitro and in vivo research is urgently needed to study the molecular mechanisms and assess the effective and safe dose of F. hispida.
Collapse
Affiliation(s)
- Jia-Xin Cheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yi-Min Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, 266000, China
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, 223003, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
41
|
Sun JC, Du JJ, Li XQ, Li N, Wei W, Sun WY. Depletion of β-arrestin 2 protects against CCl4-induced liver injury in mice. Biochem Biophys Res Commun 2020; 522:485-491. [DOI: 10.1016/j.bbrc.2019.11.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
|
42
|
Wan SZ, Liu C, Huang CK, Luo FY, Zhu X. Ursolic Acid Improves Intestinal Damage and Bacterial Dysbiosis in Liver Fibrosis Mice. Front Pharmacol 2019; 10:1321. [PMID: 31736766 PMCID: PMC6838135 DOI: 10.3389/fphar.2019.01321] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a reversible process of extracellular matrix deposition or scar formation after liver injury. Intestinal damage and bacterial dysbiosis are important concomitant intestinal changes in liver fibrosis and may in turn accelerate the progression of liver fibrosis through the gut-liver axis. RhoA, an important factor in the regulation of the cytoskeleton, plays an important role in intestinal damage. We investigated the effects of ursolic acid (UA), a traditional Chinese medicine with anti-fibrotic effects, on intestinal damage and bacterial disorder through the RhoA pathway. UA treatment reduced intestinal damage by inhibiting the inflammatory factor TNF-α and increasing the expression of tight junction proteins and antibacterial peptides to protect the intestinal barrier. Moreover, the corrective effect of UA on bacterial dysbiosis was also confirmed by sequencing of the 16S rRNA gene. Potential beneficial bacteria, such as the phylum Firmicutes and the genera Lactobacillus and Bifidobacterium, were increased in the UA group compared to the CCl4 group. In liver fibrosis mice with RhoA inhibition via injection of adeno-associated virus, the liver fibrosis, intestinal damage, and flora disturbances were improved. Moreover, UA inhibited the expression of RhoA pathway components. In conclusion, UA improves intestinal damage and bacterial dysbiosis partly via the RhoA pathway. This may be a potential mechanism by which UA exerts its anti-fibrotic effects and provides effective theoretical support for the future use of UA in clinical practice.
Collapse
Affiliation(s)
- Si-Zhe Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen-Kai Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang-Yun Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Zhang W, Gan D, Jian J, Huang C, Luo F, Wan S, Jiang M, Wan Y, Wang A, Li B, Zhu X. Protective Effect of Ursolic Acid on the Intestinal Mucosal Barrier in a Rat Model of Liver Fibrosis. Front Physiol 2019; 10:956. [PMID: 31417419 PMCID: PMC6682626 DOI: 10.3389/fphys.2019.00956] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) plays an important role in intestinal mucosal barrier damage in various disease states. Recent evidence suggests that intestinal mucosal barrier damage and intestinal dysbiosis occur in mice with hepatic fibrosis induced by CCl4 or bile duct ligation. Another study showed that ursolic acid (UA) attenuates experimental colitis via its anti-inflammatory and antioxidant activities. The goal of this study was to investigate the effects of UA on the intestinal mucosal barrier in CCl4-induced hepatic fibrosis in rats and identify its associated mechanisms. Male Sprague-Dawley rats were randomly divided into the following 3 groups (n = 10/group): the control, CCl4 model and UA treatment groups. Rats were sacrificed at 72 h after the hepatic fibrosis model was established and assessed for liver fibrosis, intestinal injury, enterocyte apoptosis, bacterial translocation, system inflammation, intestinal oxidative stress, and tight junction protein and NOX protein expression. The results demonstrated that UA attenuated the following: (i) liver and intestinal pathological injury; (ii) cleaved caspase-3 expression in the ileal epithelial cells; (iii) serum lipopolysaccharide and procalcitonin levels; (iv) intestinal malondialdehyde levels; and (v) the expression of the NOX protein components NOX2 and P67phox in ileal tissues. Furthermore, our results suggested that UA improved intestinal dysbiosis and the expression of the tight junction proteins Claudin 1 and Occludin in the ileum of rats. These results indicate that UA has protective effects on the intestinal mucosal barrier in rats with CCl4-induced liver fibrosis by inhibiting intestinal NOX-mediated oxidative stress. Our findings may provide a basis for further clinical studies of UA as a novel and adjuvant treatment to cure liver fibrosis.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dakai Gan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Liver Disease, The Ninth Hospital of Nanchang, Nanchang, China
| | - Jie Jian
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenkai Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangyun Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sizhe Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meichun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipeng Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anjiang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bimin Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Huang C, Gan D, Luo F, Wan S, Chen J, Wang A, Li B, Zhu X. Interaction Mechanisms Between the NOX4/ROS and RhoA/ROCK1 Signaling Pathways as New Anti- fibrosis Targets of Ursolic Acid in Hepatic Stellate Cells. Front Pharmacol 2019; 10:431. [PMID: 31130857 PMCID: PMC6510285 DOI: 10.3389/fphar.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/04/2019] [Indexed: 01/14/2023] Open
Abstract
Background Studies have shown that both NOX4 and RhoA play essential roles in fibrosis and that they regulate each other. In lung fibrosis, NOX4/ROS is located upstream of the RhoA/ROCK1 signaling pathway, and the two molecules are oppositely located in renal fibrosis. Currently, no reports have indicated whether the above mechanisms or other regulatory mechanisms exist in liver fibrosis. Objectives To investigate the effects of the NOX4/ROS and RhoA/ROCK1 signaling pathways on hepatic stellate cell (HSC)-T6 cells, the interaction mechanisms of the two pathways, and the impact of UA on the two pathways to elucidate the role of UA in the reduction of hepatic fibrosis and potential mechanisms of HSC-T6 cell proliferation, migration, and activation. Methods Stable cell lines were constructed using the lentiviral transduction technique. Cell proliferation, apoptosis, migration, and invasion were examined using the MTS, TdT-mediated dUTP nick-end labeling, cell scratch, and Transwell invasion assays, respectively. The DCFH-DA method was used to investigate the ROS levels in each group. RT-qPCR and western blotting techniques were utilized to assess the mRNA and protein expression in each group. CoIP and the Biacore protein interaction analysis systems were used to evaluate protein interactions. Results The NOX4/ROS and RhoA/ROCK1 signaling pathways promoted the proliferation, migration, and activation of HSCs. UA inhibited cell proliferation, migration, and activation by inhibiting the activation of the two signaling pathways, but the mechanism of apoptosis was independent of these two pathways. The NOX4/ROS pathway was upstream of and positively regulated the RhoA/ROCK1 pathway in HSCs. No direct interaction between the NOX4 and RhoA proteins was detected. Conclusion The NOX4/ROS and RhoA/ROCK1 signaling pathways are two critical signaling pathways in a series of behavioral processes in HSCs, and NOX4/ROS regulates RhoA/ROCK1 through an indirect pathway to control the activation of HSCs. Additionally, NOX4/ROS and RhoA/ROCK1 constitute a new target for UA antifibrosis treatment.
Collapse
Affiliation(s)
- Chenkai Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dakai Gan
- Department One of Liver Disease, The Ninth Hospital of Nanchang, Nanchang, China
| | - Fangyun Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sizhe Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Chen
- Digestive Disease Research Institute of Jiangxi Province, Nanchang, China
| | - Anjiang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bimin Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. Ursolic acid downregulates thymic stromal lymphopoietin through the blockade of intracellular calcium/caspase‑1/NF‑κB signaling cascade in HMC‑1 cells. Int J Mol Med 2019; 43:2252-2258. [PMID: 30976816 DOI: 10.3892/ijmm.2019.4144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) plays an important role in allergic disorders, including atopic dermatitis and asthma. Ursolic acid (UA) has various pharmacological properties, such as antioxidant, anti‑inflammatory and anticancer. However, the effect of UA on TSLP regulation has not been fully elucidated. The aim of the present study was to analyze how UA regulates the production of TSLP in the human mast cell line HMC‑1. Enzyme‑linked immunosorbent assay, quantitative polymerase chain reaction analysis, western blotting, caspase‑1 assay and fluorescent measurements of intracellular calcium levels were conducted to analyze the regulatory effects of UA. The results revealed that UA inhibited TSLP production and mRNA expression. In addition, UA reduced the activation of nuclear factor‑κB and degradation of IκBα. Caspase‑1 activity was increased by exposure to phorbol myristate acetate plus calcium ionophore, whereas it was reduced by UA. Finally, UA treatment prevented an increase in intracellular calcium levels. These results indicated that UA may be a useful agent for the treatment and/or prevention of atopic and inflammatory diseases, and its effects are likely mediated by TSLP downregulation.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Soo Lee
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science and Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| |
Collapse
|
46
|
Peng M, Qiang L, Xu Y, Li C, Li T, Wang J. Modification of Cysteine 179 in IKKβ by Ursolic Acid Inhibits Titanium-Wear-Particle-Induced Inflammation, Osteoclastogenesis, and Hydroxylapatite Resorption. Mol Pharm 2018; 15:5244-5251. [PMID: 30265541 DOI: 10.1021/acs.molpharmaceut.8b00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aseptic loosening of artificial joints mainly accounts for the failure of arthroplasty. We previously reported that ursolic acid (UA) inhibited osteolysis caused by titanium (Ti) wear particles via suppression of NF-kB signaling. In the present study, that the suppressive effect of UA on Ti-particle-induced inflammation and osteoclastogenesis targets on IKKβ cys-179 was demonstrated. A retrovirus packaged IKKβC179A plasmid with a Cys-179 mutation replaced by Ala was constructed. qRT-PCR, immunoblot, and immunofluorescence were used to evaluate the gene expressions. Secreted inflammatory cytokines were detected by ELISA. Formation and function of osteoclastogenesis were evaluated by TRAP stain and hydroxylapatite resorption assays. As a result, a mutation of IKKβC179A rescued the therapeutic effect of UA on Ti-particle-induced inflammation, including morphological transforms, upregulation of iNOS and COX-2, increased secretions of TNF-α, IL-1β, and IL-6, and decreased secretion of IL-10. Meanwhile, inhibition of osteoclastogenesis and hydroxylapatite resorptions were restored by transfection of IKKβC179A. Phosphorylations of p65 and the IKKα/β complex and translocation of p65 into the nucleus were suppressed by UA but rescued by a mutation of IKKβC179A. Conclusively, UA inhibits Ti-wear-particle-induced inflammation, osteoclastogenesis, and hydroxylapatite resorption via modifying cysteine 179 of IKKβ.
Collapse
Affiliation(s)
- Mingzheng Peng
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Lei Qiang
- Southwest Jiaotong University College Of Medicine , No.111, North Section, Second Ring Road , Chengdu , Sichuan 610031 , P.R. China
| | - Yan Xu
- Southwest Jiaotong University College Of Medicine , No.111, North Section, Second Ring Road , Chengdu , Sichuan 610031 , P.R. China
| | - Cuidi Li
- Med-X Research Institute, School of Biomedical Engineering , Shanghai Jiao Tong University , 1804 Huashan Road , Shanghai 200030 , China
| | - Tao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
| |
Collapse
|
47
|
Gan D, Zhang W, Huang C, Chen J, He W, Wang A, Li B, Zhu X. Ursolic acid ameliorates CCl4-induced liver fibrosis through the NOXs/ROS pathway. J Cell Physiol 2018; 233:6799-6813. [PMID: 29672850 PMCID: PMC6055678 DOI: 10.1002/jcp.26541] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a reversible wound-healing response that occurs after liver injury. NADPH oxidases (NOXs) and reactive oxygen species (ROS) which are expressed in hepatocytes (HCs), hepatic stellate cells (HSCs), and Kupffer cells (KCs) play an important role in the development of hepatic fibrosis. In in vitro studies, we had shown that ursolic acid (UA) could reverse liver fibrosis by inhibiting the activation of NOX-mediated fibrotic signaling networks in HSCs. In this study, we verified that UA could alleviate CCl4-induced liver fibrosis by reducing the expression of NOXs/ROS in HCs, HSCs, KCs. Meanwhile, the phagocytic index α and clearance index K which represent phagocytosis of KCs were unchanged. Together, all our data demonstrated that UA induced the proliferation of HCs, promoted apoptosis in HSCs, and prevented activation of KCs in vivo by reducing the expression of NOXs/ROS in HCs, HSCs, KCs. Besides, UA had no effect on the host defense function.
Collapse
Affiliation(s)
- Dakai Gan
- Department One of Liver DiseaseThe Ninth Hospital of NanchangNanchangPeople's Republic of China
| | - Wang Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Chenkai Huang
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Jiang Chen
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Wenhua He
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Anjiang Wang
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Bimin Li
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Xuan Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| |
Collapse
|