1
|
Taghavi BA, Salehi M, Mokhtarzadeh A, Baradaran B. Suppression of B7-H7 Enhanced MCF-7 Cancer Cell Line's Chemosensitivity to Paclitaxel. Mol Biotechnol 2025; 67:1597-1605. [PMID: 38662256 DOI: 10.1007/s12033-024-01145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
The B7-H7 is the newest addition to the B7 family of proteins that is present in the majority of malignancies. In this respect, the goal of the work was to investigate the impact of B7-H7 inhibition on breast cancer cells when paclitaxel and small interference RNA (siRNA) were combined. B7-H7 siRNA was used with Paclitaxel to treat MCF-7 cells. The IC50 of Paclitaxel and the cell survival was then assessed through using MTT assay. Investigation was conducted using flow cytometry to both the induction of apoptosis and the cell cycle. In addition, the clonogenic capacity of MCF-7 cells was investigated. Furthermore, qRT-PCR, was used to evaluate expression of genes. Our results demonstrated that suppressing B7-H7 sensitizes MCF-7 cells to Paclitaxel by triggering apoptosis and altering the expression of critical apoptosis mediator genes. In addition, the cell cycle was stopped in the sub-G1 and also G2-M phases as a result of the combination therapy leading prevention of developing colonies by MCF-7 cells. B7-H7 silencing improved the chemosensitivity of MCF-7 cells to Paclitaxel and demonstrated antiproliferative effects. After the adequate study has been conducted, this strategy may be regarded as a possible alternative treatment option for this cancer.
Collapse
Affiliation(s)
- Bita Amir Taghavi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Salehi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St., Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St., Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Dike PE, Hwang BJ, Campbell T, Awolowo M, Elliott B, Odero-Marah V. HMGA2 regulates GPX4 expression and ferroptosis in prostate cancer cells. Biochem Biophys Res Commun 2024; 736:150859. [PMID: 39447278 PMCID: PMC11560499 DOI: 10.1016/j.bbrc.2024.150859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Prostate cancer (PCa) remains a significant global health burden and an increase in oxidative stress is associated with cancer progression. High Mobility Group A2 (HMGA2), a chromatin architectural protein, increases oxidative stress and promotes sensitivity to ferroptosis inducers, however, the mechanism is unknown. We investigated the role of HMGA2 in GPX4 regulation and the impact on cellular responses to oxidative stress and ferroptosis sensitivity. We conducted UALCAN database analysis, western blot analysis, and lipid peroxidation assays to determine the relationship between HMGA2 and GPX4 and the levels of lipid reactive oxygen species in a panel of PCa cell lines, including an enzalutamide-resistant cancer cell line (C4-2B MDVR). Our results show an inverse relationship between HMGA2 and GPX4 expression with high HMGA2 and low GPX4 expression associated with higher Gleason score and lower survival probability in prostate adenocarcinoma (PRAD) patients, while low/moderate HMGA2 expression is positively associated with increased GPX4 expression and higher survival probability. Cell lines showed a moderately negative but not statistically significant correlation between HMGA2 and GPX4 expression, however, PC3 and DU145 PCa cells display higher lipid peroxides concomitant with higher endogenous levels of HMGA2 and low GPX4. Overexpression of wild-type HMGA2 in LNCaP and 22Rv1 cells leads to higher HMGA2 expression compared to Neo control and is associated with higher SLC7A11 and GPX4 expression, while interestingly truncated HMGA2 overexpression in LNCaP and 22Rv1 cells coincides with higher HMGA2 and reduced GPX4 expression, leading to increased lipid peroxides and susceptibility to ferroptosis. Overexpression of wild-type and truncated HMGA2 in 22Rv1 cells increases SLC7A11 mRNA yet differing GPX4 protein expression suggests posttranslational regulation of GPX4. Moreover, enzalutamide-resistant C4-2B MDVR cells display higher HMGA2 levels compared to C4-2B cells, as well as sensitivity to RSL3 ferroptosis inducer, which is partially reversed by ferroptosis inhibitor, ferrostatin-1. Interestingly, GPX4 expression is higher in C4-2B MDVR cells compared to C4-2B, and HMGA2 knockdown further increases its expression but does not significantly alter its susceptibility to ferroptosis. In conclusion, our study shows that HMGA2 regulation of GPX4 expression is complex and truncated HMGA2 downregulates GPX4 and increases lipid peroxides. Moreover, HMGA2-expressing cells including enzalutamide-resistant cells are susceptible to RSL-3-induced ferroptosis. Thus, ferroptosis sensitivity offers promising insights for the development of targeted therapeutic interventions for aggressive PCa.
Collapse
Affiliation(s)
- Precious Elechi Dike
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Mojisoluwa Awolowo
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
3
|
Rajan AAN, Hutchins EJ. Post-transcriptional regulation as a conserved driver of neural crest and cancer-cell migration. Curr Opin Cell Biol 2024; 89:102400. [PMID: 39032482 PMCID: PMC11346372 DOI: 10.1016/j.ceb.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Cells have evolved mechanisms to migrate for diverse biological functions. A process frequently deployed during metazoan cell migration is the epithelial-mesenchymal transition (EMT). During EMT, adherent epithelial cells undergo coordinated cellular transitions to mesenchymalize and reduce their intercellular attachments. This is achieved via tightly regulated changes in gene expression, which modulates cell-cell and cell-matrix adhesion to allow movement. The acquisition of motility and invasive properties following EMT allows some mesenchymal cells to migrate through complex environments to form tissues during embryogenesis; however, these processes may also be leveraged by cancer cells, which often co-opt these endogenous programs to metastasize. Post-transcriptional regulation is now emerging as a major conserved mechanism by which cells modulate EMT and migration, which we discuss here in the context of vertebrate development and cancer.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Ma Q, Ye S, Liu H, Zhao Y, Zhang W. The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 2024; 150:259. [PMID: 38753081 PMCID: PMC11098884 DOI: 10.1007/s00432-024-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/β-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yin Z, Ge L, Cha Z, Gao H, A L, Zeng Y, Huang X, Cheng X, Yao K, Tao Z, Xu H. Identifying Hmga2 preserving visual function by promoting a shift of Müller glia cell fate in mice with acute retinal injury. Stem Cell Res Ther 2024; 15:54. [PMID: 38414051 PMCID: PMC10900711 DOI: 10.1186/s13287-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xuan Cheng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Zui Tao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
6
|
Hu D, Zhang Z, Luo X, Li S, Jiang J, Zhang J, Wu Z, Wang Y, Sun M, Chen X, Zhang B, Xu X, Wang S, Xu S, Wang Y, Huang W, Xia L. Transcription factor BACH1 in cancer: roles, mechanisms, and prospects for targeted therapy. Biomark Res 2024; 12:21. [PMID: 38321558 PMCID: PMC10848553 DOI: 10.1186/s40364-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
7
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Panahandeh AR, Delashoub M, Aval SF. The effect of human umbilical cord mesenchymal stem cells conditioned medium combined with tamoxifen drug on BRCA1 and BRCA2 expression in breast cancer mouse models. Mol Biol Rep 2024; 51:241. [PMID: 38300337 DOI: 10.1007/s11033-023-08926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND A growing number of studies has indicated that the expression of Breast Cancer Susceptibility Genes 1 (BRCA1) and BRCA2 contribute to the resistance to DNA-damaging chemotherapies. Tamoxifen induces tumor cell death by suppressing estrogen receptor (ER) signaling and inducing DNA damage, and BRCA1 upregulation causes Tamoxifen chemoresistance in breast cancer cells. Consequently, this research study aimed to investigate the possible therapeutic effect of Human Umbilical Cord Mesenchymal Stem Cells Conditioned Medium (UCMSCs-CM) on sensitizing breast cancer cells to Tamoxifen by regulating BRCA1 and BRCA2 expression in vivo. METHODS Forty female mice, 4-8 weeks old, with weight of 150 g, were used for this study. Mouse 4T1 breast tumor models were established and then treated with UCMSCs-CM and Tamoxifen alone or in combination. After 10 days, the tumor masses were collected and the expression levels of BRCA1 and BRCA2 were evaluated using qRT-PCR assay. RESULTS The results obtained from qRT-PCR assay illustrated that UCMSCs-CM, either alone or in combination with Tamoxifen, significantly downregulated the mRNA expression levels of BRCA1 in breast cancer mouse models. However, both UCMSCs-CM and Tamoxifen indicated no statistically significant impact on BRCA2 mRNA expression compared to controls. CONCLUSION Our findings evidenced that UCMSCs-CM could be considered as a potential therapeutic option to modulate Tamoxifen chemosensitivity by regulating BRCA1 in breast cancer.
Collapse
Affiliation(s)
- Ahmad Reza Panahandeh
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Masoud Delashoub
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
- Department of basic science, Biotechnology Research Centre, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sedigheh Fekri Aval
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
9
|
Zhang H, Ouyang C. BTB protein family and human breast cancer: signaling pathways and clinical progress. J Cancer Res Clin Oncol 2023; 149:16213-16229. [PMID: 37682360 DOI: 10.1007/s00432-023-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Breast cancer is considered the number one killer of women both in China and abroad, and the leading cause of cancer death. It severely affects female health-related quality of life. Broad-complex, tramtrack, bric à brac (BTB) protein family was first discovered in drosophila as early as in 1993 by Godt D and peers, since then, more family members and their critical biological functions were uncovered. Moreover, researchers around the world have recently demonstrated that numerous signaling pathways connect BTB family members and human breast cancer. PURPOSE In this review, we critically discuss these findings regarding the essential mechanisms and functions of the BTB protein family in mediating the organic processes of human breast cancer. Meanwhile, we summarize the signaling pathways the BTB protein family participates in. And we address that BTB proteins regulate the growth, apoptosis, and other behaviors of breast cancer cells. We also point out the future directions for further studies in this field. METHODS The relevant online literatures have been reviewed for this article. CONCLUSION This review could offer an update on novel molecular targets for treating human breast cancer and new insights into BTB protein family research.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
10
|
Barnes P, Agbo E, Wang J, Amoani B, Opoku YK, Okyere P, Saahene RO. Prognostic Worth of Nrf2/BACH1/HO-1 Protein Expression in the Development of Breast Cancer. Med Princ Pract 2023; 32:369-378. [PMID: 37827129 PMCID: PMC10727515 DOI: 10.1159/000534534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVES Nrf2/BACH1/HO-1 proteins have been implicated in the development and progression of tumors. However, their clinical relevance in breast cancer remains unclear and understudied. This study evaluated Nrf2/BACH1/HO-1 protein expression and its relationship with age, tumor grade, tumor stage, TNM, ER, PR, HER2, and histologic type. METHODS 114 female breast cancer and 30 noncancerous tissues were evaluated for Nrf2/BACH1/HO-1 protein expression using immunohistochemistry and Western blot. The relationships between the expression and clinicopathologic factors were assessed using the χ2 test. RESULTS 74% of the cancerous samples had high Nrf2 protein expression, and 26% of them had low Nrf2 protein expression. Regarding the non-cancer samples, 43% had high Nrf2 protein expression and 57% had low Nrf2 protein expression (p < 0.002). 39% of the cancerous samples had high BACH1 protein expression, and 61% had low BACH1 protein expression. For the non-cancer samples, 80% had high BACH1 protein expression and 20% had low BACH1 protein expression (p < 0.031). 67% of the cancerous samples had high HO-1 protein expression, and 33% had low HO-1 protein expression. However, for the non-cancer samples, 17% of them had high HO-1 protein expression and 83% had low HO-1 protein expression (p < 0.001). The expression of Nrf2 and HO-1 significantly correlated with tumor grade, while BACH1 was significantly associated with tumor stage (p < 0.05). CONCLUSION Nrf2, BACH1, and HO-1 could be explored as a biomarker for cancer stage, progression, and prognosis.
Collapse
Affiliation(s)
- Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji’an City, China
| | - Jianjie Wang
- Department of Immunology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Yeboah Kwaku Opoku
- Department of Biology Education, University of Education, Winneba, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Roland Osei Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
11
|
Jin W, Zhang H, Li M, Lin S. Long Noncoding RNA Regulator of Reprogramming Regulates Cell Growth, Metastasis, and Cisplatin Resistance in Gastric Cancer via miR-519d-3p/HMGA2 Axis. Cancer Biother Radiopharm 2023; 38:122-131. [PMID: 32614615 DOI: 10.1089/cbr.2019.3525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is a common tumor found worldwide, and cisplatin is the first-line agent for the treatment of GC. However, the resistance to cisplatin is an obstacle. Here, we explored the biological mechanism of long noncoding RNA regulator of reprogramming (ROR) in the cisplatin resistance of GC. Materials and Methods: ROR, miR-519d-3p, and high mobility group protein A2 (HMGA2) expression in GC tissues and cells were measured by quantitative real-time polymerase chain reaction and Western blot. Cell viability, migration, invasion, and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, and flow cytometry, respectively. The relative protein expression was detected by Western blot. The interactions between miR-519d-3p and ROR, HMGA2 were predicted using miRcode and starBase v2.0 online database, and then verified by dual luciferase reporter assay and RNA immunoprecipitation assay. In addition, the xenograft tumor mouse model was constructed to verify the biological role of ROR in vivo. Results: The levels of ROR, HMGA2 were significantly upregulated, and miR-519d-3p was apparently downregulated in GC tissues and cells. The miRcode and starBase v2.0 online websites and dual luciferase reporter assay validated that miR-519d-3p directly interacted with ROR and HMGA2. Furthermore, ROR knockdown downregulated HMGA2 to restrain cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and cisplatin resistance in GC cells by targeting miR-519d-3p. In addition, the depletion of ROR repressed the xenograft tumor growth in vivo. Conclusion: In conclusion, we first found the ROR/miR-519d-3p/HMGA2 regulatory network to regulate cell proliferation, migration, invasion, EMT, and cisplatin resistance in GC, and this may shed light on the GC tumorigenesis.
Collapse
Affiliation(s)
- Wenhua Jin
- Department of Gastroenterology, The People's Hospital of Zhangqiu, Jinan, China
| | - Hua Zhang
- Department of Gastroenterology, The People's Hospital of Zhangqiu, Jinan, China
| | - Meng Li
- Department of Computer Tomography (CT), The People's Hospital of Zhangqiu, Jinan, China
| | - Sen Lin
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Liu T, Wang Y, Wang Y, Cheung SKK, Or PMY, Wong CW, Guan J, Li Z, Yang W, Tu Y, Wang J, Ho WLH, Gu H, Cheng ASL, Tsui SKW, Chan AM. The mitotic regulator RCC2 promotes glucose metabolism through BACH1-dependent transcriptional upregulation of hexokinase II in glioma. Cancer Lett 2022; 549:215914. [PMID: 36116740 DOI: 10.1016/j.canlet.2022.215914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Weighted gene co-expression network analysis (WGCNA) identified a cell-cycle module that is associated with poor prognosis and aggressiveness of glioma. One of the core members, Regulator of chromatin condensation 2 (RCC2) is a component of the chromosome passenger complex. Accumulating evidence suggests that RCC2 plays a vital role in the mitotic process and that abnormal RCC2 expression is involved in cancer development. Gene silencing experiments show that RCC2 is required for glioma cell proliferation and migration. RNA-Sequencing analysis reveals a dual role of RCC2 in both the cell cycle and metabolism. Specifically, RCC2 regulates G2/M progression via CDC2 phosphorylation at Tyrosine 15. Metabolomic analysis identifies a role for RCC2 in promoting the glycolysis and pentose phosphate pathway. RCC2 exerts effects on metabolism by stabilizing the transcription factor BACH1 at its C-terminus leading to the transcriptional upregulation of hexokinase 2 (HK2). These findings elucidate a novel PTEN/RCC2/BACH1/HK2 signaling axis that drives glioma progression through the dual regulation of mitotic cell cycle and glycolytic events.
Collapse
Affiliation(s)
- Tian Liu
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Life Science and Technology, Weifang Medical University, Shandong Province, China
| | - Yiwei Wang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stanley Kwok-Kuen Cheung
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Penelope Mei-Yu Or
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi-Wai Wong
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhining Li
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiqin Yang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yalin Tu
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Lut-Heng Ho
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haiwei Gu
- Center of Translational Science, Florida International University, Port Saint Lucie, FL, USA
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Zhang Z, Xiahou Z, Wu W, Song Y. Nitrogen Metabolism Disorder Accelerates Occurrence and Development of Lung Adenocarcinoma: A Bioinformatic Analysis and In Vitro Experiments. Front Oncol 2022; 12:916777. [PMID: 35903696 PMCID: PMC9315097 DOI: 10.3389/fonc.2022.916777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Nitrogen metabolism (NM) plays a pivotal role in immune regulation and the occurrence and development of cancers. The aim of this study was to construct a prognostic model and nomogram using NM-related genes for the evaluation of patients with lung adenocarcinoma (LUAD). Methods The differentially expressed genes (DEGs) related to NM were acquired from The Cancer Genome Atlas (TCGA) database. Consistent clustering analysis was used to divide them into different modules, and differentially expressed genes and survival analysis were performed. The survival information of patients was combined with the expressing levels of NM-related genes that extracted from TCGA and Gene Expression Omnibus (GEO) databases. Subsequently, univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to build a prognostic model. GO and KEGG analysis were elaborated in relation with the mechanisms of NM disorder (NMD). Meanwhile, immune cells and immune functions related to NMD were discussed. A nomogram was built according to the univariate and multivariate Cox analysis to identify independent risk factors. Finally, real-time fluorescent quantitative PCR (RT-PCR) and Western bolt (WB) were used to verify the expression level of hub genes. Results There were 138 differential NM-related genes that were divided into two gene modules. Sixteen NM-related genes were used to build a prognostic model and the receiver operating characteristic curve (ROC) showed that the efficiency was reliable. GO and KEGG analysis suggested that NMD accelerated development of LUAD through the Wnt signaling pathway. The level of activated dendritic cells (aDCs) and type II interferon response in the low-risk group was higher than that of the high-risk group. A nomogram was constructed based on ABCC2, HMGA2, and TN stages, which was identified as four independent risk factors. Finally, RT-PCR and WB showed that CDH17, IGF2BP1, IGFBP1, ABCC2, and HMGA2 were differently expressed between human lung fibroblast (HLF) cells and cancer cells. Conclusions High NM levels were revealed as a poor prognosis of LUAD. NMD regulates immune system through affecting aDCs and type II interferon response. The prognostic model with NM-related genes could be used to effectively evaluate the outcomes of patients.
Collapse
Affiliation(s)
- Zexin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenfeng Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
14
|
The key role of differential broad H3K4me3 and H3K4ac domains in breast cancer. Gene 2022; 826:146463. [PMID: 35358653 DOI: 10.1016/j.gene.2022.146463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022]
Abstract
Epigenetic processes are radically altered in cancer cells. The altered epigenetic events may include histone post-translational modifications (PTMs), DNA modifications, and/or alterations in the levels and modifications of chromatin modifying enzymes and chromatin remodelers. With changes in gene programming are changes in the genomic distribution of histone PTMs. Genes that are poised or transcriptionally active have histone H3 trimethylated lysine 4 (H3K4me3) located at the transcription start site and at the 5' end of the gene. However, a small population of genes that are involved in cell identity or cancer cell properties have a broad H3K4me3 domain that may stretch for several kilobases through the coding region of the gene. Each cancer cell type appears to mark a select set of cancer-related genes in this manner. In this study, we determined which genes were differentially marked with the broad H3K4me3 domain in normal-like (MCF10A), luminal-type breast cancer (MCF7), and triple-negative breast cancer (MDA-MB-231) cells. We also determined whether histone H3 acetylated lysine 4 (H3K4ac), also a mark of active promoters, had a broad domain configuration. We applied two peak callers (MACS2, PeakRanger) to analyze H3K4me3 and H3K4ac chromatin immunoprecipitation sequencing (ChIP-Seq) data. We identified genes with a broad H3K4me3 and/or H3K4ac domain specific to each cell line and show that the genes have critical roles in the breast cancer subtypes. Furthermore, we show that H3K4ac marks enhancers. The identified genes with the broad H3K4me3/H3K4ac domain have been targeted in clinical and pre-clinical studies including therapeutic treatments of breast cancer.
Collapse
|
15
|
Igarashi K, Nishizawa H, Matsumoto M. Iron in Cancer Progression: Does BACH1 Promote Metastasis by Altering Iron Homeostasis? Subcell Biochem 2022; 100:67-80. [PMID: 36301491 DOI: 10.1007/978-3-031-07634-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transcription factor BACH1, which is regulated by direct binding of prosthetic group heme, promotes epithelial-mesenchymal transition (EMT) and drives metastasis of diverse types of cancer cells. De-regulated target genes of BACH1 in cancer cells include those for glycolysis, oxidative phosphorylation, epithelial cell adhesion, and mesodermal cell motility. In addition, the canonical target genes of BACH1 include genes for the regulation of iron homeostasis. Importantly, cancer cells are addicted to iron. We summarize known functions of BACH1 in cancer and discuss how BACH1 may affect iron homeostasis in cancer cells to support their progression by increasing mobile iron within cells. The dependency on BACH1 for cancer progression may also confer upon cancer cells susceptibility to iron-dependent cell death ferroptosis. Finally, we discuss that the human transcription factors provide research opportunities for better understanding of cancer cell properties.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Mansoori B, Terp MG, Mohammadi A, Pedersen CB, Ditzel HJ, Baradaran B, Gjerstorff MF. HMGA2 Supports Cancer Hallmarks in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:5197. [PMID: 34680349 PMCID: PMC8533747 DOI: 10.3390/cancers13205197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that exhibits a high proliferation rate and early metastasis leading to a poor prognosis. HMGA2 is a DNA binding transcriptional regulator implicated in tumorigenesis. Here, we demonstrate that the HMGA2 promoter is demethylated in TNBC tumors, leading to increased expression of HMGA2 at both mRNA and protein levels. Importantly, high HMGA2 levels in TNBC tumors are correlated with poor prognosis. To detail the role of HMGA2 in TNBC development and progression, we studied its effect on core cancer phenotypes. Stable knockdown of HMGA2 in TNBC cells revealed that HMGA2 may support cell proliferation, cell migration and invasion. In addition, HMGA2 knockdown decreased cancer stem cell (CSC) features. Importantly, we found that silencing HMGA2 inhibited NF-kB signaling and lead to decreased expression of the downstream molecules IL-6 and IL-8 and reduced STAT3 pathway activation. Our results demonstrate that HMGA2 supports cancer hallmarks in TNBC and may represent a promising target for TNBC treatment.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Golghasht St., Tabriz 51666-14731, Iran; (B.M.); (B.B.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; (M.G.T.); (A.M.); (C.B.P.); (H.J.D.)
- Aging Research Institute, Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Golghasht St., Tabriz 51656-65811, Iran
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; (M.G.T.); (A.M.); (C.B.P.); (H.J.D.)
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; (M.G.T.); (A.M.); (C.B.P.); (H.J.D.)
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; (M.G.T.); (A.M.); (C.B.P.); (H.J.D.)
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; (M.G.T.); (A.M.); (C.B.P.); (H.J.D.)
- Department of Oncology, Odense University Hospital, DK-5000 Odense C, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, DK-5000 Odense C, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golghasht St., Tabriz 51666-14731, Iran; (B.M.); (B.B.)
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; (M.G.T.); (A.M.); (C.B.P.); (H.J.D.)
- Department of Oncology, Odense University Hospital, DK-5000 Odense C, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, DK-5000 Odense C, Denmark
| |
Collapse
|
17
|
Ma W, Gao Y, Zhang J, Yao X, Jia L, Xu Q. Long noncoding RNA LINC01410 promotes tumorigenesis of osteosarcoma cells via miR-497-5p/HMGA2 axis. J Biochem Mol Toxicol 2021; 35:e22921. [PMID: 34605103 DOI: 10.1002/jbt.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
LINC01410 is a tumor promoter that is upregulated in some cancer types, such as osteosarcoma (OS). Nonetheless, its role in OS and the underlying molecular mechanism have not been fully understood. Hence, we sought to elucidate it. We performed reverse-transcription quantitative polymerase chain reaction for examining LINC01410, miR-497-5p and HMGA2 levels. Additionally, we carried out the cell counting kit-8 and Transwell assays for detecting cell proliferation and invasion/migration. Bioinformatics predicted that there was a miR-497-5p binding site in LINC01410 or HMGA2; meanwhile, miR-497-5p was found to interact with HMGA2 and LINC01410 through dual-luciferase reporter assay. LINC01410 and HMGA2 were high, and miR-497-5p showed low expression in OS tissues and cells. Cell function assay demonstrated that LINC01410 or HMGA2 knockdown or miR-497-5p overexpression obviously restrained OS proliferation, invasion, and migration. Oppositely, inhibiting miR-497-5p had the opposite effects. Functionally, miR-497-5p bound with LINC01410 3'-untranslated region and HMGA2 was found to be the miR-497-5p target gene. Lastly, LINC01410 enhanced OS cell growth, invasion, and migration via decreasing miR-497-5p expression, whereas increasing that of HMGA2. We have demonstrated that LINC01410 promoted OS development partly by miR-497-5p/HMGA2 signal transduction pathway and this provides a reference for studying the mechanism of LINC01410 in OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Lina Jia
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Mansoori B, Najafi S, Mohammadi A, AsadollahSeraj H, Savadi P, Mansoori B, Nazari A, Mokhtarzadeh A, Roshani E, Duijf PH, Cho WCS, Baradaran B. The synergy between miR-486-5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells. Biomed Pharmacother 2021; 141:111925. [PMID: 34323695 DOI: 10.1016/j.biopha.2021.111925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Breast cancer (BC) is the most common type of malignancy in women. A subset of breast cancers show resistance to endocrine-based therapies. The estrogen receptor (ER) plays a critical role in developing hormone-dependent BC. Loss of ER contributes to resistance to tamoxifen therapy and may contribute to mortality. Thus, it is crucial to overcome this problem. Here, using luciferase reporter assays, qRT-PCR, and Western blot analyses, we demonstrate that the microRNA miR-486-5p targets HMGA1 mRNA, decreasing its mRNA and protein levels in ER-positive (ER+) BC cells. Consistently, miR-486-5p is significantly downregulated, whereas HMGA1 is considerably upregulated in ER+ BC samples. Remarkably, while both miR-486-5p and tamoxifen individually cause G2/M cell cycle arrest, combination treatment synergistically causes profound cell death, specifically in tamoxifen-resistant ER+ cells but not in tamoxifen-sensitive ER+ cells. Combined treatment with miR-486-5p and tamoxifen also additively reduces cell migration, invasion, colony formation, mammary spheroid formation and a CD24-CD44+ cell population, representing decreased cancer stemness. However, these phenomena are independent of the tamoxifen responsiveness of the ER+ BC cells. Thus, miR-486-5p and tamoxifen exhibit additive and synergistic tumor-suppressive effects, most importantly causing profound cell death specifically in tamoxifen-resistant BC cells. Therefore, our work suggests that combining miR-486-5p replacement therapy with tamoxifen treatment is a promising strategy to treat endocrine therapy-resistant BC.
Collapse
Affiliation(s)
- Behzad Mansoori
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Pouria Savadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Pascal Hg Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Li J, Li Y, Cheng H. Circ-RPPH1 knockdown retards breast cancer progression via miR-328-3p-mediated suppression of HMGA2. Clin Breast Cancer 2021; 22:e286-e295. [PMID: 34593318 DOI: 10.1016/j.clbc.2021.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Circular RNA Ribonuclease P RNA Component H1 (circ-RPPH1) was confirmed to act as an oncogene in many cancers to promote cancer progression. However, the exact function and mechanism of circ-RPPH1 in breast cancer (BC) remain vague. METHODS The expression of circ-RPPH1, microRNA (miR)-328-3p and high-mobility group AT-hook 2 (HMGA2) was detected using quantitative real-time polymerase chain reaction and western blot. Cell viability, apoptosis, migration and invasion were determined using cell counting kit-8 assay, flow cytometry and transwell assay, respectively. Glucose metabolism was calculated by detecting glucose uptake and lactate production. The target correlations between miR-328-3p and circ-RPPH1 or HMGA2 were confirmed by dual-luciferase reporter assay. The murine xenograft model was established to conduct in vivo experiments. RESULTS Circ-RPPH1 expression was elevated and miR-328-3p was decreased in BC tissues and cells. Circ-RPPH1 knockdown or miR-328-3p re-expression suppressed cell proliferation, migration, invasion and glycolysis but induced apoptosis in BC in vitro. Circ-RPPH1 was a sponge of miR-328-3p, and silencing of miR-328-3p reversed the inhibitory effects of circ-RPPH1 knockdown on BC cell malignant phenotypes and glycolysis. MiR-328-3p directly targeted HMGA2, and HMGA2 overexpression abolished the action of miR-328-3p in BC cells. Besides, circ-RPPH1 could regulate HMGA2 expression by miR-328-3p in BC cells. Moreover, murine xenograft model analysis suggested circ-RPPH1 knockdown inhibited tumor growth in vivo. CONCLUSION Circ-RPPH1 knockdown retarded cell malignant phenotypes and glycolysis via miR-328-3p/HMGA2 axis in BC, providing a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Breast Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Yinmou Li
- Department of Breast Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Hong Cheng
- Department of Breast Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.
| |
Collapse
|
20
|
Huang SL, Huang ZC, Zhang CJ, Xie J, Lei SS, Wu YQ, Fan PZ. LncRNA SNHG5 promotes the glycolysis and proliferation of breast cancer cell through regulating BACH1 via targeting miR-299. Breast Cancer 2021; 29:65-76. [PMID: 34351577 PMCID: PMC8732815 DOI: 10.1007/s12282-021-01281-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
Background Breast cancer (BC) is one of the most common malignant tumors in women. Accumulating studies have been reported that long non-coding RNA (lncRNA) SNHG5 is highly expressed in BC. However, the specific molecular mechanism of SNHG5 in BC is unclear. Methods Gene and protein expressions in BC cell were detected by qRT-PCR and western blotting. The proliferation and cell cycle were measured using colony formation assay and flow cytometry analysis, separately. The glucose consumption and lactate production were determined by using the glucose assay kit and lactate assay kit. A dual-luciferase reporter assay was performed to measure the interaction between miR-299 and SNHG5 or BACH1. Results SNHG5 and BACH1 expressions were increased in BC cell while miR-299 level was decreased. SNHG5 increased BACH1 expression by directly targeting miR-299. SNHG5 silencing or miR-299 overexpression suppressed the proliferation of BC cell, arrested the cell cycle in the G1 cell phase, and decreased the glucose consumption and lactate production of BC cell. However, inhibition of miR-299 or overexpression of BACH1 could reverse the inhibitory effects of sh-SNHG5 on cell proliferation and glycolysis in BC. Conclusion SNHG5 promoted the BC cell growth and glycolysis through up-regulating BACH1 expression via targeting miR-299. These findings may improve the diagnostic and therapeutic approaches to BC.
Collapse
Affiliation(s)
- Shu-Lin Huang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Zhong-Cheng Huang
- Department of General Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China
| | - Chao-Jie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Jing Xie
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Shan-Shan Lei
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Ya-Qin Wu
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Pei-Zhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China.
| |
Collapse
|
21
|
Zhang H, Wu X, Sui Z, Ma Z, Gong L, Meng B, Tang P, Yu Z. High-mobility group AT-hook 2 promotes growth and metastasis and is regulated by miR-204-5p in oesophageal squamous cell carcinoma. Eur J Clin Invest 2021; 51:e13563. [PMID: 33901298 DOI: 10.1111/eci.13563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate the expression of high-mobility group AT-hook 2 (HMGA2) and miR-204-5p in oesophageal squamous cell carcinoma (ESCC) and their biological roles in ESCC development and progression. METHODS HMGA2 and miR-204-5p expression levels in ESCC tissues and cell lines were detected by qRT-PCR, Western blotting and immunohistochemical staining. ESCC cell lines were transfected with a small interfering RNA for HMGA2 and miR-204-5p mimic to downregulate and upregulate the expression levels of HMGA2 and miR-204-5p, respectively. The growth, migration and invasion abilities of ESCC cells were assessed by MTT, colony formation, wound-healing and Transwell assays, respectively. A luciferase reporter gene assay was used to determine whether the 3'-untranslated coding regions of HMGA2 could be directly bound by miR-204-5p. RESULTS HMGA2 expression was markedly upregulated (P < .001), while miR-204-5p expression was markedly downregulated (P = .003) in ESCC tissues compared with adjacent normal tissues. HMGA2 expression was correlated with tumour size, invasion depth, lymph node metastasis and tumour-node-metastasis stage (all P < .05) and was identified as an independent prognostic factor for ESCC patients. The expression levels of HMGA2 and miR-204-5p were negatively correlated (r2 = 0.609, P < .001). HMGA2 knockdown or miR-204-5p overexpression markedly inhibited ESCC cell growth, migration and invasion (P < .05). In addition, restoration of HMGA2 expression partly reversed the inhibitory effects of miR-204-5p overexpression on migration and invasion (P < .05). The luciferase reporter gene assay suggested that HMGA2 is a direct downstream target of miR-204-5p. CONCLUSION HMGA2 functions as an oncogene in the growth and metastasis of ESCC and is negatively regulated by miR-204-5p.
Collapse
Affiliation(s)
- Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhilin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhao Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
22
|
Abedi Gaballu F, Cho WCS, Dehghan G, Zarebkohan A, Baradaran B, Mansoori B, Abbaspour-Ravasjani S, Mohammadi A, Sheibani N, Aghanejad A, Ezzati Nazhad Dolatabadi J. Silencing of HMGA2 by siRNA Loaded Methotrexate Functionalized Polyamidoamine Dendrimer for Human Breast Cancer Cell Therapy. Genes (Basel) 2021; 12:1102. [PMID: 34356120 PMCID: PMC8303903 DOI: 10.3390/genes12071102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.
Collapse
Affiliation(s)
- Fereydoon Abedi Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | | | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | | | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran;
| | | |
Collapse
|
23
|
Mansoori B, Duijf PHG, Mohammadi A, Safarzadeh E, Ditzel HJ, Gjerstorff MF, Cho WCS, Baradaran B. MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sci 2021; 276:119431. [PMID: 33785332 DOI: 10.1016/j.lfs.2021.119431] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) have the ability to regulate gene expression programs in cells. Hence, altered expression of miRNAs significantly contributes to breast cancer development and progression. Here, we demonstrate that the miRNA miR-142-3p directly targets the 3' untranslated region of HMGA2, which encodes an onco-embryonic protein that is overexpressed in most cancers, including breast cancer. Down regulation of miR-142-3p predicting poor patient survival in grade 3 breast cancer (P-value = 0.045). MiR-142-3p downregulates HMGA2 mRNA and protein levels. Higher miR-142-3p and lower HMGA2 expressed are found in breast cancer versus normal breast tissue (P-value<0.05), and their levels inversely correlate in breast cancers (P-value = 1.46 × 10-4). We demonstrate that miR-142-3p induces apoptosis and G2/M cell cycle arrest in breast cancer cells. In addition, it inhibits breast cancer stem cell properties and decreases SOX2, NANOG, ALDH and c-Myc expression. MiR-142-3p also decreases cell proliferation through inhibition of the ERK/AKT/STAT3 signaling pathways. Finally, pathway analyses of patient samples suggest that these mechanisms also acting in the tumors of breast cancer patients. Thus, our work identifies HMGA2 as a direct miR-142-3p target and indicates that miR-142-3p is an important suppressor of breast cancer oncogenesis. This identifies miR-142-3p may candidate as a therapeutic molecule for breast cancer treatment.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Aging Research Institute, Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Elham Safarzadeh
- Department of Microbiology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Zhao Y, Gao J, Xie X, Nan P, Liu F, Sun Y, Zhao X. BACH1 promotes the progression of esophageal squamous cell carcinoma by inducing the epithelial-mesenchymal transition and angiogenesis. Cancer Med 2021; 10:3413-3426. [PMID: 33932125 PMCID: PMC8124123 DOI: 10.1002/cam4.3884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Metastasis to regional lymph nodes or distal organs predicts the progression of the disease and poor prognosis in esophageal squamous cell carcinoma (ESCC). Previous studies demonstrated that BTB and CNC homology 1 (BACH1) participates in various types of tumor metastasis. However, the function of BACH1 in ESCC was rarely reported. The present study demonstrated that BACH1 protein was overexpressed in ESCC tissues compared with paired esophageal epithelial tissues according to immunohistochemical staining (IHC). Higher levels of BACH1 mRNA were associated with decreased overall survival (OS) and shorter disease‐free survival (DFS) of ESCC patients based on an analysis of The Cancer Genome Atlas (TCGA) datasets. BACH1 significantly enhanced the migration and invasion of ESCC in vitro. Mechanistically, BACH1 promoted the epithelial–mesenchymal transition (EMT) by directly activating the transcription of CDH2, SNAI2, and VIM, as determined by chromatin immunoprecipitation‐quantitative polymerase chain reaction (ChIP‐qPCR). BACH1 overexpression significantly enhanced CDH2 promoter activity according to the results of a luciferase assay. The results of subsequent experiments indicated that BACH1 enhanced the growth of tumor xenografts. The density of CD31+ blood vessels and the expression of vascular endothelial growth factor C (VEGFC) in tumor xenografts were significantly associated with BACH1 levels according to the results of IHC and immunofluorescence (IF) analyses performed in vivo. Moreover, ChIP‐qPCR analysis demonstrated that the transcriptional activity of VEGFC was also upregulated by BACH1. Thus, BACH1 contributes to ESCC metastasis and tumorigenesis by partially facilitating the EMT and angiogenesis, and BACH1 may be a promising therapeutic target or molecular marker in ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
26
|
Mansoori B, Silvestris N, Mohammadi A, Khaze V, Baghbani E, Mokhtarzadeh A, Shanehbandi D, Derakhshani A, Duijf PHG, Baradaran B. miR-34a and miR-200c Have an Additive Tumor-Suppressive Effect on Breast Cancer Cells and Patient Prognosis. Genes (Basel) 2021; 12:267. [PMID: 33673143 PMCID: PMC7918749 DOI: 10.3390/genes12020267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common women's malignancy in the world and, for subgroups of patients, treatment outcomes remain poor. Thus, more effective therapeutic strategies are urgently needed. MicroRNAs (miRNAs) have emerged as promising therapeutic tools and targets, as they play significant roles in regulating key cellular processes by suppressing gene expression. However, additive opportunities involving miRNAs have been underexplored. For example, both miR-34a and miR-200c individually suppress the development of different types of cancer, but the cellular effects of their combined actions remain unknown. Here, we show that miR-34a and miR-200c levels are reduced in breast tumors compared to adjacent normal tissues and that this additively predicts poor patient survival. In addition, in cell lines, miR-34a and miR-200c additively induce apoptosis and cell cycle arrest, while also inhibiting proliferation, invasion, migration, stemness and epithelial-to-mesenchymal transition (EMT). Mechanistically, both miRNA-34a and miR-200c directly target HIF1-α and subsequently downregulate VEGFR, MMP9 and CXCR4, although combined miRNA-34a and miR-200c delivery suppresses mouse xenograft tumor development as effectively as individual delivery. We establish a model, supported by in vitro and clinical data, which collectively suggest that the co-delivery of miR-34a and miR-200c represents a promising novel therapeutic strategy for breast cancer patients.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000C Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, DIMO-University of Bari, 70124 Bari, Italy
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000C Odense, Denmark;
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
| | - Pascal H. G. Duijf
- Faculty of Health, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Brisbane, QLD 4102, Australia
- University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (B.M.); (V.K.); (E.B.); (A.M.); (D.S.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
27
|
Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int 2021; 21:99. [PMID: 33568150 PMCID: PMC7876817 DOI: 10.1186/s12935-021-01799-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2/IMP2) is an RNA-binding protein that regulates multiple biological processes. Previously, IGF2BP2 was thought to be a type 2 diabetes (T2D)-associated gene. Indeed IGF2BP2 modulates cellular metabolism in human metabolic diseases such as diabetes, obesity and fatty liver through post-transcriptional regulation of numerous genes in multiple cell types. Emerging evidence shows that IGF2BP2 is an N6-methyladenosine (m6A) reader that participates in the development and progression of cancers by communicating with different RNAs such as microRNAs (miRNAs), messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). Additionally, IGF2BP2 is an independent prognostic factor for multiple cancer types. In this review, we summarize the current knowledge on IGF2BP2 with regard to diverse human metabolic diseases and its potential for cancer prognosis.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, China.,The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Lijuan Chen
- Department of Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| | - Ping Qiang
- Department of Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Zheng H, Yan B, Wu Q, Zhang J. MicroRNA-9-5p increases the sensitivity of colorectal cancer cells to 5-fluorouracil by downregulating high mobility group A2 expression. Oncol Lett 2021; 21:235. [PMID: 33613724 PMCID: PMC7856691 DOI: 10.3892/ol.2021.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy drug 5-fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC); however, 5-FU resistance decreases CRC therapeutic efficiency. A previous study revealed that microRNA (miR)-9-5p serves an antitumor effect in CRC. However, the effect of miR-9-5p in CRC chemoresistance remains unknown. In the present study, two CRC cell lines, including HT-29 and HCT-116 cells, were used to investigate the impact of miR-9-5p in overcoming 5-FU resistance. The results revealed that treatment with 5-FU decreased CRC cell viability and upregulated miR-9-5p expression in both CRC cells. Knockdown of miR-9-5p decreased HCT-116 cell sensitivity to 5-FU and inhibited apoptosis. By contrast, miR-9-5p overexpression enhanced the sensitivity of HT-29 cells to 5-FU and induced apoptosis. Additionally, it was confirmed that miR-9-5p directly targeted high mobility group A2 (HMGA2). HMGA2 overexpression reversed miR-9-5p-induced HT-29 apoptosis. The present study indicated that miR-9-5p enhanced the sensitivity of CRC cells to 5-FU via downregulating HMGA2 expression.
Collapse
Affiliation(s)
- Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bin Yan
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Qi Wu
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
29
|
Circular RNA 100146 Promotes Colorectal Cancer Progression by the MicroRNA 149/HMGA2 Axis. Mol Cell Biol 2021; 41:MCB.00445-20. [PMID: 33257506 PMCID: PMC8093498 DOI: 10.1128/mcb.00445-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) has developed into the third leading cause of cancer-associated death worldwide. Studies have confirmed that circular RNAs (circRNAs) absorb microRNAs (miRNAs) to regulate the function of downstream genes. This study aimed to explore the underlying mechanism of circRNA 100146 in CRC. The expression of circRNA 100146, miRNA 149 (miR-149), and high mobility group AT-Hook 2 (HMGA2) was detected by quantitative real-time PCR (RT-qPCR). A series of biofunctional effects (cell viability, apoptosis, migration/invasion) were evaluated by the use of methyl thiazolyl tetrazolium (MTT), flow cytometry, and transwell assays. Protein levels were measured by Western blot assay. A xenograft model was established for in vivo experiments. The interactions among circRNA 100146, miR-149, and HMGA2 were evaluated by dual-luciferase reporter assay, RNA immunoprecipitation assays, or RNA pulldown assay. circRNA 100146 was upregulated in CRC tissues and cells. circRNA 100146 knockdown inhibited cell proliferation, promoted apoptosis, and suppressed migration and invasion in vitro and impeded tumor growth in vivo Also, miR-149 was negatively regulated by circRNA 100146 and was targeted to HMGA2 and mediated its expression. Moreover, miR-149 interference abrogated the activities of silenced circRNA 100146 in proliferation, apoptosis, migration, and invasion. Furthermore, HMGA2 overexpression abated the effects described above caused by circRNA 100146 silencing, while the mutations on miR-149 binding sites in the 3' untranslated region (3'-UTR) of HMGA2 led to its loss of this ability. circRNA 100146 knockdown repressed proliferation, enhanced apoptosis, and hindered migration and invasion in SW620 and SW480 cells through targeting the miR-149/HMGA2 axis.
Collapse
|
30
|
Qin C, Jin L, Li J, Zha W, Ding H, Liu X, Zhu X. Long Noncoding RNA LINC02163 Accelerates Malignant Tumor Behaviors in Breast Cancer by Regulating the MicroRNA-511-3p/HMGA2 Axis. Oncol Res 2020; 28:483-495. [PMID: 32571448 PMCID: PMC7751230 DOI: 10.3727/096504020x15928179818438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long intergenic nonprotein-coding RNA 02163 (LINC02163) has been reported to be upregulated and work as an oncogene in gastric cancer. The aims of the present study were to determine the expression profile and clinical value of LINC02163 in breast cancer. Additionally, the detailed functions of LINC02163 in breast cancer were explored, and relevant molecular events were elucidated. In this study, LINC02163 was upregulated in breast cancer, and its expression level was closely associated with tumor size, lymph node metastasis, and TNM stage. Patients with breast cancer presenting high LINC02163 expression exhibited shorter overall survival than those presenting low LINC02163 expression. Knockdown of LINC02163 resulted in a decrease in breast cancer cell proliferation, migration, and invasion and an increase in cell apoptosis in vitro. In addition, silencing of LINC02163 impeded breast cancer tumor growth in vivo. Mechanistic investigation revealed that LINC02163 served as a competing endogenous RNA for microRNA-511-3p (miR-511-3p) and consequently upregulated the expression of the high-mobility group A2 (HMGA2), a downstream target of miR-511-3p. Intriguingly, miR-511-3p inhibition and HMGA2 restoration counteracted the effects of LINC02163 deficiency on the malignant properties of breast cancer cells. LINC02163 exerts cancer-promoting effects during the initiation and progression of breast cancer via regulation of the miR-511-3p/HMGA2 axis. Our findings add to our understanding of the roles of the LINC02163/miR-511-3p/HMGA2 pathway as a regulator of breast cancer pathogenesis and may be useful in the development of lncRNA-directed cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Chenglin Qin
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Linfang Jin
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- ‡Department of Pathology, Affiliated Hospital of Jiangnan University (Wuxi Fourth People’s Hospital), Wuxi, Jiangsu, P.R. China
| | - Jia Li
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- §Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Wenzhang Zha
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Huiming Ding
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Xiaorong Liu
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- ¶Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, P.R. China
| | - Xun Zhu
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
31
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Yang Z, Liu X, Wang L, Wang T, Chen Y, Teng X, Li J, Shao L, Hui J, Ye W, Shen Z. The protective effects of HMGA2 in the senescence process of bone marrow-derived mesenchymal stromal cells. J Tissue Eng Regen Med 2020; 14:588-599. [PMID: 32068957 DOI: 10.1002/term.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/25/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) have been wildly applied to cell-based strategies for tissue engineering and regenerative medicine; however, they have to undergo the senescence process and thus appeared to be less therapeutic effective. HMGA2, a protein belonged to high mobility group A (HMGA) family, exhibits an inverse expression level related to embryonic development and acts as a developmental regulator in stem cell self-renewal progression. Therefore, we performed senescence-associated β-galactosidase (SA-β-gal) staining, transwell assay, to examine the changes of MSCs in different stages and then over-expressed HMGA2 in MSCs by lentivirus transfection. We found the percentage of SA-β-gal staining positive cells in MSCs from 24-month-old Sprague-Dawley (SD) rats (O-MSCs) was significantly higher compared with MSCs from 2-week-old SD rats (Y-MSCs), and the expression levels of P21 and P53, two senescence-related molecules, were also significantly up-regulated in O-MSCs than in Y-MSCs. In contrast, the HMGA2 expression level in O-MSCs was dramatically down-regulated in contrast to Y-MSCs. In additional, the migration ability in O-MSCs was significantly attenuated than in Y-MSCs. After successfully over-expressed HMGA2 in O-MSCs, the percentage of SA-β-gal staining positive cells and the expression levels of P21 and P53 were reduced, and the migration ability was improved compared with O-MSCs without treatment. Further, mRNA sequencing analysis revealed that overexpression of HMGA2 changed the expression of genes related to cell proliferation and senescence, such as Lyz2, Pf4, Rgs2, and Mstn. Knockdown of Rgs2 in HMGA2 overexpression O-MSCs could antagonize the protective effect of HMGA2 in the senescence process of O-MSCs.
Collapse
Affiliation(s)
- Ziying Yang
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xuan Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Longgang Wang
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tao Wang
- Department of Cardiology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jie Hui
- Department of Cardiology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Wenxue Ye
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
33
|
Chen CH, Hsieh YC, Yang PM, Liu YR, Cho EC. Dicoumarol suppresses HMGA2-mediated oncogenic capacities and inhibits cell proliferation by inducing apoptosis in colon cancer. Biochem Biophys Res Commun 2020; 524:1003-1009. [PMID: 32063361 DOI: 10.1016/j.bbrc.2020.01.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Colon cancer is one of the leading causes of cancer-related deaths and its five-year survival rate remains low in locally advanced or metastatic stages of colon cancer. Overexpression of high mobility group protein AT-hook2 (HMGA2) is associated with cancer progression, metastasis, and poor prognosis in many malignancies. Oxidative stress regulates cellular mechanisms and provides an environment that favors the cancer cells to survive and progress, yet, at the same time, oxidative stress can also be utilized as a cancer-damaging strategy. The molecular regulatory roles of HMGA2 in oxidative stress and their involvement in cancer progression are largely unknown. In this study, we investigated the involvement of HMGA2 in regulation of oxidative stress responses by luciferase reporter assays. Moreover, we utilized dicoumarol (DIC), a derivative of coumarin which has been suggested to be involved in oxidation regulation with anticancer effects, and demonstrated that DIC could induce apoptosis and inhibit cell migration of HMGA2 overexpressing colon cancer cells. Further investigation also evidenced that DIC can enhance the cancer inhibition effect of 5-FU in colony formation assays. Taken together, our data revealed novel insights into the molecular mechanisms underlying HMGA2 and highlighted the possibility of targeting the cellular antioxidant system for treating patients and preventing from cancer progression in HMGA2 overexpressing colon cancer cells.
Collapse
Affiliation(s)
- Chieh-Heng Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Yi-Chen Hsieh
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taiwan; PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taiwan.
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan.
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan.
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taiwan.
| |
Collapse
|
34
|
Nishizawa H, Matsumoto M, Shindo T, Saigusa D, Kato H, Suzuki K, Sato M, Ishii Y, Shimokawa H, Igarashi K. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 2020; 295:69-82. [PMID: 31740582 PMCID: PMC6952604 DOI: 10.1074/jbc.ra119.009548] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death event, whose regulation and physiological significance remain to be elucidated. Analyzing transcriptional responses of mouse embryonic fibroblasts exposed to the ferroptosis inducer erastin, here we found that a set of genes related to oxidative stress protection is induced upon ferroptosis. We considered that up-regulation of these genes attenuates ferroptosis induction and found that the transcription factor BTB domain and CNC homolog 1 (BACH1), a regulator in heme and iron metabolism, promotes ferroptosis by repressing the transcription of a subset of the erastin-induced protective genes. We noted that these genes are involved in the synthesis of GSH or metabolism of intracellular labile iron and include glutamate-cysteine ligase modifier subunit (Gclm), solute carrier family 7 member 11 (Slc7a11), ferritin heavy chain 1 (Fth1), ferritin light chain 1 (Ftl1), and solute carrier family 40 member 1 (Slc40a1). Ferroptosis has also been previously shown to induce cardiomyopathy, and here we observed that Bach1-/- mice are more resistant to myocardial infarction than WT mice and that the severity of ischemic injury is decreased by the iron-chelator deferasirox, which suppressed ferroptosis. Our findings suggest that BACH1 represses genes that combat labile iron-induced oxidative stress, and ferroptosis is stimulated at the transcriptional level by BACH1 upon disruption of the balance between the transcriptional induction of protective genes and accumulation of iron-mediated damage. We propose that BACH1 controls the threshold of ferroptosis induction and may represent a therapeutic target for alleviating ferroptosis-related diseases, including myocardial infarction.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Seiryo-machi 2-1, Sendai 980-8573, Japan
| | - Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Katsushi Suzuki
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Masaki Sato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan.
| |
Collapse
|
35
|
Cai X, Nie J, Chen L, Yu F. Circ_0000267 promotes gastric cancer progression via sponging MiR-503-5p and regulating HMGA2 expression. Mol Genet Genomic Med 2019; 8:e1093. [PMID: 31845519 PMCID: PMC7005624 DOI: 10.1002/mgg3.1093] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a class of newly discovered RNAs that attach great importance to modulate gene expression and biological function. Nonetheless, in gastric cancer (GC), the expression and function of circRNA are much less explored. In this study, circ_0000267 expression in GC was investigated and the function and mechanism of circ_0000267 was probed. Materials and Methods Quantitative real‐time PCR (qRT‐PCR) was employed to detect circ_0000267, miR‐503‐5p, and HMGA2 expression. Immunohistochemistry and western blot were adopted to detect HMGA2 and epithelial–mesenchymal transition (EMT)‐related proteins (E‐cadherin and N‐cadherin) expression in GC tissues and cells, respectively. GC cell lines with circ_0000267 overexpressed and knocked down were constructed, and CCK‐8 assay, BrdU assay, scratch healing assay, and transwell assay were employed to assess the effect of circ_0000267 on the proliferation and metastasis of GC cells. Besides, dual‐luciferase reporter gene assay was adopted to verify the targeting relationship between circ_0000267 and miR‐503‐5p. Results Circ_0000267 showed a significant upregulation in GC tissues and cell lines, and its high expression level was extremely linked to the increased tumor diameter and local lymph node metastasis. Circ_0000267 overexpression accelerated GC cell proliferation, metastasis, and EMT processes, while knocking down circ_0000267 led to the opposite effect. From the perspective of mechanism, circ_0000267 promoted the progression of GC through adsorbing miR‐503‐5p and upregulating HMGA2 expression. Conclusion Circ_0000267 is an oncogenic circRNA that affects the progression of GC, which participates in promotion of GC proliferation, migration, invasion, and EMT via modulating the miR‐503‐5p/HMGA2 axis.
Collapse
Affiliation(s)
- Xiaopeng Cai
- Department of Gastrointestinal Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China.,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Liangdong Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|