1
|
Zhang C, Qin Y, Tang Y, Gu M, Li Z, Xu H. MEG3 in hematologic malignancies: from the role of disease biomarker to therapeutic target. Pharmacogenet Genomics 2024; 34:209-216. [PMID: 38743429 DOI: 10.1097/fpc.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Li H, Han X, Song L, Li X, Zhang L, Jin Z, Zhang Y, Wang T, Huang Z, Jia Z, Yang J. LINC00645 inhibits renal cell carcinoma progression by interacting with HNRNPA2B1 to regulate the ROCK1 mRNA stability. Gene 2024; 905:148232. [PMID: 38309317 DOI: 10.1016/j.gene.2024.148232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xu Han
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liang Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiang Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
3
|
Zhu A, Cheng C, Lin S, Hong Z, Shi Z, Deng H, Zhang G. Silence of linc00023 inhibits pyroptosis and promotes cell proliferation via regulating p53. Gene 2023; 882:147628. [PMID: 37429368 DOI: 10.1016/j.gene.2023.147628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE The objective of our study is to investigate the role and potential mechanism of linc00023 in the development of pyroptosis in clear cell renal cell carcinoma (ccRCC). METHODS We assessed the expression of linc00023 in cells using qRT-PCR. Following linc00023 knockdown, we monitored cell proliferation and the pyroptosis marker using MTS, qRT-PCR, western blot analysis, and ELISA assays. Additionally, we performed RNA sequencing after linc00023 knockdown and validated the involvement of p53 using western blot analysis. Furthermore, we evaluated the potential mechanism by assessing cell proliferation and the expression of the pyroptosis marker after treatment with a p53 activator in linc00023-inhibited cells. RESULTS Linc00023 expression was downregulated in ccRCC cells. Among them, ACHN cells exhibited higher linc00023 expression and were selected for further investigation. Knockdown of linc00023 resulted in increased cell proliferation and decreased pyroptosis. Furthermore, inhibition of linc00023 led to changes in the expression of numerous mRNAs, including p53. Importantly, the p53 activator ReACp53 reversed the effects of linc00023 knockdown on cell proliferation and pyroptosis. CONCLUSION In conclusion, our findings suggested that linc00023 regulates pyroptosis in ccRCC by modulating p53 expression.
Collapse
Affiliation(s)
- Anyi Zhu
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Cheng Cheng
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shuangquan Lin
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhengdong Hong
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zimin Shi
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Huanhuan Deng
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Gan Zhang
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
4
|
Tesarova T, Koucka K, Vaclavikova R, Seborova K, Hora M, Hes O, Pivovarcikova K, Soucek P, Fiala O. Association of lncRNA and transcriptome intersections with response to targeted therapy in metastatic renal cell carcinoma. Oncol Lett 2023; 26:365. [PMID: 37559591 PMCID: PMC10407709 DOI: 10.3892/ol.2023.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 08/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) serve an important role in cancer progression and may be used as efficient molecular biomarkers. The present study aimed to identify lncRNAs associated with the response to the receptor tyrosine kinase inhibitor sunitinib and transcriptome profile and clinical features of metastatic renal cell carcinoma (mRCC). The gene expression of 84 cancer-associated lncRNAs in tumor and non-malignant tissue samples of 38 patients with mRCC was evaluated using quantitative PCR. In addition, the coding transcriptome was estimated using RNA sequencing in a subgroup of 20 patients and mRNA-lncRNA intersections were identified. In total, 37 and 13 lncRNAs were down- and upregulated, respectively, in tumor compared with non-malignant adjacent tissue samples. A total of 10 and 4 lncRNAs were up- and downregulated, respectively, in good responders to sunitinib compared with poor responders. High expression of HNF1A-AS1 and IPW lncRNAs was associated with prolonged progression-free survival of patients and a high expression of the TUSC7 lncRNA was associated with poor response and worse survival. Significant associations of dysregulated MEG3 and SNHG16 lncRNAs with expression of protein-coding genes representing various pathways, were identified. Furthermore, a significantly higher expression of CLIP4 gene was observed in good responders. The present study revealed promising candidates for predictive and prognostic biomarkers with further therapeutic potential.
Collapse
Affiliation(s)
- Tereza Tesarova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague 10, Czech Republic
| | - Kamila Koucka
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Vaclavikova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague 10, Czech Republic
| | - Karolina Seborova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine in Pilsen and University Hospital, Charles University, 301 00 Pilsen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Faculty of Medicine in Pilsen and University Hospital, Charles University, 301 00 Pilsen, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Pilsen and University Hospital, Charles University, 301 00 Pilsen, Czech Republic
| | - Pavel Soucek
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague 10, Czech Republic
| | - Ondrej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine in Pilsen and University Hospital, Charles University, 323 00 Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
5
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
7
|
Zhang L, Zhao F, Li W, Song G, Kasim V, Wu S. The Biological Roles and Molecular Mechanisms of Long Non-Coding RNA MEG3 in the Hallmarks of Cancer. Cancers (Basel) 2022; 14:cancers14246032. [PMID: 36551518 PMCID: PMC9775699 DOI: 10.3390/cancers14246032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could suppress tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein, we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| |
Collapse
|
8
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
9
|
Molina-Cerrillo J, Santoni M, Ruiz Á, Massari F, Pozas J, Ortego I, Gómez V, Grande E, Alonso-Gordoa T. Epigenetics in advanced renal cell carcinoma: Potential new targets. Crit Rev Oncol Hematol 2022; 180:103857. [DOI: 10.1016/j.critrevonc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
10
|
Liu T, Zhao H. Long Non-Coding RNAs: A Double-Edged Sword in Renal Cell Carcinoma Carcinogenesis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1537.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans 2022; 50:921-933. [PMID: 35356965 DOI: 10.1042/bst20211166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
RAS small GTPases regulate important signalling pathways and are notorious drivers of cancer development and progression. While most research to date has focused on understanding and addressing the oncogenic potential of three RAS oncogenes: HRAS, KRAS, and NRAS; the full RAS subfamily is composed of 35 related GTPases with diverse cellular functions. Most remain deeply understudied despite strong evolutionary conservation. Here, we highlight a group of 17 poorly characterized RAS GTPases that are frequently down-regulated in cancer and evidence suggests may function not as oncogenes, but as tumour suppressors. These GTPases remain largely enigmatic in terms of their cellular function, regulation, and interaction with effector proteins. They cluster within two families we designate as 'distal-RAS' (D-RAS; comprised of DIRAS, RASD, and RASL10) and 'CaaX-Less RAS' (CL-RAS; comprised of RGK, NKIRAS, RERG, and RASL11/12 GTPases). Evidence of a tumour suppressive role for many of these GTPases supports the premise that RAS subfamily proteins may collectively regulate cellular proliferation.
Collapse
|
12
|
Ramšak Ž, Modic V, Li RA, vom Berg C, Zupanic A. From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study. FRONTIERS IN TOXICOLOGY 2022; 4:815754. [PMID: 35295214 PMCID: PMC8915909 DOI: 10.3389/ftox.2022.815754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
The last decade has seen the adverse outcome pathways (AOP) framework become one of the most powerful tools in chemical risk assessment, but the development of new AOPs remains a slow and manually intensive process. Here, we present a faster approach for AOP generation, based on manually curated causal toxicological networks. As a case study, we took a recently published zebrafish developmental neurotoxicity network, which contains causally connected molecular events leading to neuropathologies, and developed two new adverse outcome pathways: Inhibition of Fyna (Src family tyrosine kinase A) leading to increased mortality via decreased eye size (AOP 399 on AOP-Wiki) and GSK3beta (Glycogen synthase kinase 3 beta) inactivation leading to increased mortality via defects in developing inner ear (AOP 410). The approach consists of an automatic separation of the toxicological network into candidate AOPs, filtering the AOPs according to available evidence and length as well as manual development of new AOPs and weight-of-evidence evaluation. The semiautomatic approach described here provides a new opportunity for fast and straightforward AOP development based on large network resources.
Collapse
Affiliation(s)
- Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vid Modic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Roman A. Li
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Colette vom Berg
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- *Correspondence: Anze Zupanic,
| |
Collapse
|
13
|
Qin Y, Li G, Jin Y, Yao Q, Li R, Li X, Wang H. Long Non-Coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol Mech Methods 2022; 32:453-462. [PMID: 35164634 DOI: 10.1080/15376516.2022.2042881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the role and mechanism of long non-coding RNA maternally expressed gene 3 (MEG3) in cognitive dysfunction induced by isoflurane (ISO). Morrier water maze analysis was performed to evaluate the cognitive function of rats. Modified modified neurological severity score (mNSS) scores were assessed for neurological damage. The levels of MEG3 in hippocampal tissues of rats and hippocampal neuron cell lines HT22 were examined by reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Moreover, the cell viability and apoptosis were assessed by the Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Indicators of inflammation and oxidative stress were determined using enzyme-linked immunosorbent assay (ELISA) and commercial assay kits. Relationship between MEG3 and microRNA (miR)-7-5p was verified by the dual-luciferase reporter gene assay. MEG3 was increased in hippocampal tissues and HT22 after ISO treatment (P < 0.05). MEG3 downregulation alleviated the increase in neurological severity score and cognitive dysfunction caused by ISO treatment (P < 0.05). In vitro, MEG3 downregulation alleviates the decrease in cell activity and increased apoptosis induced by ISO. What's more, MEG3 reduction eliminated activation of neuroinflammation and oxidative stress promoted by ISO treatment in rats and HT22 (P < 0.05). MEG3 was confirmed to specifically bind to miR-7-5p. Inhibition of miR-7-5p eliminated the alleviating effects of MEG3 downregulation on cognitive dysfunction caused by ISO treatment. Decreased MEG3 alleviates cognitive dysfunction caused by ISO by targeting miR-7-5p and play a neuroprotective effect. We present a strategy for MEG3 as a potential target for brain protection during anesthesia.
Collapse
Affiliation(s)
- Yan Qin
- Department of Anesthesiology, Maternity and Child Health Care of Zaozhuang, No.25 Wenhua Road, Zaozhuang, Shandong 277100, P.R. China
| | - Guohua Li
- Department of Anesthesiology, the Second Affiliated Hospital of Shandong First Medical University, No. 706 Taishan Street, Taishan District, Taian, Shandong 271000, P.R. China
| | - Yanwu Jin
- Department of Anesthesiology, the Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Road, Tianqiao District, Jinan, Shandong 250033, P.R. China
| | - Qun Yao
- Department of Anesthesiology, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Zaozhuang, Shandong 277100, P.R. China
| | - Ruijun Li
- Department of Anesthesiology, Maternity and Child Health Care of Zaozhuang, No.25 Wenhua Road, Zaozhuang, Shandong 277100, P.R. China
| | - Xingwei Li
- Department of Anesthesiology, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Zaozhuang, Shandong 277100, P.R. China
| | - Haipeng Wang
- Department of Anesthesiology, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
14
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
15
|
Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, Ge L, Tian L, Zheng H, Du Y, Li J, Zuo Z, Xie L, Guo X. Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:209-218. [PMID: 34514100 PMCID: PMC8424129 DOI: 10.1016/j.omto.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological type of renal carcinoma and has a high recurrence rate and poor outcome. Accurate patient risk stratification based on genetic markers can help to identify the high-risk patient for early and further treatments and would promote patient survival. Long non-coding RNAs (lncRNAs) have attracted widespread attention as biomarkers for early diagnosis, treatment, and prognosis because of their high specificity and sensitivity. Here, we performed a systematic search in NCBI PubMed and found 44 lncRNAs as oncogenes, 18 lncRNAs as tumor suppressors, 199 lncRNAs as diagnostic biomarkers, 62 lncRNAs as prognostic biomarkers, and 3 lncRNAs as predictive biomarkers for ccRCC. We also comprehensively discuss the biological functions and molecular regulatory mechanisms of lncRNAs in ccRCC. Overall, the present study is a systemic analysis to assess the expression and clinical value of lncRNAs in ccRCC, and lncRNAs hold promise to be diagnostic, prognostic, and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Chao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Pei Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyu Ma
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhenfen Li
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Yubing Xia
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Ying Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linna Ge
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linzhu Tian
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hong Zheng
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaowu Du
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, China
| | - Zhanjie Zuo
- Thoracic Cancer Treatment Center, Armed police Beijing Corps Hospital, Beijing 100027, China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Jing X, Han J, Zhang J, Chen Y, Yuan J, Wang J, Neo S, Li S, Yu X, Wu J. Long non-coding RNA MEG3 promotes cisplatin-induced nephrotoxicity through regulating AKT/TSC/mTOR-mediated autophagy. Int J Biol Sci 2021; 17:3968-3980. [PMID: 34671212 PMCID: PMC8495387 DOI: 10.7150/ijbs.58910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cis-Diamminedichloroplatinum (II) (DDP)-induced nephrotoxicity (DDPIN) may cause irreversible renal injury associated with high morbidity and mortality. Current standard therapies have not achieved satisfactory clinical outcomes due to unclear molecular and cellular mechanisms. Therefore, exploring potential therapies on DDPIN represents an urgent medical need. Present study characterized the role of lncRNA maternally expressed gene 3 (lnc-MEG3) in the pathogenesis of DDPIN. In both in vitro and in murine models of DDP-induced nephrotoxicity, lnc-MEG3 exacerbated DDPIN by negatively regulating miRNA-126 subsequently causing a decreased AKT/TSC/mTOR-mediated autophagy. By silencing lnc-MEG3 or incorporating miRNA-126 mimetics, the proliferation and migration of DDP-treated cells were restored. In vivo, we identified Paeonol to alleviate DDPIN by the inhibition of lnc-MEG3. Taken together, lnc-MEG3 represents a novel therapeutic target for DDPIN and Paeonol may serve as a promising treatment by inhibiting lnc-MEG3 and its related signaling pathways.
Collapse
Affiliation(s)
- Xu Jing
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250000, China
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, S-171 76, Sweden
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Yuan
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 76, Sweden
| | - Jue Wang
- Key Laboratory, The Second Hospital of Shandong University, Jinan, 250000, China
| | - Shiyong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 76, Sweden
| | - Xueyuan Yu
- Department of Nephrology, Qilu hospital of Shandong University, Jinan, China
| | - Jing Wu
- Department of Pharmacology, The Second Hospital of Shandong University, Jinan, 250000, China
| |
Collapse
|
17
|
Xu B, Qian Y, Hu C, Wang Y, Gao H, Yang J. Dexmedetomidine upregulates the expression of miR-493-5p, inhibiting growth and inducing the apoptosis of lung adenocarcinoma cells by targeting RASL11B. Biochem Cell Biol 2021; 99:457-464. [PMID: 34296954 DOI: 10.1139/bcb-2020-0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have indicated that microRNAs (miRNAs) play critical roles in the development and progression of cancer. However, how changes to the expression levels of miRNAs in response to dexmedetomidine affects the progression of lung cancer remains poorly understood. In this study, we treated the lung adenocarcinoma cell line-A549 with dexmedetomidine and then examined the changes to the expression levels of miRNAs. We found that one of the most significantly upregulated miRNAs was miR-493-5p, which has an important role in the growth and apoptosis of lung adenocarcinoma (LUAD) cells. In addition, bioinformatics searches and luciferase reporter assays revealed that miR-493-5p targets RASL11B, which has a high degree of similarity to RAS. Finally, database searches revealed that RASL11B is associated with survival of LUAD cells. In conclusion, dexmedetomidine causes changes to the expression levels of miRNAs in LUAD, including significant upregulation of miR-493-5p. MiR-493-5p targets RASL11B, thereby inhibiting cell growth and inducing apoptosis in LUAD.
Collapse
Affiliation(s)
- Bo Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiling Qian
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chunxiao Hu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jianping Yang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Genomic stratification based on microenvironment immune types and PD-L1 for tailoring therapeutic strategies in bladder cancer. BMC Cancer 2021; 21:646. [PMID: 34059019 PMCID: PMC8166145 DOI: 10.1186/s12885-021-08350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background The tumour microenvironment (TME) not only plays a role during tumour progression and metastasis but also profoundly influences treatment efficacy. Environment-mediated drug resistance is a result of crosstalk between tumour cells and stroma. The presence of a “stromal exhaustion” response is suggested by the T cell exhaustion signature and PD-L1 expression. The prognostic role of PD-L1 in bladder cancer has been investigated in previous studies, but the results remain inconclusive. For a more comprehensive study, we discuss potential strategies to improve effectiveness in patients with various TME statuses and PD-L1 expression levels. Methods We estimated the prognostic role of PD-L1 using immunohistochemistry and identified four immune subtypes according to the type of stromal immune modulation and PD-L1 expression status. Results Patients in the PD-L1-low-exhausted group had the worst prognosis and showed the worst antigen-presenting cell (APC) immunosuppression status. The PD-L1-low-exhausted group showed the highest amount of infiltration by macrophage M2 cells, naïve B cells and resting mast cells. The TMB and the effectiveness of anti-PD-1 treatment were significantly increased in the PD-L1-high expression groups compared with the PD-L1-low expression groups. In the PD-L1-high groups, patients who underwent chemotherapy exhibited better overall survival rates than patients who did not undergo chemotherapy, whereas there was no significant difference in the PD-L1-low groups. We performed gene set enrichment analysis (GSEA) to explore the critical pathways that were active in the PD-L1-low-exhausted group, including the myogenesis, epithelial-mesenchymal transition and adipogenesis pathways. Copy number variations (CNVs) were related to the expression levels of differentially expressed genes upregulated in the PD-L1-low-exhausted group, including LCNL1, FBP1 and RASL11B. In addition, RASL11B played a role in predicting overall survival according to The Cancer Genome Atlas data, and this finding was validated in the PD-L1-low-exhausted group in the Gene Expression Omnibus database (GEO). Conclusion The immune environment of tumours plays an important role in the therapeutic response rate, and defining the immune groups plays a critical role in predicting disease outcome and strategy effectiveness.
Collapse
|
19
|
Vigil-Garcia M, Demkes CJ, Eding JEC, Versteeg D, de Ruiter H, Perini I, Kooijman L, Gladka MM, Asselbergs FW, Vink A, Harakalova M, Bossu A, van Veen TAB, Boogerd CJ, van Rooij E. Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling. Cardiovasc Res 2021; 117:1532-1545. [PMID: 32717063 PMCID: PMC8152696 DOI: 10.1093/cvr/cvaa233] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023] Open
Abstract
AIMS Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling. METHODS AND RESULTS Utilizing CM-specific reporter mice exposed to pressure overload by transverse aortic banding and CM isolation by flow cytometry, we obtained gene expression profiles of hypertrophic CMs in the more immediate phase after stress, and CMs showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically up-regulated in the CMs during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human CMs induced the secretion of N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) and recapitulated the up-regulation of these genes, indicating conservation of the up-regulation in failing CMs. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human HF, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary CMs attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodelling of CMs. CONCLUSION Using CM-specific transcriptomic analysis, we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the CM stress response.
Collapse
MESH Headings
- Animals
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Phosphofructokinase-1, Type C/genetics
- Phosphofructokinase-1, Type C/metabolism
- Transcriptome
- Ventricular Remodeling/genetics
- Mice
Collapse
Affiliation(s)
- Marta Vigil-Garcia
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Charlotte J Demkes
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Lieneke Kooijman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Monika M Gladka
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Aryan Vink
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alexander Bossu
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Li M, Yin B, Chen M, Peng J, Mu X, Deng Z, Xiao J, Li W, Fan J. Downregulation of the lncRNA ASB16-AS1 Decreases LARP1 Expression and Promotes Clear Cell Renal Cell Carcinoma Progression via miR-185-5p/miR-214-3p. Front Oncol 2021; 10:617105. [PMID: 33680937 PMCID: PMC7933513 DOI: 10.3389/fonc.2020.617105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) comprises approximately 75% of renal cell carcinomas, which is one of the most common and lethal urologic cancers, with poor quality of life for patients and is a huge economic burden to health care systems. It is imperative we find novel prognostic and therapeutic targets for ccRCC clinical intervention. In this study, we found that the expression of the long noncoding RNA (lncRNA) ASB16-AS1 was downregulated in ccRCC tissues compared with non-diseased tissues and was also associated with advanced tumor stage and larger tumors. By constructing cell and mouse models, it was found that downregulated lncRNA ASB16-AS1 enhanced cell proliferation, migration, invasion, and promoted tumor growth and metastasis. Furthermore, by performing bioinformatics analysis, biotinylated RNA pull-downs, AGO2-RIP, and luciferase reporter assays, our findings showed that downregulated ASB16-AS1 decreased La-related protein 1 (LARP1) expression by inhibiting miR-185-5p and miR-214-3p. Furthermore, it was found that overexpression of LARP1 reversed the promotive effects of downregulated ASB16-AS1 on ccRCC cellular progression. Our results revealed that downregulated ASB16-AS1 promotes ccRCC progression via a miR-185-5p-miR-214-3p-LARP1 pathway. We suggest that this pathway could be used to monitor prognosis and presents therapeutic targets for ccRCC clinical management.
Collapse
Affiliation(s)
- Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, Shanghai, China
| | - Mulin Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Deng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
21
|
Shen H, Luo G, Chen Q. Long noncoding RNAs as tumorigenic factors and therapeutic targets for renal cell carcinoma. Cancer Cell Int 2021; 21:110. [PMID: 33593347 PMCID: PMC7885505 DOI: 10.1186/s12935-021-01805-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 338,000 patients are diagnosed with kidney cancer worldwide each year, and renal cell carcinoma (RCC), which is derived from renal epithelium, accounts for more than ninety percent of the malignancy. Next generation RNA sequencing has enabled the identification of novel long noncoding RNAs (lncRNAs) in the past 10 years. Recent studies have provided extensive evidence that lncRNAs bind to chromatin modification proteins, transcription factors, RNA-binding proteins and microRNAs, and thereby modulate gene expression through regulating chromatin status, gene transcription, pre-mRNA splicing, mRNA decay and stability, protein translation and stability. In vitro and in vivo studies have demonstrated that over-expression of oncogenic lncRNAs and silencing of tumor suppressive lncRNAs are a common feature of human RCC, and that aberrant lncRNA expression is a marker for poor patient prognosis, and is essential for the initiation and progression of RCC. Because lncRNAs, compared with mRNAs, are expressed in a tissue-specific manner, aberrantly expressed lncRNAs can be better targeted for the treatment of RCC through screening small molecule compounds which block the interaction between lncRNAs and their binding proteins or microRNAs.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Nephrology, 3201 Hospital, Hanzhong, Shaanxi Province, China
| | - Guomin Luo
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Qingjuan Chen
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 40016, China.
| |
Collapse
|
22
|
Gajda E, Grzanka M, Godlewska M, Gawel D. The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance. Pharmaceuticals (Basel) 2021; 14:149. [PMID: 33673265 PMCID: PMC7918072 DOI: 10.3390/ph14020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Damian Gawel
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
23
|
Li F, Jin Y, Pei X, Guo P, Dong K, Wang H, Chen Y, Guo P, Meng LB, Wang Z. Bioinformatics analysis and verification of gene targets for renal clear cell carcinoma. Comput Biol Chem 2021; 92:107453. [PMID: 33636636 DOI: 10.1016/j.compbiolchem.2021.107453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND It is estimated that there are 338,000 new renal-cell carcinoma releases every year in the world. Renal cell carcinoma (RCC) is a heterogeneous tumor, of which more than 70% is clear cell renal cell carcinoma (ccRCC). It is estimated that about 30% of new renal-cell carcinoma patients have metastases at the time of diagnosis. However, the pathogenesis of renal clear cell carcinoma has not been elucidated. Therefore, it is necessary to further study the pathogenesis of ccRCC. METHODS Two expression profiling datasets (GSE68417, GSE71963) were downloaded from the GEO database. Differentially expressed genes (DEGs) between ccRCC and normal tissue samples were identified by GEO2R. Functional enrichment analysis was made by the DAVID tool. Protein-protein interaction (PPI) network was constructed. The hub genes were excavated. The clustering analysis of expression level of hub genes was performed by UCSC (University of California Santa Cruz) Xena database. The hub gene on overall survival rate (OS) in patients with ccRCC was performed by Kaplan-Meier Plotter. Finally, we used the ccRCC renal tissue samples to verify the hub genes. RESULTS 1182 common DEGs between the two datasets were identified. The results of GO and KEGG analysis revealed that variations in were predominantly enriched in intracellular signaling cascade, oxidation reduction, intrinsic to membrane, integral to membrane, nucleoside binding, purine nucleoside binding, pathways in cancer, focal adhesion, cell adhesion molecules. 10 hub genes ITGAX, CD86, LY86, TLR2, TYROBP, FCGR2A, FCGR2B, PTPRC, ITGB2, ITGAM were identified. FCGR2B and TYROBP were negatively correlated with the overall survival rate in patients with ccRCC (P < 0.05). RT-qPCR analysis showed that the relative expression levels of CD86, FCGR2A, FCGR2B, TYROBP, LY86, and TLR2 were significantly higher in ccRCC samples, compared with the adjacent renal tissue groups. CONCLUSIONS In summary, bioinformatics technology could be a useful tool to predict the progression of ccRCC. In addition, there are DEGs between ccRCC tumor tissue and normal renal tissue, and these DEGs might be considered as biomarkers for ccRCC.
Collapse
Affiliation(s)
- Feng Li
- Department of Urology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road Shijiazhuang, 050011, Hebei Province, China.
| | - Yi Jin
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, 054001, Hebei Province, China.
| | - Xiaolu Pei
- Department of Oncology, The Heibei General Hospital, No.348 Heping Road Shijiazhuang, 050051, Hebei Province, China.
| | - Peiyuan Guo
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
| | - Keqin Dong
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
| | - Haoyuan Wang
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
| | - Yujia Chen
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road Shijiazhuang, 050011, Hebei Province, China.
| | - Ling-Bing Meng
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
| | - Zhiyu Wang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road Shijiazhuang, 050011, Hebei Province, China.
| |
Collapse
|
24
|
Luo Y, Wang AT, Zhang QF, Liu RM, Xiao JH. RASL11B gene enhances hyaluronic acid-mediated chondrogenic differentiation in human amniotic mesenchymal stem cells via the activation of Sox9/ERK/smad signals. Exp Biol Med (Maywood) 2020; 245:1708-1721. [PMID: 32878463 PMCID: PMC7802383 DOI: 10.1177/1535370220944375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to elucidate the molecular mechanisms, whereby hyaluronic acid, a main extracellular matrix component of articular cartilage, promotes the chondrogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs). Our previous findings indicated that hyaluronic acid combined with hAMSCs showed a marked therapeutic effect against rat osteoarthritis. In the present study, hyaluronic acid markedly enhanced the expression of chondrocyte-specific markers including Col2α1, Acan, and Sox9 in hAMSCs, with strong synergistic effects on chondrogenic differentiation, in combination with the commonly used inducer, transforming growth factor β3 (TGF-β3). Microarray analysis showed that Ras-like protein family member 11B (RASL11B) played a pivotal role in the process of hyaluronic acid-mediated chondrogenesis of hAMSCs. This directional differentiation was significantly inhibited by RASL11B knockdown, but RASL11B overexpression dramatically promoted the expression of Sox9, a master chondrogenesis transcriptional factor, at the levels of transcription and translation. Increased Sox9 expression subsequently resulted in high expression levels of Col2α1 and Acan and the accumulation of cartilage-specific matrix components, such as type 2 collagen and glycosaminoglycans. Moreover, we observed that RASL11B activated the signal molecules such as ERK1/2, and Smad2/3 in the presence of hyaluronic acid during TGF-β3-induced chondrogenesis of hAMSCs. Taken together, these findings suggest that hyaluronic acid activates the RASL11B gene to potentiate the chondrogenic differentiation of hAMSCs via the activation of Sox9 and ERK/Smad signaling, thus providing a new strategy for cartilage defect repairing by hyaluronic acid-based stem cell therapy.
Collapse
Affiliation(s)
- Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Ai-Tong Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Qing-Fang Zhang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Ru-Ming Liu
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
25
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Han S, Zhang T, Kusumanchi P, Huda N, Jiang Y, Liangpunsakul S, Yang Z. Role of microRNA-7 in liver diseases: a comprehensive review of the mechanisms and therapeutic applications. J Investig Med 2020; 68:1208-1216. [PMID: 32843369 PMCID: PMC9303053 DOI: 10.1136/jim-2020-001420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA-7 (miR-7) is a small non-coding RNA, which plays critical roles in regulating gene expression of multiple key cellular processes. MiR-7 exhibits a tissue-specific pattern of expression, with abundant levels found in the brain, spleen, and pancreas. Although it is expressed at lower levels in other tissues, including the liver, miR-7 is involved in both the development of organs and biological functions of cells. In this review, we focus on the mechanisms by which miR-7 controls cell growth, proliferation, invasion, metastasis, metabolism, and inflammation. We also summarize the specific roles of miR-7 in liver diseases. MiR-7 is considered as a tumor suppressor miRNA in hepatocellular carcinoma and is involved in the pathogenesis of hepatic steatosis and hepatitis. Future studies to further define miR-7 functions and its mechanism in association with other types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting miR-7 for the treatment of liver diseases.
Collapse
Affiliation(s)
- Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, Beijing, China
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Cheng G, Liu Y, Liu L, Ruan H, Cao Q, Song Z, Bao L, Xu T, Xiong Z, Liu J, Liu D, Liang H, Jiang G, Yang X, Yang H, Chen K, Zhang X. LINC00160 mediates sunitinib resistance in renal cell carcinoma via SAA1 that is implicated in STAT3 activation and compound transportation. Aging (Albany NY) 2020; 12:17459-17479. [PMID: 32921632 PMCID: PMC7521490 DOI: 10.18632/aging.103755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Patients with advanced renal cell carcinoma who are resistant to sunitinib currently have limited clinical options for treatment. Therefore, it is necessary to explore the biological basis of sunitinib resistance and to uncover new targets for the intervention of sunitinib resistance. In this study, we identified that LINC00160 was associated with sunitinib resistance in renal cell carcinoma. Resistant tumor cells highly expressed LINC00160 to recruit transcriptional factor TFAP2A, which bound to SAA1 promoter regions and activated its expression. On one hand, SAA1 linked to ABCB1 protein, which facilitated sunitinib cellular efflux and diminished drug accumulation. On the other hand, SAA1 stimulated JAK-STAT signaling pathways, which countered cellular survival inhibition from drug. All these regulatory networks were well organized and collaborated, thus promoting sunitinib resistance in renal cell carcinoma. LINC00160 mediates sunitinib resistance in renal cell carcinoma via SAA1 that is implicated in STAT3 activation and compound transportation, which offers an opportunity for targeted intervention and molecular therapies in the future.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
28
|
Tu Y, Xie L, Chen L, Yuan Y, Qin B, Wang K, Zhu Q, Ji N, Zhu M, Guan H. Long non-coding RNA MEG3 promotes cataractogenesis by upregulating TP53INP1 expression in age-related cataract. Exp Eye Res 2020; 199:108185. [PMID: 32841649 DOI: 10.1016/j.exer.2020.108185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/04/2020] [Accepted: 08/01/2020] [Indexed: 01/02/2023]
Abstract
Age-related cataract (ARC) is the leading cause of visual impairment or even blindness among the aged population globally. Long non-coding RNA (LncRNA) has been proven to be the potential regulator of ARC. The latest study reveals that maternally expressed gene 3 (MEG3) promotes the apoptosis and inhibits the proliferation of multiple cancer cells. However, the expression and role of MEG3 in ARC are unclear. In this study, we investigated the effects of MEG3 in ARC and explored the regulatory mechanisms underlying these effects. We observed that MEG3 expression was up-regulated in the age-related cortical cataract (ARCC) lens capsules and positively correlated with the histological degree of ARCC. The pro-apoptosis protein, active caspase-3 and Bax increased in the anterior lens capsules of ARCC tissue, while the anti-apoptotic protein Bcl-2 decreased compared to normal lens. Knockdown of MEG3 increased the viability and inhibited the apoptosis of LECs upon the oxidative stress induced by H2O2. MEG3 was localized in both nucleus and cytoplasm in LECs. MEG3 facilitated TP53INP1 expression via acting as miR-223 sponge and promoting P53 expression. Additionally, TP53INP1 knockdown alleviated H2O2-induced lens turbidity. In summary, MEG3 promoted ARC progression by up-regulating TP53INP1 expression through suppressing miR-223 and promoting P53 expression, which would provide a novel insight into the pathogenesis of ARC.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiujian Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Na Ji
- Department of Ophthalmology, The Affiliated Eye Hospital of Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
29
|
Revisiting Cell Death Responses in Fibrotic Lung Disease: Crosstalk between Structured and Non-Structured Cells. Diagnostics (Basel) 2020; 10:diagnostics10070504. [PMID: 32708315 PMCID: PMC7400296 DOI: 10.3390/diagnostics10070504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a life-threatening disorder caused by excessive formation of connective tissue that can affect several critical organs. Innate immune cells are involved in the development of various disorders, including lung fibrosis. To date, several hematopoietic cell types have been implicated in fibrosis, including pro-fibrotic monocytes like fibrocytes and segregated-nucleus-containing atypical monocytes (SatMs), but the precise cellular and molecular mechanisms underlying its development remain unclear. Repetitive injury and subsequent cell death response are triggering events for lung fibrosis development. Crosstalk between lung structured and non-structured cells is known to regulate the key molecular event. We recently reported that RNA-binding motif protein 7 (RBM7) expression is highly upregulated in the fibrotic lung and plays fundamental roles in fibrosis development. RBM7 regulates nuclear degradation of NEAT1 non-coding RNA, resulting in sustained apoptosis in the lung epithelium and fibrosis. Apoptotic epithelial cells produce CXCL12, which leads to the recruitment of pro-fibrotic monocytes. Apoptosis is also the main source of autoantigens. Recent studies have revealed important functions for natural autoantibodies that react with specific sets of self-antigens and are unique to individual diseases. Here, we review recent insights into lung fibrosis development in association with crosstalk between structured cells like lung epithelial cells and non-structured cells like migrating immune cells, and discuss their relevance to acquired immunity through natural autoantibody production.
Collapse
|
30
|
Pan X, Cao YM, Liu JH, Ding J, Xie XY, Cao PG. MEG3 Induces Cervical Carcinoma Cells' Apoptosis Through Endoplasmic Reticulum Stress by miR-7-5p/STC1 Axis. Cancer Biother Radiopharm 2020; 36:501-510. [PMID: 32379497 DOI: 10.1089/cbr.2019.3344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Many patients with advanced cervical cancer (CC) have a poor prognosis and their mortality rank the first among women with malignant tumors. It's essential to explore the molecular mechanism of CC in clinical practice. Long noncoding RNA maternally expressed gene 3 (MEG3) has been reported to downregulate in CC tissues. However, the underlying mechanism of MEG3 in CC remains poorly elaborated. The current study aimed to explore the potential mechanism of MEG3 inducing endoplasmic reticulum stress (ERs)-mediated apoptosis of CC cells. Methods: The expression of MEG3 and miR-7-5p in CC tissues and cell lines was verified by quantitative reverse transcription/polymerase chain reaction (qRT-PCR). The vector of MEG3, miR-7-5p inhibitor, and sh-SCT1 were transfected into CC cell lines, and their expression was tested by qRT-PCR. Flow cytometry was used to detect apoptosis, and ERs-related protein expression was performed by Western blot. The regulatory relationship between MEG3/SCT1 and miR-7-5p was validated by Dual luciferase reporter assay. Results: CC tissues and cell lines showed downregulated MEG3 and STC1, and upregulated miR-7-5p. Overexpression of MEG3 or miR-7-5p inhibition induced ERs-triggered apoptosis of CC cells. In addition, sh-STC1 can reverse the effects of overexpressing MEG3 on CC cell apoptosis. In addition, dual luciferase reporter assay revealed that miR-7-5p can directly target to MEG3 and STC1. Conclusion: MEG3, act as a competing endogenous RNA of miR-7-5p, accelerates ERs-mediated apoptosis of CC cells through regulating SCT1 expression.
Collapse
Affiliation(s)
- Xi Pan
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yan-Ming Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Jian-Hao Liu
- School of Pharmaceutical Sciences of Central South University, Changsha, People's Republic of China
| | - Juan Ding
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Xue-Yi Xie
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pei-Guo Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
31
|
Natural Autoantibodies in Chronic Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21031138. [PMID: 32046322 PMCID: PMC7037933 DOI: 10.3390/ijms21031138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
In autoantibody-mediated autoimmune diseases, pathogenic autoantibodies generated by a failure of central or peripheral tolerance, have different effects mediated by a variety of mechanisms. Interestingly, even non-autoimmune chronic diseases have a set of disease-specific natural autoantibodies that are maintained for a long time. Because most of these natural autoantibodies target intracellular proteins or long non-coding RNAs, they are speculated to be non-pathological and have some important as yet unrecognized physiological functions such as debris clearance. Recently, we revealed a set of disease-specific natural autoantibodies of chronic pulmonary diseases with unknown etiology by protein arrays that enable detection of specific autoantibodies against >8000 targets. Surprisingly, some of the targeted antigens of disease-specific autoantibodies were subsequently reported by other laboratories as strongly associated with the disease, suggesting that these antigens reflect the pathology of each disease. Furthermore, some of these autoantibodies that target extracellular antigens might modify the original course of each disease. Here, we review the disease-specific natural autoantibodies of chronic pulmonary diseases, including chronic fibrosing idiopathic interstitial pneumonias, sarcoidosis, and autoimmune pulmonary alveolar proteinosis, and discuss their utility and effects.
Collapse
|
32
|
Yao X, Hu W, Zhang J, Huang C, Zhao H, Yao X. Application of cAMP-dependent catalytic subunit β (PRKACB) Low Expression in Predicting Worse Overall Survival: A Potential Therapeutic Target for Colorectal Carcinoma. J Cancer 2020; 11:4841-4850. [PMID: 32626531 PMCID: PMC7330678 DOI: 10.7150/jca.46156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Low expressions of PRKACB are related to the occurrence of various human malignancies. However, the prognostic value of PRKACB expression in colorectal cancer (CRC) patients remains controversial. In this analysis, PRKACB expression in CRC tumors was evaluated across the GEO, TCGA, and Oncomine databases, and a PRKACB survival analysis was performed based on the TCGA profile. We detected PRKACB in 7 GEO series (GSE110225, GSE32323, GSE44076, GSE9348, GSE41328, GSE21510, GSE68468) and TCGA spectra (all P <0.05). A meta-analysis performed in the Oncomine database revealed that PRKACB was significantly up-regulated in neoplastic tissues compared to normal tissues (all P <0.05). A Kaplan-Meier analysis demonstrated that lower PRKACB expression in tumors was significantly associated with poorer overall survival (OS) in patients with CRC (P <0.05). A subgroup analysis showed that low expression of PRKACB correlated with poor 1-, 3-, and 5-year OS (all P <0.05). Furthermore, in males (P = 0.0083), whites (P = 0.0463), and non-mucinous adenocarcinoma patients (P = 0.0108), the down-regulation of PRKACB expression was more significant for the OS prognostic value. Conclusion: PRKACB is down-regulated in tumors and associated with worsening OS in CRC patients.
Collapse
Affiliation(s)
- Xiaoya Yao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Weixian Hu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jie Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Chengzhi Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Haibi Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xueqing Yao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- ✉ Corresponding author: Xueqing Yao, MD, Ph.D., Department of General Surgery, Guangdong Provincial People′s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
| |
Collapse
|
33
|
Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA, Pichler M. Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 11:E1580. [PMID: 31627266 PMCID: PMC6826455 DOI: 10.3390/cancers11101580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Rares Drula
- Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Wang W, Xie Y, Chen F, Liu X, Zhong LL, Wang HQ, Li QC. LncRNA MEG3 acts a biomarker and regulates cell functions by targeting ADAR1 in colorectal cancer. World J Gastroenterol 2019; 25:3972-3984. [PMID: 31413531 PMCID: PMC6689807 DOI: 10.3748/wjg.v25.i29.3972] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent malignancy and has the fourth highest global cancer mortality rate. Early diagnosis and prompt medical attention can improve quality of life and the prognosis of CRC patients. Accumulating evidence reveals that long non-coding RNAs (lncRNAs) function as oncogenes or anti-oncogenes, as well as biomarkers in various cancers.
AIM To investigate the levels and molecular mechanism of the lncRNA maternally expressed gene 3 (MEG3) in CRC.
METHODS The levels of lncRNA MEG3 in CRC tissue, serum and cell line samples were explored via qRT-PCR. The relationship between MEG3 levels and clinicopathological features in CRC was investigated. The diagnostic and prognostic values of serum MEG3 levels were analyzed with ROC curves and Kaplan‑Meier survival curves, respectively.
RESULTS Significant decreased levels of MEG3 existed in CRC tissue, cell lines and serum. CRC patients with down-regulated serum MEG3 levels had larger tumor sizes, and advanced clinical stages. The sensitivity and specificity of serum MEG3 levels in CRC detection was 0.667 and 0.875, respectively. Tumor size, T stages, and serum MEG3 levels are indie factors that produce an effect on CRC patients' prognosis. Kaplan‑Meier survival curves suggested that CRC patients with high levels of MEG3 had a remarkably better overall survival rate.
CONCLUSION LncRNA MEG3 is down-regulated in CRC, and regulates cell functions by targeting adenosine deaminase’s effect on RNA 1 in CRC.
Collapse
Affiliation(s)
- Wei Wang
- College of Basic Medical Sciences, China medical University and Department of Pathology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Teaching and Research Department of Pathology, Basic Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Ying Xie
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Fei Chen
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xu Liu
- Experiment and Training Center, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Li-Li Zhong
- Department of Pathology, the First Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Hai-Qiang Wang
- Department of Gastroenterology, the First Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Qing-Chang Li
- College of Basic Medical Sciences, China medical University and Department of Pathology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
35
|
Li J, Jiang X, Li C, Liu Y, Kang P, Zhong X, Cui Y. LncRNA-MEG3 inhibits cell proliferation and invasion by modulating Bmi1/RNF2 in cholangiocarcinoma. J Cell Physiol 2019; 234:22947-22959. [PMID: 31119760 DOI: 10.1002/jcp.28856] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is a mortal cancer with gradually increasing incidences all over the world, whereas effective diagnosis and treatment for this disease are still lacking. As a classical long noncoding RNA (lncRNA), maternally expressed gene 3 (MEG3) has been reported to exhibit pivotal regulatory roles in the occurrence and development of various digestive system tumors. Nevertheless, the clinical relevance and biological function of MEG3 in CCA remain largely unclear. In this study, MEG3 expression was significantly downregulated in both CCA tissues and cells in comparison with that in nontumor controls, respectively, and this downexpression was prominently associated with advanced TNM stage, lymph node invasion, and poor survival. Moreover, decreased MEG3 was an independent forecaster of poor prognosis for CCA patients. Functionally, MEG3 overexpression inhibited CCA growth in vitro and in vivo. Enhanced MEG3 also suppressed migration and invasion of CCLP-1 and QBC939 cells by reversing epithelial-mesenchymal transition (EMT) process. On the contrary, the proliferation, metastasis, and EMT were facilitated via knocking down MEG3. In addition, the expression of B lymphoma Mo-MLV insertion region 1 (Bmi1) and RING finger protein 2 was impacted by gain or loss of MEG3, furthermore, the malignant processes induced by MEG3 knockdown were rescued by means of silencing Bmi1. These data suggested that MEG3 caused tumor suppressive effects partly through mediating polycomb repressive complex 1. Our findings elucidate that MEG3 exerts critical functions in CCA development and likely acts as a promising tumor indicator or intervention target for CCA.
Collapse
Affiliation(s)
- Jinglin Li
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xingming Jiang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chunlong Li
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yueping Liu
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Pengcheng Kang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiangyu Zhong
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yunfu Cui
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
36
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
37
|
Luo Q, Cui M, Deng Q, Liu J. Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma. Mol Med Rep 2019; 19:4685-4696. [PMID: 30957192 PMCID: PMC6522832 DOI: 10.3892/mmr.2019.10138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) function as competing endogenous RNAs (ceRNAs). ceRNA networks may serve important roles in various tumors, as demonstrated by an increasing number of studies; however, papillary renal cell carcinoma (PRCC)-associated ceRNA networks mediated by lncRNAs remain unknown. Increased knowledge of ceRNA networks in PRCC may aid the identification of novel targets and biomarkers in the treatment of PRCC. In the present study, a comprehensive investigation of mRNA, lncRNA, and microRNA (miRNA) expression in PRCC was conducted using sequencing data from The Cancer Genome Atlas. Differential expression (DE) profiles of mRNAs, lncRNAs and miRNAs were evaluated, with 1,970 mRNAs, 1,201 lncRNAs and 96 miRNAs identified as genes with significantly different expression between PRCC and control paracancerous tissues. Based on the identified DEmRNAs, a protein-protein interaction network was generated using the STRING database. Furthermore, a ceRNA network for PRCC was determined using a targeted assay combined with the DE of miRNAs, mRNAs and lncRNAs, enabling the identification of important lncRNA-miRNA and miRNA-mRNA pairs. Analysis of the ceRNA network led to the extraction of a subnetwork and the identification of lncRNA maternally expressed 3 (MEG3), lncRNA PWRN1, miRNA (miR)-508, miR-21 and miR519 as important genes. Reverse transcription-quantitative polymerase chain reaction analysis was conducted to validate the results of the bioinformatics analyses; it was revealed that lncRNA MEG3 expression levels were downregulated in PRCC tumor tissues compared with adjacent non-tumor tissues. In addition, survival analysis was conducted to investigate the association between identified genes and the prognosis of patients with PRCC, indicating the potential involvement of 13 mRNAs, 15 lncRNAs and six miRNAs. In conclusion, the present study may improve understanding of the regulatory mechanisms of ceRNA networks in PRCC and provide novel insight for future studies of prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meng Cui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qinfu Deng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
38
|
Abstract
Long noncoding RNAs (lncRNAs) have recently considered as central regulators in diverse biological processes and emerged as vital players controlling tumorigenesis. Several lncRNAs can be classified into oncogenes and tumor suppressor genes depending on their function in cancer. A maternally expressed gene 3 (MEG3) gene transcripts a 1.6 kb lncRNA whose act as an antitumor component in different cancer cells, such as breast, liver, glioma, colorectal, cervical, gastric, lung, ovarian and osteosarcoma cancer cells. The present review highlights biological function of MEG3 to repress tumor through regulating the major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs. On the other hand, previous studies have also suggested that MEG3 mediates epithelial-mesenchymal transition (EMT). However, deregulation of MEG3 is associated with the development and progression of cancer, suggesting that MEG3 may function as a potential biomarker and therapeutic target for human cancers.
Collapse
|