1
|
Hassan RE, Saleh EM, Hamdy GM. Aloe vera gel relieves cadmium triggered hepatic injury via antioxidative, anti-inflammatory, and anti-apoptotic routes. Biol Trace Elem Res 2025; 203:218-228. [PMID: 38467965 DOI: 10.1007/s12011-024-04141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Aloe vera (AV) gel extracted from fresh AV leaves was chosen in this study to evaluate its antioxidant, anti-inflammatory, and antiapoptotic activities against cadmium (Cd) -induced liver injury. Forty Wistar male adult rats were equally divided into four groups. Group I (standard control) ingested with 2.5 ml/kg b.w. of physiological saline. Group II (Cd-intoxicated) received 3 mg/kg b.w./day of CdCl2 dissolved in saline. Group III (AV) received 200 mg/kg b.w./day of AV gel dissolved in saline. Group IV (Cd+AV) ingested with 200 mg/kg b.w./day of AV gel solution along with 3 mg/kg b.w. CdCl2. All groups were ingested orally by gavage for 3 consecutive weeks. Paraoxonase-1 (PON-1) and HSP70 were measured in serum. The deposited Cd level, nitric oxide content, lipid peroxidation, collagen-1 (COL-1), and metalloproteinase-9 (MMP-9) levels were all determined in liver tissue homogenates. Gene expression of NF-κB and IL-6, Bax, and Bcl2, as well as immunohistochemistry analysis of activated caspase-3, was performed. Results showed that ingestion of AV gel greatly relieved all oxidative stress due to Cd exposure, modulated the NF-κB, IL-6, Bax, and Bcl2 expression levels, and improved the apoptotic state. In conclusion, AV gel confirmed its potential ameliorating effect against liver injury induced due to Cd exposure.
Collapse
Affiliation(s)
- Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Eman M Saleh
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Germine M Hamdy
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Younes AH, Mustafa YF. Sweet Bell Pepper: A Focus on Its Nutritional Qualities and Illness-Alleviated Properties. Indian J Clin Biochem 2024; 39:459-469. [PMID: 39346723 PMCID: PMC11436515 DOI: 10.1007/s12291-023-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Sweet bell pepper (SBP, Capsicum annuum L.) can be employed as a spice in many dishes and may also be eaten as a delicious fruit. These two nutritional attributes are owing to the strong, deep taste of many SBP phytochemicals. This fruit has many additional beneficial properties because it contains high concentrations of minerals and vitamins that distinguish it from other kinds of fruits. Almost every part of the SBP is thought to be an excellent source of bioactive substances that are health supporters, such as flavonoids, polyphenols, and various aromatic substances. The ability of SBP-phytochemicals to work as antioxidants, reducing the harmful effects of oxidative stress and consequently preventing many chronic illnesses, is one of their main biomedical characteristics. These phytochemicals have good antibacterial properties, mostly against gram-positive pathogenic microbes, in addition to their anti-carcinogenic and cardio-preventive effects. So, this review aims to highlight the nutritional qualities of SBP-derived phytochemicals and their illness-alleviated characteristics. Antioxidant, anti-inflammatory, antitumor, antidiabetic, and analgesic properties are some of the ones discussed.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
3
|
Khaksari M, Shahryari M, Raji-Amirhasani A, Soltani Z, Bibak B, Keshavarzi Z, Shakeri F. Aloe vera Leaf Extract Reduced BBB Permeability and Improved Neurological Results after Traumatic Brain Injury: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5586814. [PMID: 39040520 PMCID: PMC11262876 DOI: 10.1155/2024/5586814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/24/2024]
Abstract
Introduction Recognizing the importance of medicinal plants and the absence of specific medications for traumatic brain injury (TBI) treatment, this study was conducted to evaluate the effects of an aqueous extract of Aloe vera on oxidative stress, blood-brain barrier (BBB) permeability, and neurological scores following TBI. Materials and Methods Adult male rats were categorized into five groups: sham, TBI, vehicle, low-dose Aloe vera (LA), and high-dose Aloe vera (HA). We induced diffuse TBI using the Marmaro model and administered the aqueous Aloe vera leaf extract, as well as vehicle, via intraperitoneal injection half an hour after TBI. Neurological outcomes were assessed both before and several hours after TBI. Additionally, oxidative stress factors were measured 24 hr after TBI, and Evans blue content (a BBB permeability index) was determined 5 hr after TBI in both serum and brain. Results Both LA and HA reduced the increase in BBB permeability after TBI, with HA having a more pronounced effect than LA. Both Aloe vera doses decreased brain MDA levels, increased brain TAC, and lowered both serum and brain PC levels. The impact of Aloe vera on brain oxidative parameters was more significant than on serum. HA also counteracted the declining effects of TBI on neurological outcomes at 4 and 24 hr post-TBI. Conclusion This study suggests that Aloe vera extract may reduce BBB permeability and improve neurological outcomes after TBI by decreasing oxidative factors and increasing antioxidant factors.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Shahryari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of PhysiologyNeuroscience Research CenterMedical FacultyGolestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical Sciences, Kerman, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
5
|
Kaur S, Bains K. Aloe Barbadensis Miller (Aloe Vera). INT J VITAM NUTR RES 2024; 94:308-321. [PMID: 37915246 DOI: 10.1024/0300-9831/a000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Aloe Barbadensis Miller (Aloe Vera, AV) is a widely recognized for its diverse health-promoting, skin care, and medicinal properties. This narrative review provides a comprehensive overview of AV's bioactive compounds, pharmacological activities, potential applications, its toxic and adverse effects, as well as the clinical evidence supporting AV's efficacy in disease prevention. AV contains over 200 bioactive compounds, with the inner clear gel of the leaves containing the majority of these compounds. These include phenolic acids (274.5-307.5 mg/100 g), flavonoids. (3.63-4.70 g/kg), polysaccharides (3.82-6.55 g/kg), saponins, alkaloids, terpenoids, and anthraquinone derivatives. Findings from clinical studies involving both humans and animals highlight the therapeutic potential of AV across diverse health domains. The studies demonstrate AV's efficacy in reducing blood glucose levels, exhibiting antioxidant and immunomodulatory effects, inducing apoptosis in cancer cells, protecting the liver from damage, and displaying antimicrobial properties. In the fields of dermatology and dentistry, AV has also been observed to promote skin and oral health. However, it is imperative to acknowledge potential risks, adhere to recommended dosages, and seek guidance from healthcare experts before employing AV as a natural therapeutic option. Moreover, considering safety concerns, further well-designed randomized controlled trials are necessary to substantiate the potential benefits of AV and comprehensively assess any associated risks.
Collapse
Affiliation(s)
- Sukhdeep Kaur
- Department of Food & Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kiran Bains
- Department of Food & Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Nna VU, McGrowder D, Nwokocha C. Nutraceutical management of metabolic syndrome as a palliative and a therapeutic to coronavirus disease (COVID) crisis. Arch Physiol Biochem 2023; 129:1123-1142. [PMID: 33770443 DOI: 10.1080/13813455.2021.1903041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The global market for medicinal plants and herbs is on the increase due to their desirability, efficacy, and less adverse effects as complementary and alternative medications to the orthodox pharmaceuticals, perhaps due to their natural components and qualities. Metabolic syndromes are managed with changes in diet, exercise, lifestyle modifications and the use of pharmacological agents. Plants are now known to have potent antioxidant and cholinergic activities which are relevant to the management of several metabolic syndromes, which are unfortunately, co-morbidity factors in the coronavirus disease crisis. This review will focus on the biological activities of some plant products used as complementary and alternative medicines in the management of metabolic syndromes, and on their reported antiviral, antithrombotic, angiotensin-converting enzyme inhibitory properties, which are integral to their usage in the management of viral infections and may give an avenue for prophylactic and therapeutics especially in the absence of vaccines/formulated antiviral therapies.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Donovan McGrowder
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences (Physiology Section), The University of the West Indies, Mona, Jamaica
| |
Collapse
|
7
|
Gupta VK, Park U, Siddiqi NJ, Huh YS, Sharma B. Amelioration of Hepatotoxic and Neurotoxic Effect of Cartap by Aloe vera in Wistar Rats. TOXICS 2023; 11:toxics11050472. [PMID: 37235286 DOI: 10.3390/toxics11050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Pesticide exposure can pose a serious risk to nontarget animals. Cartap is being broadly used in agricultural fields. The toxic effects of cartap on the levels of hepatotoxicity and neurotoxicity have not been properly studied in mammalian systems. Therefore, the present work focused on the effect of cartap on the liver and brain of Wistar rats and made an assessment of the ameliorating potential of A. vera. The experimental animals were divided into 4 groups, comprising six rats in each: Group 1-Control; Group 2-A. vera; Group 3-Cartap; and Group 4-A. vera + Cartap. The animals orally given cartap and A. vera were sacrificed after 24 h of the final treatment and histological and biochemical investigations were conducted in liver and brain of Wistar rats. Cartap at sublethal concentrations caused substantial decreases in CAT, SOD, and GST levels in the experimental rats. The activity levels of transaminases and phosphatases in cartap group were also found to be substantially altered. The AChE activity was recorded as decreasing in RBC membrane and brain of the cartap-treated animals. The TNF-α and IL-6 level in serum were increased expressively in the cartap challenged groups. Histological investigation of liver showed disorganized hepatic cords and severely congested central veins due to cartap. However, the A. vera extract was observed to significantly protect against the effects of cartap toxicity. The protective impact of A. vera against cartap toxicity may be due to the existence of antioxidants in it. These findings suggest that A. vera may be developed as a potential supplement to the appropriate medication in the treatment of cartap toxicity.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Uichang Park
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Nikhat J Siddiqi
- FCSM-Department of Biochemistry, King Saud University, Riyadh 11495, Saudi Arabia
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
8
|
Ismail AFM, Salem AA, Eassawy MMT. Rutin protects against gamma-irradiation and malathion-induced oxidative stress and inflammation through regulation of mir-129-3p, mir-200C-3p, and mir-210 gene expressions in rats' kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27166-z. [PMID: 37184799 DOI: 10.1007/s11356-023-27166-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Kidney injury represents a global concern, leading to chronic kidney disease. The organophosphate insecticide malathion (MT) demonstrates environmental disturbance and impairment of different mammalian organs, including kidneys. Likewise, gamma-irradiation (IRR) provokes destructive effects in the kidneys. Rutin is a flavonoid glycoside that exhibits nephro-protective and radio-protective properties. This manuscript focused on investigating the protective response of rutin on MT- and IRR-triggered kidney injury in rats. Rats were randomly divided into eight groups of twelve: G1 (C), control; G2 (Rutin), rutin-treated rats; G3 (IRR), gamma-irradiated rats; G4 (MT), malathion-treated rats; G5 (IRR/MT), gamma-irradiated rats treated with malathion; G6 (IRR/Rutin), gamma-irradiated rats treated with rutin; G7 (MT/Rutin), rats treated with malathion and rutin; and G8 (IRR/MT/Rutin), gamma-irradiated rats treated with malathion and rutin, every day for 30 days. The results demonstrated that rutin treatment regulated the biochemical parameters, the oxidative stress, the antioxidant status, and the inflammatory responses due to the down-regulation of the renal NF-κB p65 protein expression. Moreover, it amended the activity of acetylcholinesterase (AchE), angiotensin ACE I, and ACE II-converting enzymes. Besides, it regulated the iNOS, eNOS, miR-129-3p, miR-200c, and miR-210 gene expressions and bradykinin receptor (B1R and B2R) protein expressions. Histopathological examinations of the kidney tissue confirmed these investigated results. It could be concluded that rutin demonstrated nephro/radioprotection and counteracted the toxicological effects triggered in the kidney tissues of IRR, MT, and IRR/MT intoxicated rats, via regulating miR-129-3p, miR-200c-3p, and miR-210-3p gene expressions, which consequently regulated B2R protein expressions, ACE II activity, and HIF-1α production, respectively.
Collapse
Affiliation(s)
- Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Asmaa A Salem
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Mamdouh M T Eassawy
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| |
Collapse
|
9
|
Ginseng ® Alleviates Malathion-Induced Hepatorenal Injury through Modulation of the Biochemical, Antioxidant, Anti-Apoptotic, and Anti-Inflammatory Markers in Male Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12050771. [PMID: 35629437 PMCID: PMC9144712 DOI: 10.3390/life12050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
This study aims to see if Ginseng® can reduce the hepatorenal damage caused by malathion. Four groups of forty male Wistar albino rats were alienated. Group 1 was a control group that got orally supplied corn oil (vehicle). Group 2 was intoxicated by malathion dissolved in corn oil orally at 135 mg/kg/day. Group 3 orally received both malathion + Panax Ginseng® (300 mg/kg/day). Group 4 was orally given Panax Ginseng® at a 300 mg/kg/day dose. Treatments were administered daily and continued for up to 30 consecutive days. Malathion's toxic effect on both hepatic and renal tissues was revealed by a considerable loss in body weight and biochemically by a marked increase in liver enzymes, LDH, ACP, cholesterol, and functional renal markers with a marked decrease in serum TP, albumin, and TG levels with decreased AchE and Paraoxonase activity. Additionally, malondialdehydes, nitric oxide (nitrite), 8-hydroxy-2-deoxyguanosine, and TNFα with a significant drop in the antioxidant activities were reported in the malathion group. Malathion upregulated the inflammatory cytokines and apoptotic genes, while Nrf2, Bcl2, and HO-1 were downregulated. Ginseng® and malathion co-treatment reduced malathion's harmful effects by restoring metabolic indicators, enhancing antioxidant pursuit, lowering the inflammatory reaction, and alleviating pathological alterations. So, Ginseng® may have protective effects against hepatic and renal malathion-induced toxicity on biochemical, antioxidant, molecular, and cell levels.
Collapse
|
10
|
Coremen M, Turkyilmaz IB, Us H, Us AS, Celik S, Ozel A, Bulan OK, Yanardag R. Lupeol inhibits pesticides induced hepatotoxicity via reducing oxidative stress and inflammatory markers in the rats. Food Chem Toxicol 2022; 164:113068. [PMID: 35483487 DOI: 10.1016/j.fct.2022.113068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
The present study was aimed at investigating the toxicity of various pesticides on rat liver. It also aimed to show whether this toxicity could be avoided using lupeol. Adult male Wistars albino rats were randomly divided into nine groups. Control groups were given saline, corn oil, and lupeol; pesticide groups were given malathion, chlorpyrifos, and tebuconazole; in the other three treatments, same doses of pesticides and lupeol were given to the rats for ten days. Histopathological examination showed severe degenerative changes in the pesticide groups. Serum AChE activities, liver GSH, total antioxidant capacity levels, AChE, CAT, SOD, GPx, GR, Na+/K+-ATPase, ARE, and PON were decreased, while serum TNF-α, liver LPO, HP, NO, AOPP, total oxidant status, ROS, and oxidative stress index levels as well as AST, ALT, ALP, GST, arginase and xanthine oxidase activities were increased in the pesticides administered groups. It was observed that the PCNA levels determined by the immunohistochemical method increased in the pesticide groups. Also, the results Raman spectroscopy suggest that the technique may be used to understand/have an insight into pesticide toxicity mechanisms. The administration of lupeol demonstrated a hepatoprotective effect against pesticide-induced toxicity.
Collapse
Affiliation(s)
- Melis Coremen
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey.
| | - Ismet Burcu Turkyilmaz
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcılar, Istanbul, Turkey
| | - Huseyin Us
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey
| | - Ayca Sezen Us
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey
| | - Sefa Celik
- Istanbul University, Faculty of Science, Department of Physics Vezneciler, Istanbul, Turkey
| | - Ayşen Ozel
- Istanbul University, Faculty of Science, Department of Physics Vezneciler, Istanbul, Turkey
| | - Omur Karabulut Bulan
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey
| | - Refiye Yanardag
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcılar, Istanbul, Turkey
| |
Collapse
|
11
|
Thymus fontanesii attenuates CCl4-induced oxidative stress and inflammation in mild liver fibrosis. Biomed Pharmacother 2022; 148:112738. [DOI: 10.1016/j.biopha.2022.112738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
|
12
|
Ameliorative Impact of Aloe vera on Cartap Mediated Toxicity in the Brain of Wistar Rats. Indian J Clin Biochem 2022; 37:51-59. [PMID: 35125693 PMCID: PMC8799820 DOI: 10.1007/s12291-020-00934-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/31/2020] [Indexed: 01/03/2023]
Abstract
Exposure to pesticides can pose a greater threat to multiple organs of nontarget animals. Cartap is a thiocarbamate pesticide, broadly used in agricultural fields. The assessment of neurotoxicity of cartap has not been properly studied in the mammalian systems. The present investigation unveils the toxic effects of cartap in the brain of Wistar rats its amelioration by using aqueous extract of Aloe vera leaves. We have used 4 groups of animals comprising six in each: Group 1- control, Group 2- control with Aloe vera, Group 3- cartap, Group 4- cartap with Aloe vera treated. After 15 days of treatment, biochemical investigations were conducted. Wistar rats orally exposed to sublethal doses of cartap, showed significant variations in the levels of prooxidants i.e. MDA and GSH (an oxidative stress marker) and enzymatic antioxidants i.e. SOD, CAT, GST, GPx. The decreased levels of CAT, SOD, GST and increased levels of GPx were detected in the experimental rats treated with cartap. The significant alterations were recorded with the declined activities of LDH and AChE, considered as the biomarker of energy metabolism and altered cholinergic function, respectively. However, the pre-administration of aqueous extract of Aloe vera leaves was found to markedly ameliorate the toxic effects of cartap by shielding the levels of aforesaid oxidative markers near to the control. The ameliorative impact of Aloe vera, might be due to the presence of several antioxidant molecules in it which were able to counter the oxidative stress generated by cartap stress. These results suggested that Aloe vera could be utilized as a possible supplement with the relevant therapeutics in the suitable management of cartap toxicity in association.
Collapse
|
13
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Evidence for tissue specific toxicity of malathion by biochemical biomarkers and histopathological index in two weeks-treated wistar rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
15
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
16
|
Chowdhury MAH, Sultana T, Rahman MA, Chowdhury T, Enyoh CE, Saha BK, Qingyue W. Nitrogen use efficiency and critical leaf N concentration of Aloe vera in urea and diammonium phosphate amended soil. Heliyon 2020; 6:e05718. [PMID: 33367129 PMCID: PMC7749385 DOI: 10.1016/j.heliyon.2020.e05718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022] Open
Abstract
Aloe vera L. is widely cultivated in many countries due to its importance as an all-purpose herbal or medicinal plant. The growth and yield of this plant can be enhanced by application of fertilizer. It is expected that a higher and balanced nutrient supply will result in higher crop production maintaining soil health, which is possible when the applied fertilizers are done in way that is efficient. So, there is a need to understand the amount of applied and type of fertilizer that will give the best output for farmers and to formulate economical market products. This study was conducted to investigate the effect of N fertilizer on leaf yield, its uptake and requirement, critical concentration, use efficiency and economics of Aloe vera L. Plants were grown at six levels of N: 0, 40, 80, 100, 150 and 200 kg ha−1 from urea and diammonium phosphate (DAP) following completely randomized design with three replicates under field condition. The highest values of yield and yield attributes and profit based on benefit cost ratio (3.81 for urea and 2.91 for DAP) were obtained with 150 kg N ha−1 (urea) and 100 kg N ha−1 (DAP). Leaf biomass yield increased by 18–128 % in urea-N and 30–139 % in DAP-N fertilized plant over control while DAP > urea by 7.59 %. Sucker production (mean number) was urea-N (4.95 Plant−1) > DAP-N (2.28 Plant−1). Both gel and leaf N concentration and uptake was highest at 200 kg ha−1 for both sources. For 80 % leaf biomass yield, minimum requirement of N was ca 74.90 (urea) and 89.60 kg ha−1 (DAP). Growth and yield parameters to N application exhibited significant and positive correlations. Critical leaf N concentration was ca 0.88% (DAP) and 0.90% (urea) while mean and maximum NUE was 34% and 64 % (urea) and 43% and 69% (DAP), respectively. Farmers can be advised to apply N at the rate of 150 kg ha−1 from urea for producing economically higher yield and better-quality A. vera leaves.
Collapse
Affiliation(s)
| | - Taslima Sultana
- Dept. of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Arifur Rahman
- Dept. of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tanzin Chowdhury
- Dept. of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Christian Ebere Enyoh
- Group Research in Analytical Chemistry, Environment and Climate Change (GRACE&CC), Department of Chemistry, Imo State University (IMSU), PMB 2000 Owerri, Imo State, Nigeria
| | - Biplob Kumar Saha
- Dept. of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Wang Qingyue
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
17
|
Chowdhury MAH, Sultana T, Rahman MA, Saha BK, Chowdhury T, Tarafder S. Sulphur fertilization enhanced yield, its uptake, use efficiency and economic returns of Aloe vera L. Heliyon 2020; 6:e05726. [PMID: 33364495 PMCID: PMC7753130 DOI: 10.1016/j.heliyon.2020.e05726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sulphur plays a vital role in the formation and biosynthesis of protein, chlorophyll, and few amino acids. To investigate the effect of sulphur fertilizer on leaf biomass yield, critical sulphur concentration, sulphur requirement and uptake by Aloe vera L., a pot experiment was carried out following completely randomized design with six levels of sulphur viz., 0, 15, 30, 45, 60 and 80 kg ha-1 with three replications. The results of the study revealed that the growth attributes, leaf and gel yield, and sulphur uptake significantly improved with sulphur application and the best results were obtained from the application of 45 kg sulphur ha-1. On average, addition of sulphur enhanced the leaf biomass yield by 47.5% and sulphur use efficiency by 38% compared to control. The effect of sulphur on the growth parameters and their significant and positive correlations with yield signifies the importance of sulphur on the yield and quality of A. vera. The calculated minimum amount of sulphur for 80% leaf biomass production was 21.1 kg sulphur ha-1 with a critical leaf sulphur concentration of 0.23% in A. vera. Moreover, sulphur addition to soil substantially enhanced the economic returns of A. vera. Therefore, addition of 45 kg sulphur ha-1 could be a better option for obtaining higher yield and economic return of A. vera.
Collapse
Affiliation(s)
| | - Taslima Sultana
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Arifur Rahman
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Biplob Kumar Saha
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tanzin Chowdhury
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Subrata Tarafder
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
18
|
Hussien YA, Abdalkadim H, Mahbuba W, Hadi NR, Jamil DA, Al-Aubaidy HA. The Nephroprotective Effect of Lycopene on Renal Ischemic Reperfusion Injury: A Mouse Model. Indian J Clin Biochem 2020; 35:474-481. [PMID: 33013018 DOI: 10.1007/s12291-019-00848-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/07/2019] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is characterized by fast decline in renal function within a short period of time. Renal ischemic-reperfusion (I-R) injury is the main cause of AKI. This study aims to investigate the possible nephroprotective effect of lycopene on renal ischemic-reperfusion injury in mice model. Forty Swiss Albino adult male mice were randomly allocated onto one of the four study groups: sham group: mice had median laparotomy under anesthesia with no procedures performed, renal tissues and blood samples were collected. ischemic-reperfusion group (I-R-control): mice underwent median laparotomy under anesthesia, followed by 30 min bilateral renal ischemia. Renal tissues and blood samples were collected after 2 h from reperfusion. Vehicle-treated group: mice were pretreated with intra 1% dimethyl sulfoxide 30 min before inducing ischemia. Lycopene-treated group: mice were pretreated with 10 mg/kg intraperitoneal injection of lycopene 30 min before inducing renal ischemia. Renal tissues, and blood samples were collected after 2 h from reperfusion. Blood and tissue samples were collected to look for evidence of inflammation and necrosis. Blood urea nitrogen, serum creatinine as well as plasma NGAL levels were significantly increased in the active control group (P ≤ 0.05), when compared to the sham group. Similarly, renal levels of Notch2/Hes 1, TLR 2, IL-6, Bax, and F2-isoprostane were significantly increased in the active control group as compared to the sham group (P ≤ 0.05). Moreover, lycopene treatment was found to be significantly effective in reducing the increased levels of these markers after I-R injury (P ≤ 0.05).
Collapse
Affiliation(s)
| | | | | | - Najah R Hadi
- Faculty of Medicine, University of Kufa, Al-Najaf, Iraq
| | - Dina A Jamil
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086 Australia
| | - Hayder A Al-Aubaidy
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086 Australia
| |
Collapse
|
19
|
Arowoogun J, Akanni OO, Adefisan AO, Owumi SE, Tijani AS, Adaramoye OA. Rutin ameliorates copper sulfate-induced brain damage via antioxidative and anti-inflammatory activities in rats. J Biochem Mol Toxicol 2020; 35:e22623. [PMID: 32881150 DOI: 10.1002/jbt.22623] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Excessive exposure to Copper (Cu) may result in Cu toxicity and adversely affect health outcomes. We investigated the protective role of rutin on Cu-induced brain damage. Experimental rats were treated as follows: group I: control; group II: Cu-sulfate: 200 mg/kg; group III: Cu-sulfate, and rutin 100 mg/kg; and group IV: rutin 100 mg/kg, for 7 weeks. Cu only treatment significantly decreased body weight gain, while rutin cotreatment reversed this decrease. Cu treatment increased malondialdehyde, nitric oxide level, and myeloperoxidase activity and decreased superoxide dismutase and catalase activities in rat brain. Immunohistochemistry showed that COX-2, iNOS, and Bcl-2 proteins were strongly expressed, while Bax was mildly expressed in the brain of Cu-treated rats. Furthermore, brain histology revealed degenerated neurons, and perforated laminae of cerebral cortex in the Cu-only treated rats. Interestingly, coadministration of Cu and rutin reduced the observed histological alteration, improved inflammatory and antioxidant biomarkers, thereby protecting against Cu-induced brain damage via antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Jeremiah Arowoogun
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Olubukola O Akanni
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin O Adefisan
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria
| | | | - Oluwatosin A Adaramoye
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Gupta VK, Kumar A, Pereira MDL, Siddiqi NJ, Sharma B. Anti-Inflammatory and Antioxidative Potential of Aloe vera on the Cartap and Malathion Mediated Toxicity in Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145177. [PMID: 32709052 PMCID: PMC7400062 DOI: 10.3390/ijerph17145177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Aloe vera has been the most useful medicinal herb in the world since ancient times due to its vast biological effects. The presence of high content of bioactive compounds make Aloe vera a promising complementary and alternative agent in disease prevention. The effectiveness of A. vera-based medicines against pesticide toxicity has never been evaluated. It was therefore envisaged to develop an A. vera-based strategy to protect the non-target animals from adverse effects of the pesticides. This article illustrates the ameliorating effect of aqueous extract (AE) of A. vera leaves against the cartap and malathion toxicity. To evaluate the protective impact of A. vera against cartap (Ctp), malathion (Mtn) and a mixture of both pesticides, the animals were divided in eight groups, each containing six rats: Group 1- C (control), Group 2- AE + C, Group 3- Ctp, Group 4- Mtn, Group 5- Ctp + Mtn, Group 6- AE + Ctp, Group 7- AE + Mtn, Group 8- AE + Ctp + Mtn. Wistar rats exposed to Ctp, Mtn and Ctp + Mtn, displayed significant change in body weight. It was observed that the WBC level increased significantly in Mtn and Ctp + Mtn challenged groups. The contents of TNF-α and IL-6 in serum increased expressively in the Ctp, Mtn and Ctp + Mtn challenged groups. Rats treated with Ctp, Mtn and Ctp + Mtn displayed significant alterations in the levels of antioxidative indices (MDA, GSH, GST, GPx, SOD and CAT). Significant alterations were recorded in the activities of AST, ALT, ACP and ALP in Ctp, Mtn and Ctp + Mtn challenged groups. The histopathological results of liver supported the biochemical data. The pre-treatment of rats with the aqueous extract of A. vera leaves significantly protected them from the toxicity of pesticides. These results suggested that A. vera extract may be used as a promising natural agent for the management of pesticide induced toxicity.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, U.P. 211002, India; (V.K.G.); (A.K.)
| | - Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, U.P. 211002, India; (V.K.G.); (A.K.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nikhat Jamal Siddiqi
- FCSM-Department of Biochemistry, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj, U.P. 211002, India; (V.K.G.); (A.K.)
- Correspondence: ; Tel.: +91-94-1571-5639
| |
Collapse
|
21
|
Khodaei F, Khoshnoud MJ, Heidaryfar S, Heidari R, Karimpour Baseri MH, Azarpira N, Rashedinia M. The effect of ellagic acid on spinal cord and sciatica function in a mice model of multiple sclerosis. J Biochem Mol Toxicol 2020; 34:e22564. [PMID: 32640490 DOI: 10.1002/jbt.22564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a well-known neurodegenerative disorder, causing toxicity in different organs, such as spinal cord tissue. The goal of this study was to investigate the protective effect of ellagic acid (EA) against spinal cord and sciatica function in cuprizone (Cup)-induced demyelination model. Animals were divided into six equal groups. The first group received tap water as the control. Cup group was treated with Cup (0.2% w/w in fed). EA 100 group was orally treated with EA (100 mg/kg). EA + Cup groups were orally treated with three doses of 5, 50, and 100 mg/kg of EA plus Cup (0.2% w/w). All groups received treatment for 42 days. Open field, rotarod, and gait tests were done to evaluate the behavioral changes following Cup and/or EA treatment. Also, lipid peroxidation, reactive oxygen species (ROS) content, antioxidant capacity, superoxide dismutase (SOD), and catalase enzymes activity in spinal cord was evaluated. Luxol fast blue (LFB) staining also the behavioral tests were performed to evaluate the model. Cup increased ROS levels and oxidative stress in their spinal cord tissues. Also, Cup reduced antioxidant capacity, SOD, and catalase activity. EA (especially at 100 mg/kg) prevented these abnormal changes. EA co-treatment dose-dependently was able to ameliorate behavioral impairments in mice that received Cup. EA might act as a protective agent in MS by modulating spinal cord function.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Heidaryfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad H Karimpour Baseri
- Department of Neuroscience and Addiction, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
23
|
Alghamdi SA. Effect of Nigella sativa and Foeniculum vulgare seeds extracts on male mice exposed to carbendazim. Saudi J Biol Sci 2020; 27:2521-2530. [PMID: 32994708 PMCID: PMC7499112 DOI: 10.1016/j.sjbs.2020.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023] Open
Abstract
The increasing prevalence of environmental pollutants such as pesticides is a major global problem that affects living organisms. Exposure to environmental pollutants remains a major source of health risk throughout the world. The potential health benefits of various medicinal plants and natural products in relation to protect various diseases are currently receiving considerable attention. A current approach is to develop a new biological compound from natural products that inhibits pain. Ethnopharmacological surveys have been found to be one of the most reliable tools for the discovery of the natural and semi-synthetic drug. The present study was performed to investigate the hematological and biochemical changes induced by carbendazim (CBZ) and the potential protective effect of seeds extracts of Nigella sativa (NSSE) and Foeniculum vulgare (FVSE) against CBZ toxicity in male mice. Mice were distributed into 6 groups. Mice of group 1 were served as control. Group 2 was exposed to CBZ. Group 3 was supplemented with NSSE and exposed to CBZ. Group 4 was treated with FVSE and CBZ. Normal mice of group 5 and 6 were subjected to NSSE and FVSE respectively. Body weight gain was significantly decreased in mice of group 2. In mice of group 2, significant declines of RBC, HB, Hct, WBC, total protein, FSH, LH, testosterone, T4, T3, CAT and SOD were observed. Moreover, the levels of ALT, AST, ALP, total bilirubin, creatinine, BUN, uric acid, glucose, cholesterol, CK, LDH, MDA and GSH were significantly enhanced. Treatment with NSSE and FVSE showed attenuation effects against CBZ induced hematological and biochemical changes. The results suggest that the attenuation effects of NSSE and FVSE attributed to their antioxidant properties.
Collapse
Affiliation(s)
- Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Chale-Dzul J, Pérez-Cabeza de Vaca R, Quintal-Novelo C, Olivera-Castillo L, Moo-Puc R. Hepatoprotective effect of a fucoidan extract from Sargassum fluitans Borgesen against CCl 4-induced toxicity in rats. Int J Biol Macromol 2020; 145:500-509. [PMID: 31874267 DOI: 10.1016/j.ijbiomac.2019.12.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
The in vivo antifibrotic effect of a fucoidan extract (FE) from Sargassum fluitans Borgesen was evaluated in a carbon tetrachloride-induced liver damage model in rats over twelve weeks. Chemical analysis showed the FE to contain carbohydrates, sulfates, uronic acids, protein, phenols, and to have a molecular weight of ~60 kDa. Physiological, biochemical, histological and genetic assays were done. Daily oral administration of FE (50 mg/kg) reduced liver enzymatic activity, liver infiltration of inflammatory cells, collagen fiber deposition and gene expression cytokines such as interleukin beta 1 (IL-β1), tumor necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), Smad-3, Smad-2, collagen 1 alpha 1 (col1α1) and tissue inhibitor of metalloproteinase 1 (TIMP-1). It also increased RNA expression of Smad-7 and metalloproteinase 2 and 9 (MMP2 and MMP9). The fucoidan extract exhibited an antifibrotic effect mediated by the inhibiting TGF-β1/Smad pathway, as well as anti-inflammatory effects.
Collapse
Affiliation(s)
- Juan Chale-Dzul
- Laboratorio de Apoyo a la Vigilancia Epidemiológica, Hospital de Especialidades 1, Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano del Seguro Social, C 41 No. 439 x 32 y 34, Col. Industrial, 97150 Merida, Yucatan, Mexico
| | | | - Carlos Quintal-Novelo
- Unidad Médica de Alta Especialidad, Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro Social, C. 41, No. 439, Col. Industrial, 97150 Mérida, Yucatan, Mexico
| | - Leticia Olivera-Castillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Carretera Antigua Progreso Km. 6, 97310 Mérida, Yucatán, Mexico
| | - Rosa Moo-Puc
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano del Seguro Social, C 41 No. 439 x 32 y 34, Col. Industrial, 97150 Mérida, Yucatan, Mexico.
| |
Collapse
|