1
|
Yang Y, Chen Y, Tang JY, Chen J, Li GQ, Feng B, Mu J. MiR-29a-3p inhibits fibrosis of diabetic kidney disease in diabetic mice via downregulation of DNA methyl transferase 3A and 3B. World J Diabetes 2025; 16:93630. [PMID: 40236856 PMCID: PMC11947916 DOI: 10.4239/wjd.v16.i4.93630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/16/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND At present, the incidence of diabetic nephropathy is increasing year by year, and there are many studies on the pathogenesis of diabetic nephropathy, but it is still not completely clear. The final pathological result of diabetic nephropathy is mainly glomerular cell fibrosis, and the roles of micro-RNA (miRNA)-29 and DNA methyl transferase (DNMTs) in cell fibrosis have been confirmed in other studies, but there is a lack of relevant research in the kidney at present. AIM To study the potential involvement of miRNA-29a-3p in fibrosis related to diabetic kidney disease (DKD). METHODS The expression of miR-29a-3p, DNMT3A/3B, fibrosis-related molecules, Wnt3a, β-catenin, Janus kinase 2, and signal transducer and activator of transcription 3 was assessed in SV40MES13 cells and diabetic mice using quantitative real-time PCR and western blotting. Furthermore, the expression changes of fibrosis-related molecules were further analyzed using immunofluorescence and immunohistochemical blotting. The renal pathological changes of DKD in each group were also studied using hematoxylin-eosin and periodate-Schiff reaction staining. RESULTS In both the in vivo and in vitro experiments, it was observed that high glucose induction significantly decreased miR-29a-3p expression. As a result of this downregulation, DKD-related fibrosis was found to be promoted, as confirmed by elevated expression levels of α-smooth muscle actin, collagen type I, and fibronectin. MiR-29a-3p targets the 3' non-coding regions of DNMT3A and DNMT3B and inhibits their expression. Inhibition of DNMT3A and DNMT3B can reverse the effect of miR-29a-3p downregulation on DKD-related fibrosis. CONCLUSION MiR-29a-3p can regulate Wnt/β-catenin and Janus kinase/signal transducer and activator of transcription signal pathways by regulating and inhibiting the expression of DNMT3A/3B and thus participate in the inhibition of DKD-related fibrosis.
Collapse
Affiliation(s)
- Ying Yang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yi Chen
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jian-Ying Tang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jian Chen
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Gui-Qing Li
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Bing Feng
- Department of Nephrology, Third Military Medical University, Chongqing 400038, China
| | - Jiao Mu
- Department of Nephrology, Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
2
|
Kaneko Y, Ohzawa H, Kimura Y, Takahashi R, Matsumiya M, Tamura K, Futoh Y, Miyato H, Saito S, Yamaguchi H, Hosoya Y, Watano R, Mizukami H, Sata N, Kitayama J. Intraperitoneal administration of adeno-associated virus encoding microRNA-29b for the treatment of peritoneal metastasis. Cancer Gene Ther 2024; 31:1818-1830. [PMID: 39390194 DOI: 10.1038/s41417-024-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
This study explores a novel therapeutic approach for peritoneal metastasis (PM) using AAV-mediated delivery of tumor suppressor microRNA-29b (miR-29b) to peritoneal mesothelial cells (PMC). AAV serotypes 2 and DJ demonstrate high transduction efficiency for human and murine PMC, respectively. In vitro analysis indicates that AAV vectors encoding miR-29b precursor successfully elevate miR-29b expression in PMC and their secreted small extracellular vesicle (sEV), thereby inhibiting mesothelial mesenchymal transition and reducing subsequent attachment of tumor cells. A single intraperitoneal (IP) administration of AAV-DJ-miR-29b demonstrates robust and sustained transgene expression, suppressing peritoneal fibrosis and inhibiting the development of PM from gastric and pancreatic cancers. Additionally, AAV-DJ-miR-29b enhances the efficacy of IP chemotherapy using paclitaxel, restraining the growth of established PM. While conventional gene therapy for cancer encounters challenges targeting tumor cells directly but delivering miRNA to the tumor stroma offers a straightforward and efficient means of altering the microenvironment, leading to substantial inhibition of tumor growth. AAV-mediated miR-29b delivery to peritoneum via IP route presents a simple, minimally invasive, and promising therapeutic strategy for refractory PM.
Collapse
Affiliation(s)
- Yuki Kaneko
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Kimura
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Rei Takahashi
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Misaki Matsumiya
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Kohei Tamura
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Yurie Futoh
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shin Saito
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Ryota Watano
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan.
- Center for Clinical Research, Jichi Medical University Hospital, Shimotsuke, Japan.
| |
Collapse
|
3
|
Wu Y, Li B, Deng D, Zhou H, Liu M, Ai H, Xin Y, Hua W, Zhao L, Li L. Circ_0036490 and DKK1 competitively bind miR-29a to promote lipopolysaccharides-induced human gingival fibroblasts injury. Autoimmunity 2024; 57:2312927. [PMID: 38321980 DOI: 10.1080/08916934.2024.2312927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
MicroRNA (miRNA) plays a regulatory role in periodontitis. This study aimed to explore whether miR-29a could affect lipopolysaccharides (LPSs)-induced injury in human gingival fibroblasts (HGFs) through the competitive endogenous RNAs (ceRNA) mechanism. Periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. Periodontitis cell model was established by treating HGFs with LPS. Expression levels of circ_0036490, miR-29a, and DKK1 were evaluated by the reverse transcription quantitative real-time PCR (RT-qPCR) method. Western blotting assay was performed to assess protein expression levels of pyroptosis-related proteins and Wnt signalling related proteins. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 were determined by Enzyme-linked immunosorbent assay (ELISA). Pyroptosis rate were determined by flow cytometry assay to evaluate pyroptosis. The interaction between miR-29a and circ_0036490 or DKK1 was verified by dual-luciferase reporter and RNA pull-down assays. MiR-29a expression was lower in PDL tissues of patients with periodontitis than that in healthy group; likewise, miR-29a was also downregulated in LPS-treated HGFs. Overexpression of miR-29a increased cell viability and decreased pyroptosis of HGFs induced by LPS while inhibition of miR-29a exerted the opposite role. MiR-29a binds to circ_0036490 and elevation of circ_0036490 contributed to dysfuntion of LPS-treated HGFs and reversed the protection function of elevated miR-29a. In addition, miR-29a targets DKK1. Overexpression of DKK1 abrogated the effects of overexpressed miR-29a on cell vaibility, pyroptosis, and protein levels of Wnt signalling pathway of LPS-treated HGFs. Circ_0036490 and DKK1 competitively bind miR-29a to promote LPS-induced HGF injury in vitro. Wnt pathway inactivated by LPS was activated by miR-29a. Thence, miR-29a may be a promising target for periodontitis.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Disi Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilin Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Weihan Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
5
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
6
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Singh S, Saxena S, Sharma H, Paudel KR, Chakraborty A, MacLoughlin R, Oliver BG, Gupta G, Negi P, Singh SK, Dua K. Emerging role of tumor suppressing microRNAs as therapeutics in managing non-small cell lung cancer. Pathol Res Pract 2024; 256:155222. [PMID: 38452582 DOI: 10.1016/j.prp.2024.155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Lung cancer (LC) is the second leading cause of death across the globe after breast cancer. There are two types of LC viz. small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all LC cases. NSCLC affects smokers and people who do not smoke and mainly arises in bronchi and peripheral lungs tissue. LC is often characterized by the alterations of key genes such as EGFR, Wnt/β-catenin signaling, ALK, MET, K-Ras and p53 and downstream signaling pathways associated with tumor growth, differentiation, and survival. Numerous miRNAs have been discovered as a result of advances in biotechnology to treat LC. Various miRNAs those have been identified to treat LC include mir-Let7, mir-34a, mir-134, mir-16-1, mir-320a, mir-148a, mir-125a-5p, mir-497, mir-29, mir-133a, and mir-29a-3p. These miRNAs target various signaling pathways that are involved in pathogenesis of LC. However, due to rapid RNAse degradation, quick clearance, and heat instability, associated with necked miRNA leads to less effective therapeutic effect against LC. Therefore, to overcome these challenges nanocarrier loaded with miRNAs have been reported. They have been found promising because they have the capacity to target the tumor as well as they can penetrate the tumors deep due to nanometer size. Some of the clinical trials have been performed using miR-34a and let-7 for the treatment of LC. In the present manuscript we highlight the role miRNAs as well as their nanoparticle in tumor suppression.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Himani Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173212, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
8
|
Zhang Y, Chen L, Fei Y, Chen P, Pan L. Qingrexiaoji Recipe Regulates the Differentiation of M2 TAM via miR-29 in GC. Comb Chem High Throughput Screen 2024; 27:2764-2775. [PMID: 39428821 DOI: 10.2174/0113862073263776231009115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2024]
Abstract
BACKGROUND Gastric cancer, one of the most familiar adenocarcinomas of the gastrointestinal tract, ranks third in the world in cancer-related deaths. Traditional Chinese medicine can suppress the growth of tumors, and the underlying mechanism may be associated with the tumor microenvironment. Here, we investigated the anti-cancer effects of the Qingrexiaoji recipe on gastric cancer and the underlying molecular mechanism. METHODS An in vivo nude mouse model was established, and the expression of CD206, CD80, and M2 phenotype-related proteins (Arg-1, Fizz1) was obtained by flow cytometry and western blotting. The expressions of the M2 phenotype-related cytokines were examined by ELISA. RESULTS Qingrexiaoji recipe inhibited gastric tumor growth and downregulated the expression of CD206, IFN-γ, IL-13, IL-4, and TNF-α in vivo. Qingrexiaoji recipe deceased M2 phenotypic polarization by upregulating microRNA (miR)-29a-3p level. Luciferase activity assays showed that HDAC4 is a potential target of miR-29a-3p. In cells co-transfected with HDAC4 siRNA and miR-29a-3p inhibitor and treated with IL-4 and Qingrexiaoji recipe, the miR-29a-3p inhibitorinduced increase of M2 phenotypic polarization was reversed. CONCLUSION In summary, these results suggested that the Qingrexiaoji recipe regulated M2 macrophage polarization by regulating miR-29a-3p/HDAC4, providing a different and innovative treatment for gastric cancer.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Wenling, Taizhou, Zhejiang, China
| | - Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Peifeng Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Li J, Han Y, Zhou M, Liu N, Li H, Huang G, Yu Z, Luo D, Zhang H, Zheng X, Liang F, Chen R. Electroacupuncture ameliorates AOM/DSS-induced mice colorectal cancer by inhibiting inflammation and promoting autophagy via the SIRT1/miR-215/Atg14 axis. Aging (Albany NY) 2023; 15:13194-13212. [PMID: 38006398 DOI: 10.18632/aging.205236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors of the digestive tract, with the third-highest incidence and the second-highest mortality rate among all malignant tumors worldwide. However, treatment options for CRC remain limited. As a complementary therapy, acupuncture or electro-acupuncture (EA) has been widely applied in the treatment of various inflammation-related diseases, such as obesity, ulcerative colitis and tumors. Although numerous pre-clinical and clinical studies have investigated the beneficial effects of acupuncture on CRC, the mechanism underlying the therapeutic action of EA is largely unknown. Evidence from previous studies has revealed that SIRT1 participates in CRC progression by activating autophagy-related miRNAs. Using azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colorectal cancer model in mice, we explored whether EA treatment can inhibit inflammation and promote autophagy via the SIRT1/miR-215/Atg14 axis. Our results showed that EA notably alleviated the CRC in mice, by decreasing the tumor number and DAI scores, inflammation, and increasing body weight of mice. Besides, EA increased the expression of SIRT1 and autophagy. Further experiments showed that SIRT1 overexpression downregulated miR-215, and promoted the expression of Atg14, whereas SIRT1 knockdown induced opposite results. In conclusion, EA can ameliorate AOM/DSS-induced CRC through regulating the SIRT1-mediated miR-215/Atg14 axis by suppressing inflammation and promoting autophagy in mice. These findings reveal a potential molecular mechanism underlying the anti-CRC effect of EA indicating that EA is a promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Han
- Hong Kong Baptist University, Hong Kong, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guichen Huang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430071, China
| | - Dan Luo
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Zhang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiangyi Zheng
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Fengxia Liang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
10
|
Yu X, Sun Z, Nie S, Zhang T, Lu H. Effects of Resveratrol on Mouse B16 Melanoma Cell Proliferation through the SHCBP1-ERK1/2 Signaling Pathway. Molecules 2023; 28:7614. [PMID: 38005336 PMCID: PMC10674768 DOI: 10.3390/molecules28227614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Melanoma originates from the malignant mutational transformation of melanocytes in the basal layer of the epidermal layer of the skin. It can easily spread and metastasize in the early stage, resulting in a poor prognosis. Therefore, it is particularly important to find effective antitumor adjuvant drugs to inhibit the occurrence and development of melanoma. In this study, we found that resveratrol, a polyphenolic compound from grape plants, can significantly inhibit the proliferation, colony formation and migration of mouse melanoma B16 cells. Notably, resveratrol was also found to inhibit the expression of SHCBP1 in B16 cells. Transcriptional analysis and cellular studies showed that SHCBP1 can activate the MAPK/ERK signaling pathway to regulate cyclin expression and promote the G1/S phase transition of the cell cycle by upregulating ERK1/2 phosphorylation levels. Resveratrol further downregulates the phosphorylation level of ERK1/2 by inhibiting SHCBP1 expression, thus inhibiting tumor cell proliferation. In conclusion, resveratrol inhibits the proliferation of B16 cells by regulating the ERK1/2 signaling pathway through SHCBP1. As an upstream protein of the ERK1/2 signaling pathway, SHCBP1 may be involved in the process of resveratrol-mediated inhibition of tumor cell proliferation.
Collapse
Affiliation(s)
- Xiaoke Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Zhiyang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Saiya Nie
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
11
|
Huang C, Azizi P, Vazirzadeh M, Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J, Farnia P. Non-coding RNAs/DNMT3B axis in human cancers: from pathogenesis to clinical significance. J Transl Med 2023; 21:621. [PMID: 37705098 PMCID: PMC10500757 DOI: 10.1186/s12967-023-04510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer is a complex disease with many contributing factors, and researchers have gained extensive knowledge that has helped them understand the diverse and varied nature of cancer. The altered patterns of DNA methylation found in numerous types of cancer imply that they may play a part in the disease's progression. The human cancer condition involves dysregulation of the DNA methyltransferase 3 beta (DNMT3B) gene, a prominent de novo DNA methyltransferase, and its abnormal behavior serves as an indicator for tumor prognosis and staging. The expression of non-coding RNAs (ncRNAs), which include microRNAs (miRNA), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), is critical in controlling targeted gene expression and protein translation and their dysregulation correlates with the onset of tumors. NcRNAs dysregulation of is a critical factor that influences the modulation of several cellular characteristics in cancerous cells. These characteristics include but are not limited to, drug responsiveness, angiogenesis, metastasis, apoptosis, proliferation, and properties of tumor stem cell. The reciprocal regulation of ncRNAs and DNMT3B can act in synergy to influence the destiny of tumor cells. Thus, a critical avenue for advancing cancer prevention and treatment is an inquiry into the interplay between DNMT3B and ncRNAs. In this review, we present a comprehensive overview of the ncRNAs/DNMT3B axis in cancer pathogenesis. This brings about valuable insights into the intricate mechanisms of tumorigenesis and provides a foundation for developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Paniz Azizi
- Department of Psychological and Brain Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Kimura Y, Ohzawa H, Miyato H, Kaneko Y, Kuchimaru T, Takahashi R, Yamaguchi H, Kurashina K, Saito S, Hosoya Y, Lefor AK, Sata N, Kitayama J. Intraperitoneal transfer of microRNA-29b-containing small extracellular vesicles can suppress peritoneal metastases of gastric cancer. Cancer Sci 2023; 114:2939-2950. [PMID: 36939028 PMCID: PMC10323101 DOI: 10.1111/cas.15793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023] Open
Abstract
Small extracellular vesicles (sEV) contain various microRNAs (miRNAs) and play crucial roles in the tumor metastatic process. Although miR-29b levels in peritoneal exosomes were markedly reduced in patients with peritoneal metastases (PM), their role has not been fully clarified. In this study, we asked whether the replacement of miR-29b can affect the development of PM in a murine model. UE6E7T-12, human bone marrow-derived mesenchymal stem cells (BMSCs), were transfected with miR-29b-integrating recombinant lentiviral vector and sEV were isolated from culture supernatants using ultracentrifugation. The sEV contained markedly increased amounts of miR-29b compared with negative controls. Treatment with transforming growth factor-β1 decreased the expression of E-cadherin and calretinin with increased expression of vimentin and fibronectin on human omental tissue-derived mesothelial cells (HPMCs). However, the effects were totally abrogated by adding miR-29b-rich sEV. The sEV inhibited proliferation and migration of HPMCs by 15% (p < 0.005, n = 6) and 70% (p < 0.005, n = 6), respectively, and inhibited adhesion of NUGC-4 and MKN45 to HPMCs by 90% (p < 0.0001, n = 5) and 77% (p < 0.0001, n = 5), respectively. MicroRNA-29b-rich murine sEV were similarly obtained using mouse BMSCs and examined for in vivo effects with a syngeneic murine model using YTN16P, a highly metastatic clone of gastric cancer cell. Intraperitoneal (IP) transfer of the sEV every 3 days markedly reduced the number of PM from YTN16P in the mesentery (p < 0.05, n = 6) and the omentum (p < 0.05, n = 6). Bone marrow mesenchymal stem cell-derived sEV are a useful carrier for IP administration of miR-29b, which can suppress the development of PM of gastric cancer.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Hideyuki Ohzawa
- Department of Clinical OncologyJichi Medical University HospitalShimotsukeJapan
| | - Hideyo Miyato
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Yuki Kaneko
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | | | - Rei Takahashi
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Hironori Yamaguchi
- Department of Clinical OncologyJichi Medical University HospitalShimotsukeJapan
| | - Kentaro Kurashina
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Shin Saito
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Yoshinori Hosoya
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | | | - Naohiro Sata
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Joji Kitayama
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
- Center for Clinical ResearchJichi Medical University HospitalShimotsukeJapan
| |
Collapse
|
13
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
14
|
Li X, Kong Y, Li H, Xu M, Jiang M, Sun W, Xu S. Circ_0081054 facilitates melanoma development via sponging miR-637 and regulating RAB9A. Skin Res Technol 2023; 29:e13313. [PMID: 37231931 PMCID: PMC10157265 DOI: 10.1111/srt.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Accumulating evidence announces that aberrantly expressed circRNAs were closely related to the development of human cancers. However, the role and mechanism of multiple circRNAs remain unclear. Our work aimed to disclose the functional role and mechanism of circ_0081054 in melanoma. METHODS Quantitative real-time polymerase chain reaction assay was utilized to detect circ_0081054, microRNA-637 (miR-637) and RAB9A (member RAS oncogene family) mRNA expression. Cell proliferative ability was evaluated via Cell Counting Kit-8 and colony formation assay. Cell invasion was assessed by using wound healing assay. RESULTS The significant upregulation of circ_0081054 was detected in melanoma tissues and cells. The proliferation, migration, glycolytic metabolism, and angiogenesis in melanoma cells were suppressed, while apoptosis was promoted following the silence of circ_0081054. In addition, circ_0081054 could target miR-637, and miR-637 inhibitor could reverse the effects of circ_0081054 deficiency. Furthermore, RAB9A was a target gene for miR-637 and RAB9A overexpression could reverse the effects of miR-637 overexpression. In addition, the deficiency of circ_0081054 hampered tumor growth in vivo. Moreover, circ_0081054 could regulate RAB9A expression by sponging miR-637. CONCLUSION All results indicated that circ_0081054 promoted the malignant behaviors of melanoma cells partly by regulating the miR-637/RAB9A molecular axis.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Yinghui Kong
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - He Li
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Manyuan Xu
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Ming Jiang
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Weiguo Sun
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Suping Xu
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| |
Collapse
|
15
|
Mo WY, Cao SQ. MiR-29a-3p: a potential biomarker and therapeutic target in colorectal cancer. Clin Transl Oncol 2023; 25:563-577. [PMID: 36355327 PMCID: PMC9941256 DOI: 10.1007/s12094-022-02978-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Cancer is frequently caused by microRNAs, which control post-transcriptional levels of gene expression by binding to target mRNAs. MiR-29a-3p has recently been shown to play a twofold function in the majority of malignancies, including colorectal cancer (CRC), according to mounting evidence. Here, we not only briefly summarize such connection between miR-29a-3p and cancers, but aslo primarily evaluate the miR-29a-3p expression pattern, clinical applicability, and molecular mechanisms in CRC to provide a guide for future studies. This review established the diagnostic and prognostic value of miR-29a-3p abnormalty in a variety of clinical samples for CRC. Furthermore, current molecular mechanisms of miR-29a-3p for regulating cancerous biological processes such growth, invasion, metastasis, the epithelial-mesenchymal transformation process, and immunomodulation through its upstream regulatory factors and downstream targeted genes were briefly explored. More specifically, miR-29a-3p has been linked to a few medications that have been shown to have anticancer benefits. To sum up, miR-29a-3p is a promising biomarker and prospective therapeutic target for the diagnosis and prognosis of CRC, but further research is still needed to establish a theoretical basis for more practical applications.
Collapse
Affiliation(s)
- Wen-Yan Mo
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China
| | - Shi-Qiong Cao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
16
|
Wang C, He Y, Zheng J, Wang X, Chen S. Dissecting order amidst chaos of programmed cell deaths: construction of a diagnostic model for KIRC using transcriptomic information in blood-derived exosomes and single-cell multi-omics data in tumor microenvironment. Front Immunol 2023; 14:1130513. [PMID: 37153569 PMCID: PMC10154557 DOI: 10.3389/fimmu.2023.1130513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most frequently diagnosed subtype of renal cell carcinoma (RCC); however, the pathogenesis and diagnostic approaches for KIRC remain elusive. Using single-cell transcriptomic information of KIRC, we constructed a diagnostic model depicting the landscape of programmed cell death (PCD)-associated genes, namely cell death-related genes (CDRGs). Methods In this study, six CDRG categories, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA sequencing (RNA-seq) data of blood-derived exosomes from the exoRBase database, RNA-seq data of tissues from The Cancer Genome Atlas (TCGA) combined with control samples from the GTEx databases, and single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database were downloaded. Next, we intersected the differentially expressed genes (DEGs) of the KIRC cohort from exoRBase and the TCGA databases with CDRGs and DEGs obtained from single-cell datasets, further screening out the candidate biomarker genes using clinical indicators and machine learning methods and thus constructing a diagnostic model for KIRC. Finally, we investigated the underlying mechanisms of key genes and their roles in the tumor microenvironment using scRNA-seq, single-cell assays for transposase-accessible chromatin sequencing (scATAC-seq), and the spatial transcriptomics sequencing (stRNA-seq) data of KIRC provided by the GEO database. Result We obtained 1,428 samples and 216,155 single cells. After the rational screening, we constructed a 13-gene diagnostic model for KIRC, which had high diagnostic efficacy in the exoRBase KIRC cohort (training set: AUC = 1; testing set: AUC = 0.965) and TCGA KIRC cohort (training set: AUC = 1; testing set: AUC = 0.982), with an additional validation cohort from GEO databases presenting an AUC value of 0.914. The results of a subsequent analysis revealed a specific tumor epithelial cell of TRIB3high subset. Moreover, the results of a mechanical analysis showed the relatively elevated chromatin accessibility of TRIB3 in tumor epithelial cells in the scATAC data, while stRNA-seq verified that TRIB3 was predominantly expressed in cancer tissues. Conclusions The 13-gene diagnostic model yielded high accuracy in KIRC screening, and TRIB3high tumor epithelial cells could be a promising therapeutic target for KIRC.
Collapse
Affiliation(s)
- Chengbang Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yuan He
- Department of Urology, The Second Nanning People’s Hospital, Nanning, China
- *Correspondence: Xiang Wang, ; Shaohua Chen, ; Yuan He,
| | - Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiang Wang, ; Shaohua Chen, ; Yuan He,
| | - Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Xiang Wang, ; Shaohua Chen, ; Yuan He,
| |
Collapse
|
17
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
19
|
Xu L, Gao H, Wang W. Joint detection of miR-149-3p and hepcidin predicts the onset of obstructive sleep apnea syndrome in obese patients. Laryngoscope Investig Otolaryngol 2022; 7:1643-1651. [PMID: 36258850 PMCID: PMC9575112 DOI: 10.1002/lio2.813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Background Obstructive sleep apnea syndrome (OSAS) is a potentially fatal sleep respiratory disorder, and hepcidin has been found to be related with OSAS onset and severity. This study aimed to examine the serum expression of microRNA-149-3p (miR-149-3p) and hepcidin in OSAS patients, and evaluate the predictive value of miR-149-3p and hepcidin for OSAS occurrence in obese population. Methods This study analyzed the data from 212 OSAS patients and 120 control individuals. OSAS severity was evaluated by apnea hypopnea index (AHI) from polysomnography. Serum miR-149-3p was examined using reverse transcription quantitative PCR, and hepcidin and inflammatory cytokines were measured using ELISA kits. Logistic regression analysis was used to evaluate the predictive value of miR-142-3p and hepcidin for OSAS in obese population, and ROC curve was plotted to assess the predictive accuracy. Results Serum miR-149-3p and hepcidin were increased in OSAS patients, especially in the severe cases, and had diagnostic potential to distinguish OSAS. High miR-149-3p and hepcidin were positively correlated with OSAS patients' inflammatory cytokines. Obese OSAS patients had the highest miR-149-3p and hepcidin levels, and the two molecules had predictive value of OSAS present in obese population, and the combination of miR-149-3p and hepcidin showed the highest predictive accuracy. Conclusion Serum miR-149-3p and hepcidin levels were elevated in OSAS patients and correlated with disease severity and systemic inflammation. miR-149-3p and hepcidin levels have diagnostic value to distinguish OSAS, exhibited predictive value for OSAS in obese population, and the joint detection of the two molecules showed the highest predictive accuracy.
Collapse
Affiliation(s)
- Lina Xu
- Department of Respiratory MedicineWeifang People's HospitalWeifangShandongChina
| | - Haipeng Gao
- Department of Respiratory MedicineWeifang People's HospitalWeifangShandongChina
| | - Weizhen Wang
- Department of Respiratory MedicineWeifang People's HospitalWeifangShandongChina
| |
Collapse
|
20
|
Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol 2022; 39:53-83. [PMID: 36125599 PMCID: PMC9486770 DOI: 10.1007/s10565-022-09761-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
21
|
Fletcher D, Brown E, Javadala J, Uysal‐Onganer P, Guinn B. microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHAEM 2022; 3:596-608. [PMID: 36051053 PMCID: PMC9421970 DOI: 10.1002/jha2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that short non-coding RNAs, known as microRNAs (miRNAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future.
Collapse
Affiliation(s)
| | - Elliott Brown
- Department of Biomedical SciencesUniversity of HullHull, UK
| | | | - Pinar Uysal‐Onganer
- Cancer Research GroupSchool of Life SciencesUniversity of WestminsterLondonUK
| | | |
Collapse
|
22
|
Cui Y, Wang X, Lin F, Li W, Zhao Y, Zhu F, Yang H, Rao M, li Y, Liang H, Dai M, Liu B, Chen L, Han D, Lu R, Peng W, Zhang Y, Song C, Luo Y, Pan P. MiR-29a-3p Improves Acute Lung Injury by Reducing Alveolar Epithelial Cell PANoptosis. Aging Dis 2022; 13:899-909. [PMID: 35656115 PMCID: PMC9116916 DOI: 10.14336/ad.2021.1023] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alveolar epithelial cell damage is an important determinant of the severity of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the molecular mechanisms of alveolar epithelial death during the development of ALI/ARDS remain unclear. In this study, we explore the role of miR-29a-3p in ALI/ARDS and its molecular mechanism. Plasma samples were collected from healthy controls and ARDS patients. Mice were intratracheally instilled with lipopolysaccharide (LPS) to establish acute lung injury. N6-adenosine (m6A) quantification, RNA-binding protein immunoprecipitation, cell viability assay, quantitative real-time polymerase chain reaction, and western blotting were performed. We found that miR-29a-3p was down-regulated in plasma of ARDS patients and lung tissue of ALI model mice, and miR-29a-3p agomir injection down-regulated the levels of the inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the lungs, reducing alveolar epithelial cell PANoptosis as evaluated by the downregulation of Z-DNA binding protein 1 (ZBP1), gasdermin D (GSDMD), caspase-3, caspase-8, and mixed lineage kinase domain-like protein (MLKL), ultimately improving lung injury in the ALI model mice. Mechanism studies demonstrated that the knockout of methyltransferase 3 (N6-adenosine-methyltransferase complex catalytic subunit) removed the m6A modification of miR-29a-3p and reduced miR-29a-3p expression. Our findings suggest that miR-29a-3p is a potential target that can be manipulated for ALI/ARDS.
Collapse
Affiliation(s)
- Yanhui Cui
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Xueqin Wang
- Center for neuroscience and behavior, Changsha medical university, Hunan 410219, China
| | - Fengyu Lin
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Wen Li
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Yuhao Zhao
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Fei Zhu
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Hang Yang
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Mingjun Rao
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Yi li
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Huaying Liang
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Minhui Dai
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Ben Liu
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Lingli Chen
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Duoduo Han
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Rongli Lu
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Wenzhong Peng
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Yan Zhang
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| | - Chao Song
- Infection Control Center, Xiangya Hospital of Central South University, Hunan 410000, China
| | - Yanwei Luo
- Department of Blood transfusion, The third Xiangya Hospital, Central South University, Hunan 410000, China
| | - Pinhua Pan
- Respiratory and critical care medicine, Xiangya Hospital, Central South University, Hunan 410000, China
| |
Collapse
|
23
|
Association between the Expression Levels of MicroRNA-101, -103, and -29a with Autotaxin and Lysophosphatidic Acid Receptor 2 Expression in Gastric Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:8034038. [PMID: 35444696 PMCID: PMC9015865 DOI: 10.1155/2022/8034038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Background Gastric cancer (GC) is regarded as the most prevalent malignancy with the high mortality rate, worldwide. However, gastroscopy, a biopsy of suspected sample, and detecting CEA, CA19-9, and CA72-4 are presently used, but these diagnostic approaches have several limitations. Recently, microRNAs as the most important member of noncoding RNAs (ncRNAs) have received attention; recent evidence demonstrates that they can be used as the promising candidate biomarkers for GC diagnosis. We aimed to investigate the association between the microRNA-29a, -101, and -103 expression and autotaxin (ATX) and lysophosphatidic acid receptor 2 (LPA2) expression in GC patients. Material and Methods. The present study was conducted on 40 paired samples of primary GC tissue and adjacent noncancerous tissue. The gene expression levels of miR-101, -103, -29, ATX, and LPA2 were analyzed by quantitative reverse-transcription PCR (qRT-PCR). Besides, the protein levels of ATX and LPA2 were evaluated using western blot. Results The expression levels of miR-29 and miR-101 were significantly lower (p value < 0.0001), but the miR-103 and LPA2 were significantly higher in gastric tumor samples compared to the corresponding nontumor tissues (p value < 0.0001). Moreover, the diagnostic accuracy of miRs to discrimine the GC patients from noncancerous controls was reliable (miR-101, sensitivity: 82.5% and specificity: 85%; miR-103, sensitivity: 72.5% and specificity: 90%; miR-29, sensitivity: 77.5% and specificity: 70%). Conclusion It seems that determining the expression level of miR-101, -103, and -29, as the novel diagnostic biomarkers, has diagnostic value to distinguish GC patients from healthy individuals.
Collapse
|
24
|
Sun J, Wang L. HOXA-AS2 enhances GBM cell malignancy by suppressing miR-2116-3p thereby upregulating SERPINA3. BMC Cancer 2022; 22:366. [PMID: 35387643 PMCID: PMC8985346 DOI: 10.1186/s12885-022-09462-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is malignant, demanding more attention to the improvement of the diagnosis and therapy. LncRNAs have been implicated in the malignancy of GBM cells. Methods HOXA-AS2, miR-2116-3p and SERPINA3 expression levels in GBM tissues and cell lines were detected by qRT-PCR. Western blotting was performed to detect the protein levels of Bax and Bcl-2. Dual-luciferase reporter assay was for detection of relationship among these factors, together with RIP and RNA pull-down. CCK-8, EdU, wound healing and transwell assays were for detection of the role of HOXA-AS2, miR-2116-3p and SERPINA3 in cell viability, proliferation, migration and invasion in GBM, respectively. Results HOXA-AS2 and SERPINA3 showed higher level in GBM tissues and cell lines. Low level of HOXA-AS2 attenuated GBM cell growth in vitro. Moreover, the anti-tumor impact of silenced HOXA-AS2 was restored by miR-2116-3p inhibitor, but its tumor-promotional effect could be reversed by silenced SERPINA3. Conclusion HOXA-AS2 enhanced GBM cell malignancy through sponging miR-2116-3p and releasing SERPINA3, which might shed light on the diagnosis and therapy for GBM in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09462-y.
Collapse
Affiliation(s)
- Jianrui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Lin Wang
- Information Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
25
|
Long Noncoding RNA LOC550643 Acts as an Oncogene in the Growth Regulation of Colorectal Cancer Cells. Cells 2022; 11:cells11071065. [PMID: 35406629 PMCID: PMC8997465 DOI: 10.3390/cells11071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs play a key role in the progression of colorectal cancer (CRC). However, the role and mechanism of LOC550643 in CRC cell growth and metastasis remain largely unknown. In this study, we assessed the clinical impacts of LOC550643 on CRC through the analysis of The Cancer Genome Atlas database, which revealed the significant upregulation of LOC550643 in CRC. Moreover, the high expression of LOC550643 was associated with poor survival in patients with CRC (p = 0.001). Multivariate Cox regression analysis indicated that LOC550643 overexpression was an independent prognostic factor for shorter overall survival in patients with CRC (adjusted hazard ratio, 1.90; 95% confidence interval, 1.21-3.00; p = 0.006). A biological function analysis revealed that LOC550643 knockdown reduced colon cancer cell growth by hindering cell cycle progression. In addition, LOC550643 knockdown significantly induced cell apoptosis through the inhibition of signaling activity in phosphoinositide 3-kinases. Moreover, LOC550643 knockdown contributed to the inhibition of migration and invasion ability in colon cancer cells. Furthermore, miR-29b-2-5p interacted with the LOC550643 sequence. Ectopic miR-29b-2-5p significantly suppressed colon cancer cell growth and motility and induced cell apoptosis. Our findings suggest that, LOC550643-miR-29b-2-5p axis was determined to participate in the growth and metastasis of colon cancer cells; this could serve as a useful molecular biomarker for cancer diagnosis and as a potential therapeutic target for CRC.
Collapse
|
26
|
Kimura Y, Ohzawa H, Miyato H, Kaneko Y, Saito A, Takahashi K, Tojo M, Yamaguchi H, Kurashina K, Saito S, Hosoya Y, Lefor AK, Sata N, Kitayama J. MiR-29b may suppresses peritoneal metastases through inhibition of the mesothelial-mesenchymal transition (MMT) of human peritoneal mesothelial cells. Sci Rep 2022; 12:205. [PMID: 34997082 PMCID: PMC8742040 DOI: 10.1038/s41598-021-04065-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Peritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-β1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-β1. TGF-β1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-β1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. MiR-29b inhibits TGF-β1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yuki Kaneko
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Saito
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mineyuki Tojo
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kentaro Kurashina
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shin Saito
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Alan Kawarai Lefor
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan.
- Center for Clinical Research, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
27
|
Xie K, Xiong H, Xiao W, Xiong Z, Hu W, Ye J, Xu N, Shi J, Yuan C, Chen Z, Miao D, Zhang X, Yang H. Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia. Cancer Cell Int 2021; 21:627. [PMID: 34838029 PMCID: PMC8626920 DOI: 10.1186/s12935-021-02332-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer cachexia is a wasting disorder characterized by significant weight loss, and is attributed to skeletal muscle weakness. In the process of cancer development, microRNAs act as oncogenes or tumor suppressors. Moreover, they are implicated in muscle development and wasting. This study sought to explore the mechanisms and correlation between miR-29c and muscle wasting in lung cancer cachexia. METHODS Data for expression analysis were retrieved from the Cancer Genome Atlas (TCGA) database. qRT-PCR analyses were performed to explore the expression levels of miR-29c and Leukemia Inhibitory Factor (LIF). Lewis lung carcinoma (LLC) cell line was used to establish a cachexia model to explore the functions of miR-29c and LIF in lung cancer cachexia. Furthermore, in vitro (in C2C12 myotubes) and in vivo (in LLC tumor-bearing mice) experiments were performed to explore the mechanisms of miR-29c and LIF in lung cachexia. RESULTS Analysis of the lung cancer cachexia model showed that miR-29c was down-regulated, and its expression was negatively correlated with muscle catabolic activity. Overexpression of miR-29c mitigated the cachectic phenotype. Mechanistic studies showed that LIF was a direct target gene of miR-29c, and LIF was upregulated in vitro and in vivo. Analysis showed that LIF promoted muscle wasting through the JAK/STAT and MAP-kinase pathways. CONCLUSIONS The findings indicated that miR-29c was negatively correlated with the cachectic phenotype, and the miR-29c-LIF axis is a potential therapeutic target for cancer cachexia.
Collapse
Affiliation(s)
- Kairu Xie
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| | - Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaxin Ye
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changfei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixian Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
28
|
CLEC12B suppresses lung cancer progression by inducing SHP-1 expression and inactivating the PI3K/AKT signaling pathway. Exp Cell Res 2021; 409:112914. [PMID: 34780782 DOI: 10.1016/j.yexcr.2021.112914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. CLEC12B, a C-type lectin-like receptor, is low-expressed in lung cancer tissues. However, the function of CLEC12B in lung cancer and its underlying mechanism remain unclear. Here, an obvious down-regulation of CLEC12B was observed in lung cancer cells compared with the normal lung epithelial cells. CLEC12B over-expression suppressed cell viability and cell cycle entry in lung cancer, along with the reduction of PCNA and cyclin D1 expressions, while silencing CLEC12B possessed the opposite effects. Over-expression of CLEC12B promoted lung cancer cell apoptosis, accompanied by decreased Bcl-2 and increased Bax, cleaved caspase-3 and cleaved caspase-9. Moreover, CLEC12B decreased phosphorylation of PI3K-p85 and AKT proteins. By contrast, CLEC12B knockdown activated the PI3K/AKT pathway. In vivo, CLEC12B inhibited tumor growth in lung cancer, which can be reversed by CLEC12B inhibition. Co-IP and immunofluorescence assays confirmed the interaction between CLEC12B and SHP-1, and CLEC12B over-expression increased SHP-1 level. Furthermore, knocking down SHP-1 abrogated the above biological phenotypes caused by CLEC12B elevation. Taken together, our findings demonstrate that CLEC12B serves as a tumor-suppressing gene in lung cancer through positively regulating SHP-1 expression, which may be mediated by the PI3K/AKT signaling pathway.
Collapse
|
29
|
Gao Z, Ren F, Yang G, Feng G, Wu L, Huang G, Chen Q. A highly sensitive electrochemical aptasensor for vascular endothelial growth factor detection based on toehold-mediated strand displacement reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4934-4940. [PMID: 34612218 DOI: 10.1039/d1ay01263k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An electrochemical aptasensor with high sensitivity, specificity, and good intra-day reproducibility is reported to meet the detection needs of vascular endothelial growth factor (VEGF). The toehold-mediated strand displacement recycling amplification and VEGF aptamer are integrated in the biosensor. The probe A is hybridized with the VEGF aptamer to form the probe A-aptamer complex. When VEGF is introduced, the aptamer specifically binds with VEGF, and probe A can be liberated. Then, the free probe A captures the toehold region of the Hp1, leading the exposure of the toehold region on the other end of Hp1. Similarly, Hp2 and Hp3 are also immobilized on the surface of the electrode; thus, the methylene blue labelled on Hp2 and Hp3 causes the current response. With the signal transduction mechanism, the expression level of VEGF can be detected quantitatively. With a series of optimizations of sensor parameters, high sensitivity and specificity of the VEGF detection sensor can be achieved with a detection limit as low as 10 pg mL-1. This significant performance has good intra-day reproducibility, and it can be applied to human biological samples such as serum, urine, and saliva to detect the VEGF content.
Collapse
Affiliation(s)
- Zhong Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China.
| | - Fangling Ren
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guangyi Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Guangjun Feng
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guiling Huang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Yangtze University, Health Science Center, Jingzhou, Hubei, 434025, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| |
Collapse
|
30
|
Sun CM, Zhang WY, Wang SY, Qian G, Pei DL, Zhang GM. Fer exacerbates renal fibrosis and can be targeted by miR-29c-3p. Open Med (Wars) 2021; 16:1378-1385. [PMID: 34595351 PMCID: PMC8439263 DOI: 10.1515/med-2021-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
Aim Renal fibrosis (RF) is a common clinical condition leading to irreversible renal function loss. Tyrosine kinase proteins and microRNAs (miRs) are associated with pathogenesis and we aim to investigate the role of Fer and its partner miR(s) in RF. Method In silico reproduction of Mouse Kidney FibrOmics browser was performed to identify potential miR(s) and target gene(s). In vivo validation was performed in C57BL/6 mice with unilateral ureteral obstruction (UUO). In vitro validation was performed in rat kidney fibroblast NRK-49F cells. Mimics and inhibitors of miR-29c-3p were constructed. The target gene Fer was monitored by RT-PCR and western blotting. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in serum and media were measured by ELISA. Results The Fer expression and protein level were gradually increased during 14 days of UUO modeling. miR-29c-3p expression was strongly correlated with that of Fer. In vivo validation showed increased expressions of fibrosis-associated genes and increased phospoho-Smad3 level in the UUO model. Fer-knockdown (KD) significantly decreased expressions of fibrosis-associated genes. Pharmaceutical inhibition of Fer showed similar effects to miR-29c-3p, and miR inhibition showed a significant decrease of excretion of inflammatory factors. Conclusion Dysregulation of miR-29c-3p and Fer plays a role in RF. Pharmaceutical or genetic inhibition of Fer may serve as the potential treatment for RF.
Collapse
Affiliation(s)
- Chen-Min Sun
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Wen-Yi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shu-Yan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Gang Qian
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Dong-Liang Pei
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guang-Ming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
31
|
Yu J, Li Y, Leng D, Cao C, Yu Y, Wang Y. microRNA-3646 serves as a diagnostic marker and mediates the inflammatory response induced by acute coronary syndrome. Bioengineered 2021; 12:5632-5640. [PMID: 34519257 PMCID: PMC8806520 DOI: 10.1080/21655979.2021.1967066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute coronary syndrome (ACS) is one of the main syndromes of coronary artery disease with high mortality. The identification of biomarkers associated with disease occurrence and progression could improve early detection and risk prediction. This study was aimed to reveal the clinical significance and function of miR-3646 in ACS. The expression of miR-3646 was evaluated in ACS patients, healthy volunteers, and non-ACS patients and estimated the clinical significance of miR-3646. The ACS modeling rats were also established in this study to explore the potential mechanism underlying the function of miR-3646. miR-3646 was upregulated in ACS patients compared with healthy volunteers and non-ACS patients. The expression of miR-3646 was positively correlated with the severity and progression of ACS patients and could discriminate ACS patients from healthy volunteers and non-ACS patients. The knockdown of miR-3646 could reverse the inflammatory response induced by ACS.miR-3646 serves as a diagnostic biomarker for ACS. The knockdown of miR-3646 could alleviate ACS by reversing inflammatory response. These results provide a potential therapeutic target of ACS.
Collapse
Affiliation(s)
- Jinming Yu
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongmei Li
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Deguo Leng
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Cheng Cao
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongzhi Yu
- Department of Cardiology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yijuan Wang
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| |
Collapse
|
32
|
Zhu SJ, Wang X, Hu SL, Fang Y, Guan BX, Li J, Li G, Xu JY. Clinical Significance and Biological Function of miR-1274a in Non-small Cell Lung Cancer. Mol Biotechnol 2021; 64:9-16. [PMID: 34427871 DOI: 10.1007/s12033-021-00385-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Since the discovery of microRNAs (miRNAs) as a class of important regulatory molecules, miRNAs are involved in the occurrence and development of tumors. In this paper, we aimed to identify the role of miR-1274a in non-small cell lung cancer (NSCLC). The miR-1274a expression levels in four NSCLC cells and tissues from 125 patients were determined by qRT-PCR assays. Kaplan-Meier survival curves and Cox regression analysis were used to examine the prognostic significance of miR-1274a in NSCLC patients. The CCK-8 and Transwell assays were performed to evaluate the cell proliferation, invasion, and migration ability of NSCLC cells. The miR-1274a expression levels were significantly higher in NSCLC tissues than in adjacent normal tissues, and overexpression of miR-1274a had a poor prognosis in NSCLC patients. Functional studies in two NSCLC cell lines have shown that overexpression of miR-1274a could promote cell proliferation, migration, and invasion. miR-1274a expression levels are upregulated in NSCLC tissues, and a high expression is associated with a poor prognosis in patients with NSCLC. Moreover, miR-1274a promotes cell proliferation, migration, and invasion. Based on our findings, miR-1274a may act as a tumor miRNA in the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Shi-Jia Zhu
- Clinical Oncology Center, Hong Kong University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiao Wang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Song-Liu Hu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Yu Fang
- Department of Phase I Clinical Trial, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150040, Heilongjiang, China
| | - Bi-Xi Guan
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Jian Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Gen Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Jian-Yu Xu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
33
|
Li C, Wang N, Rao P, Wang L, Lu D, Sun L. Role of the microRNA-29 family in myocardial fibrosis. J Physiol Biochem 2021; 77:365-376. [PMID: 34047925 DOI: 10.1007/s13105-021-00814-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial fibrosis (MF) is an inevitable pathological process in the terminal stage of many cardiovascular diseases, often leading to serious cardiac dysfunction and even death. Currently, microRNA-29 (miR-29) is thought to be a novel diagnostic and therapeutic target of MF. Understanding the underlying mechanisms of miR-29 that regulate MF will provide a new direction for MF therapy. In the present review, we concentrate on the underlying signaling pathway of miR-29 affecting MF and the crosstalk regulatory relationship among these pathways to illustrate the complex regulatory network of miR-29 in MF. Additionally, based on our mechanistic understanding, we summarize opportunities and challenges of miR-29-based MF diagnosis and therapy.
Collapse
Affiliation(s)
- Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Nan Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Peng Rao
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Limeiting Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
34
|
Dobre M, Herlea V, Vlăduţ C, Ciocîrlan M, Balaban VD, Constantinescu G, Diculescu M, Milanesi E. Dysregulation of miRNAs Targeting the IGF-1R Pathway in Pancreatic Ductal Adenocarcinoma. Cells 2021; 10:1856. [PMID: 34440625 PMCID: PMC8391367 DOI: 10.3390/cells10081856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), the most prevalent neoplastic lethal pancreatic disease, has a poor prognosis and an increasing incidence. The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is considered to be a contributing factor to the progression, metastasis, and therapy resistance of PDAC. Currently available treatment options for PDAC are limited, but microRNAs (miRNAs) may represent a new therapeutic strategy for targeting genes involved in the IGF-1R signaling pathway. METHOD We investigated the expression levels of 21 miRNAs involved in the IGF-1R signaling pathway in pancreatic tissue from 38 patients with PDAC and 11 controls (five patients with chronic pancreatitis and six patients with normal pancreatic tissue). RESULTS We found 19 differentially expressed miRNAs between the PDAC cases and the controls. In particular, miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p were exclusively downregulated in PDAC tissue but not in chronic pancreatitis or normal pancreatic tissues; both control types presented similar levels. We also identified miR-29a-3p, miR-29b-3p, and miR-7-5p as downregulated miRNAs in PDAC tissues as compared with normal tissues but not with pancreatitis tissues. CONCLUSIONS We identified a panel of miRNAs that could represent putative therapeutic targets for the development of new miRNA-based therapies for PDAC.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (E.M.)
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Cătălina Vlăduţ
- Department of Gastroenterology, “Prof Dr Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
| | - Mihai Ciocîrlan
- Department of Gastroenterology, “Prof Dr Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
| | - Vasile Daniel Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
- Department of Gastroenterology, Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Gabriel Constantinescu
- Department of Gastroenterology, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania;
| | - Mircea Diculescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
- Department of Gastroenterology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (E.M.)
| |
Collapse
|
35
|
Taefehshokr S, Taefehshokr N, Derakhshani A, Baghbanzadeh A, Astamal RV, Safaei S, Abbasi S, Hajazimian S, Maroufi NF, Isazadeh A, Hajiasgharzadeh K, Baradaran B. The regulatory role of pivotal microRNAs in the AKT signaling pathway in breast cancer. Curr Mol Med 2021; 22:263-273. [PMID: 34238182 DOI: 10.2174/1566524021666210708095051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women, and it remains the main challenge despite improved treatments. MicroRNAs (miRNAs) are a small non-coding family of RNAs that play an indispensable role in regulating major physiological processes, including differentiation, proliferation, invasion, migration, cell cycle regulation, stem cell maintenance, apoptosis, and organ development. The dysregulation of these tiny molecules is associated with various human malignancies. More than 50% of these non-coding RNA sequences estimated have been placed on genomic regions or fragile sites linked to cancer. Following the discovery of the first signatures of specific miRNA in breast cancer, numerous researches focused on involving these tiny RNAs in breast cancer physiopathology as a new therapeutic approach or as reliable prognostic biomarkers. In the current review, we focus on recent findings related to the involvement of miRNAs in breast cancer via the AKT signaling pathway and the related clinical implications.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, United Kingdom
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samane Abbasi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Liu S, Zhao L, Zhang L, Qiao L, Gao S. Downregulation of miR-574-5p inhibits HK-2 cell viability and predicts the onset of acute kidney injury in sepsis patients. Ren Fail 2021; 43:942-948. [PMID: 34134589 PMCID: PMC8901276 DOI: 10.1080/0886022x.2021.1939051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Increased levels of microRNA-574-5p (miR-574-5p) have been found to be associated with increased survival of septic patients, indicating the potential role of miR-574-5p in protecting against septic progression and complications. Acute kidney injury (AKI) is one of the most common and serious complications of sepsis. Therefore, the aim of this study was to test these hypotheses: (1) in a renal cell culture line (HK-2), upregulated expression of miR-574-5p increases, and downregulated expression of miR-574-5p decreases cell viability, and (2) serum levels of miR-574-5p from patients with sepsis and AKI are lower than those of patients with sepsis but no AKI. Methods The expression of miR-574-5p was regulated by cell transfection in HK-2 cells, and HK-2 cell viability was measured using the Cell Counting Kit-8. Serum miR-574-5p expression was analyzed using qRT-PCR. The predictive value of miR-574-5p for AKI onset was evaluated using the receiver operating characteristic curve and logistic regression analysis. Results The overexpression of miR-574-5p promoted HK-2 cell viability. Fifty-eight sepsis patients developed AKI, who had significantly lower miR-574-5p expression. miR-574-5p expression was decreased with AKI stage increase and correlated with kidney injury biomarker and had relatively high accuracy to predict AKI occurrence from sepsis patients. Conclusion Overexpression of miR-574-5p in cultured HK-2 cells increases cell viability and knocked-down expression of miR-574-5p decreases cell viability. Consistently, septic patients with AKI were found to have less upregulation of miR-574-5p expression compared to septic patients without AKI. Thus, serum miR-574-5p may provide a novel biomarker for septic AKI.
Collapse
Affiliation(s)
- Shanshan Liu
- Emergent Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, China
| | - Lishu Zhao
- Department of Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Li Zhang
- Department of Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Lujun Qiao
- Department of Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Shufang Gao
- Emergent Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
37
|
Tatsumi M, Yanagita M, Yamashita M, Hasegawa S, Ikegami K, Kitamura M, Murakami S. Long-term exposure to cigarette smoke influences characteristics in human gingival fibroblasts. J Periodontal Res 2021; 56:951-963. [PMID: 34057209 DOI: 10.1111/jre.12891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory disease caused by periodontopathic bacteria accumulated in the gingival sulcus and periodontal pocket. Cigarette smoking is a well-established risk factor for periodontal disease, and periodontal tissues in smokers are chronically exposed to cigarette smoke on a long-term basis. OBJECTIVE In this study, we investigated the effects of long-term exposure to nicotine or cigarette smoke condensate (CSC) on cellular functions of human gingival fibroblasts (HGFs). METHODS In vitro-maintained HGFs were divided into two groups. The HGFs of the short-term and the long-term culture groups were cultured for 4 and 25 days, respectively, in the presence or absence of nicotine, which is one of the main components of cigarette smoke, or CSC. The cellular proliferation and migration capacities of HGFs exposed to nicotine or CSC were evaluated by WST-1 and wound healing assays. The effects of exposure to nicotine or CSC on the expression of various extracellular matrix (ECM) components, inflammatory cytokines, and senescence-related genes were examined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The cellular senescence of HGFs exposed to nicotine or CSC was detected by the senescence-associated β-galactosidase (SA-β-gal) assay. To explore the senescence-associated microRNA (miRNA), we extracted miRNA from the HGFs and the expression profiles were examined by miRNA array. RESULTS In short-term culture, no significant changes were observed. Long-term exposure of HGFs to nicotine or CSC significantly suppressed their cellular proliferation and migration and upregulated type Ⅰ collagen, type Ⅲ collagen, interleukin (IL)-6, IL-8, p16, p21, and p53 mRNA expression, and IL-6 and IL-8 protein expression. Furthermore, long-term nicotine or CSC exposure significantly increased the percentage of SA-β-gal-positive HGFs. In addition, long-term nicotine or CSC exposure reduced miR-29b and miR-199a expression to less than 50% of that in the unstimulated HGFs. CONCLUSION These data suggest that long-term smoking habits may reduce wound healing ability, modulate ECM protein homeostasis, stimulate the inflammatory response, and accelerate cellular senescence in HGFs, and consequently accelerate the progression of periodontal diseases.
Collapse
Affiliation(s)
- Mari Tatsumi
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Manabu Yanagita
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral Health, Kobe Tokiwa Junior College, Kobe, Japan
| | - Motozo Yamashita
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shiori Hasegawa
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kuniko Ikegami
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masahiro Kitamura
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shinya Murakami
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
38
|
Zhuo J, Zheng Y, Hu W, Yin G. Sufentanil Inhibits Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells by Upregulating miRNA-204. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sufentanil is a powerful analgesic that acts on μ-receptors, but there are few studies on sufentanil in cancer. The biological function and underlying mechanisms of sufentanil on the hepatocellular carcinoma (HCC) cells were explored in the present study. HCC cells were first treated
with different concentrations of sufentanil and the most optimum concentration of sufentanil was determined. The expression of miR-204 in HCC cells was changed by transfected with miR-204 inhibitor and the transfection efficiency was assessed by qRT-PCR. CCK-8, wound-healing and Transwell
assays were performed to evaluate the proliferation, migration and invasion of HCC cells, respectively. The level of AKT and PI3K phosphorylation (p-AKT and p-PI3K) were assessed by western blot analysis. Our results demonstrated that sufentanil effectively inhibited cell proliferation,migration
and invasion in both Huh7 and Hep3B cells, and significantly decreased the expression of p-AKT and p-PI3K. In addition, miR-204 was upregulated in Huh7 and Hep3B cells treated with sufentanil, and low expression of miR-204 attenuated the damage of sufentanil on the viability of Huh7 and Hep3B
cells. Taken together, sufentanil suppressed the proliferation, migration and invasion of HCC cells via inhibiting AKT/PI3K signaling pathway by targeting miR-204.
Collapse
Affiliation(s)
- Jiuwu Zhuo
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Yishan Zheng
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Wanying Hu
- Operating Room, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Guoping Yin
- Department of Anesthesiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| |
Collapse
|
39
|
Vera O, Bok I, Jasani N, Nakamura K, Xu X, Mecozzi N, Angarita A, Wang K, Tsai KY, Karreth FA. A MAPK/miR-29 Axis Suppresses Melanoma by Targeting MAFG and MYBL2. Cancers (Basel) 2021; 13:1408. [PMID: 33808771 PMCID: PMC8003541 DOI: 10.3390/cancers13061408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The miR-29 family of microRNAs is encoded by two clusters, miR-29b1~a and miR-29b2~c, and is regulated by several oncogenic and tumor suppressive stimuli. While in vitro evidence suggests a tumor suppressor role for miR-29 in melanoma, the mechanisms underlying its deregulation and contribution to melanomagenesis have remained elusive. Using various in vitro systems, we show that oncogenic MAPK signaling paradoxically stimulates transcription of pri-miR-29b1~a and pri-miR-29b2~c, the latter in a p53-dependent manner. Expression analyses in melanocytes, melanoma cells, nevi, and primary melanoma revealed that pri-miR-29b2~c levels decrease during melanoma progression. Inactivation of miR-29 in vivo with a miRNA sponge in a rapid melanoma mouse model resulted in accelerated tumor development and decreased overall survival, verifying tumor suppressive potential of miR-29 in melanoma. Through integrated RNA sequencing, target prediction, and functional assays, we identified the transcription factors MAFG and MYBL2 as bona fide miR-29 targets in melanoma. Our findings suggest that attenuation of miR-29b2~c expression promotes melanoma development, at least in part, by derepressing MAFG and MYBL2.
Collapse
Affiliation(s)
- Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Koji Nakamura
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ariana Angarita
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
40
|
Circulating miR-21, miR-29a, and miR-126 are associated with premature death risk due to cancer and cardiovascular disease: the JACC Study. Sci Rep 2021; 11:5298. [PMID: 33674633 PMCID: PMC7935984 DOI: 10.1038/s41598-021-84707-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Primary prevention of premature death is a public health concern worldwide. Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers for diseases as cancer and cardiovascular disease (CVD). This case-cohort study aimed to investigate the potential relationship between circulating miRNAs and the risk of premature death. A total of 39,242 subjects provided baseline serum samples in 1988–1990. Of these, 345 subjects who died of intrinsic disease (< 65 years old) and for which measurable samples were available were included in this study. We randomly selected a sub-cohort of 879 subjects. Circulatring miR-21, miR-29a, and miR-126 were determined using qRT-PCR. Conditional logistic regression models were used to analyse the data with respect to stratified miRNA levels. Multivariable logistic regression revealed that subjects with high circulating miR-21 and miR-29a individual levels had a significantly higher risk of total death, cancer death, and CVD death than those with medium miR-21 and miR-29a individual levels. Conversely, subjects with low circulating miR-126 levels had a significantly higher risk of total death than those with medium levels. This suggests that circulating miRNAs are associated with the risk of premature death from cancer and CVD, identifying them as potential biomarkers for early detection of high-risk individuals.
Collapse
|
41
|
Liu MN, Luo G, Gao WJ, Yang SJ, Zhou H. miR-29 family: A potential therapeutic target for cardiovascular disease. Pharmacol Res 2021; 166:105510. [PMID: 33610720 DOI: 10.1016/j.phrs.2021.105510] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease (CVD), including heart failure, myocardial fibrosis and myocardial infarction, etc, remains one of the leading causes of mortality worldwide. Evidence shows that miRNA plays an important role in the pathogenesis of CVD. miR-29 family is one of miRNA, and over the past decades, many studies have demonstrated that miR-29 is involved in maintaining the integrity of arteries and in the regulation of atherosclerosis, especially in the process of myocardial fibrosis. Besides, heart failure, myocardial fibrosis and myocardial infarction are inseparable from the regulatory role of miR-29. Here, we comprehensively review recent studies regarding miR-29 and CVD, illustrate the possibility of miR-29 as a potential marker for prevention, treatment and prognostic observation.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Luo
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Wan-Jiao Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Si-Jin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China.
| |
Collapse
|
42
|
Mohr R, Özdirik B, Lambrecht J, Demir M, Eschrich J, Geisler L, Hellberg T, Loosen SH, Luedde T, Tacke F, Hammerich L, Roderburg C. From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:1492. [PMID: 33540837 PMCID: PMC7867354 DOI: 10.3390/ijms22031492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Collapse
Affiliation(s)
- Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Lukas Geisler
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| |
Collapse
|
43
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
44
|
Tan Q, Xia D, Ying X. miR-29a in Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Fibrosis during Endometrial Repair of Intrauterine Adhesion. Int J Stem Cells 2020; 13:414-423. [PMID: 33250449 PMCID: PMC7691861 DOI: 10.15283/ijsc20049] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/25/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives Bone marrow mesenchymal stem cells (BMSCs) is an ideal source of stem cells in the treatment of intrauterine adhesion. Exosomes are a type of membrane vesicle and the diameter is 30∼100 nm. Exosomes can take their contents into the target cells, releasing and exerting their functions. In this study, we intend to study the role of human BMSC-derived exosomes (BMSC-Exo) in promoting endometrial damage repair in the treatment of IUA. Methods We used the magnetic bead affinity method to extract BMSC-Exo and analyzed its biological character. Then we co-cultured the BMSCs-Exo with endometrial cells to detect its effect. We injected BMSCs-Exo into the IUA mouse model. We over-expressed miR-29a in BMSCs-Exo by transient transfection, then used RT-PCR to analyze the expression of the related genes. Results BMSCs-Exo expressed exosome-specific proteins CD9, CD63, and CD81. BMSCs-Exo could bring the contents into the target cells. BMSCs-Exo can promote endometrial repair in vitro or in vivo. BMSCs-Exo overexpressing miR-29a can reduce αSMA, Collagen I, SMAD2, and SMAD3. Conclusions In this study, we successfully isolated BMSCs-Exo and proved its character and biological activity. BMSCs-Exo can promote cell proliferation and cell migration in vitro and can repair damaged endometrium in the IUA model. The presence of miR-29a in BMSCs-Exo may be an important factor in its resistance to fibrosis during endometrial repair of IUA. This study provides new ideas for the treatment of patients with IUA and has important clinical research significance.
Collapse
Affiliation(s)
- Qingqing Tan
- Department of Gynecological Oncology, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Dandan Xia
- Department of Gynecological Oncology, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoyan Ying
- Department of Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Analysis of miR-29 Serum Levels in Patients with Neuroendocrine Tumors-Results from an Exploratory Study. J Clin Med 2020; 9:jcm9092881. [PMID: 32899973 PMCID: PMC7565987 DOI: 10.3390/jcm9092881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Due to its involvement in tumor biology as well as tumor-associated stroma cell responses, recent data suggested a potential role of miR-29 as a biomarker for different malignancies. However, its role in neuroendocrine tumors (NETs) is only poorly understood. METHODS We measured circulating levels of miR-29b in 45 patients with NET and compared them to 19 healthy controls. Results were correlated with clinical records. RESULTS In our cohort of NET patients treated between 2010 and 2019 at our department, miR-29b serum levels were significantly downregulated when compared to healthy control samples. Further, a significant correlation between chromogranin A (CgA) and relative miR-29b levels was noted. However, serum levels of miR-29b were independent of tumor-related factors such as proliferation activity according to Ki-67 index, tumor grading, the TMN stage of malignant tumors, somatostatin receptor expression or clinical features such as functional or non-functional disease and presence of tumor relapse. Finally, in contrast to previous results from other malignancies, miR-29b serum levels were not a significant predictor of overall survival in NET patients. CONCLUSION Our data suggest a role for miR-29b serum levels as a previously unrecognized biomarker for diagnosis of NET. However, miR-29 does not allow for predicting tumor stage or patients' outcome.
Collapse
|
46
|
Liu Y, Liu X, Zhou Y, Liu T, Li J. Overexpression of miR-27a predicts poor prognosis and promotes the progression in cholangiocarcinoma. Clin Exp Med 2020; 21:121-128. [PMID: 32816152 DOI: 10.1007/s10238-020-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
The function of microRNA-27a (miR-27a) expression in cholangiocarcinoma (CCA) remains largely unclear; therefore, this study aimed to investigate the clinical significance and functional role of miR-27a in CCA. This study included 117 paired CCA tissues and adjacent normal tissues from CCA patients who received surgical resection. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression levels of miR-27a in CCA tissues and cell lines. A Kaplan-Meier curve and Cox regression analysis were used to determine overall prognostic performance. The effects of miR-27a on cell proliferation, migration, and invasion were measured by CCK-8 and Transwell assays. The expression levels of miR-27a in patients with CCA and cell lines were higher than those in adjacent normal tissues and normal cells, respectively. Additionally, miR-27a levels were found to be associated with lymph node metastasis and TNM stages. The overall survival time of CCA patients with high miR-27a expression was poorer than that of those with low miR-27a expression. Furthermore, miR-27a overexpression promoted CCA cell proliferation, migration, and invasion, whereas knockdown of miR-27a suppressed cell proliferation, migration, and invasion. Taken together, these results suggest the potential usefulness of miR-27a in the prognosis and progression of CCA.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Intersection of Limin Road and Fuyuan Street, Weifang, 261053, Shandong, China.
| | - Xia Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, China
| | - Yanhua Zhou
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, China
| | - Tingting Liu
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Intersection of Limin Road and Fuyuan Street, Weifang, 261053, Shandong, China
| | - Jie Li
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Intersection of Limin Road and Fuyuan Street, Weifang, 261053, Shandong, China
| |
Collapse
|
47
|
Guo M, Gan L, Si J, Zhang J, Liu Z, Zhao J, Gou Z, Zhang H. Role of miR-302/367 cluster in human physiology and pathophysiology. Acta Biochim Biophys Sin (Shanghai) 2020; 52:791-800. [PMID: 32785592 DOI: 10.1093/abbs/gmaa065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2020] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate target mRNAs at the post-transcriptional level. Increasing evidence shows the involvement of miRNAs in diverse biological processes. miR-302/367 cluster is highly conserved among vertebrates and made up of five members, including miR-367, miR-302a, miR-302b, miR-302c and miR-302d. miR-302/367 cluster plays an important role in cell proliferation, differentiation and reprogramming, affecting the development of tumor, cardiovascular system, nervous system and immune system. In this review, we will summarize the role of miR-302/367 cluster in embryonic stem cells and induced pluripotent stem cells and try to point out its relationship with tumors, cardiovascular system, nervous system and immune system.
Collapse
Affiliation(s)
- Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Si
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Liu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jin Zhao
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhong Gou
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| | - Hong Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Gao Y, Qiao H, Zhong T, Lu Z, Hou Y. MicroRNA‑29a promotes the neural differentiation of rat neural stem/progenitor cells by targeting KLF4. Mol Med Rep 2020; 22:1008-1016. [PMID: 32468029 PMCID: PMC7339629 DOI: 10.3892/mmr.2020.11177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) remain in the mammalian brain throughout life, where they have the ability to self-renew and generate different types of cell in the central nervous system (CNS). Therefore, NSPCs may be a potential novel therapeutic strategy following damage to the CNS. Previous research has reported that microRNA (miR)-29a served an important role in regulating cell proliferation, differentiation and survival; however, to the best of our knowledge, little is known of the effect of miR-29a in neural differentiation. The present study aimed to investigate the effect of miR-29a on the differentiation of NSPCs, determined via RNA interference, immunostaining, reverse transcription-quantitative PCR and western blotting. The present study discovered that the expression levels of miR-29a were significantly upregulated in a time-dependent manner during neural differentiation. Immunostaining showed that overexpression of miR-29a promoted neural differentiation, which manifested in increased expression levels of neuron-specific class III β-tubulin (Tuj1); however, miR-29a had no effect on neuroglial differentiation. The expression levels of Kruppel-like factor 4 (KLF4) were downregulated following overexpression of miR-29a, whereas the inhibition of miR-29a demonstrated the opposite effect. These results suggested that the overexpression of miR-29a may promote neural differentiation in cultured rat NSPCs by decreasing the expression levels of KLF4. Thus indicating that targeting KLF4, a crucial regulatory factor for the maintenance of stemness, may be a potential underlying mechanism of action for miR-29a. In conclusion, the findings of the present study identified a potential mechanism of action for miR-29a in NSPC differentiation and provided a novel insight into the treatment strategies for CNS damage.
Collapse
Affiliation(s)
- Yunan Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tianyu Zhong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhen Lu
- Department of Orthodontics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
49
|
Ohzawa H, Saito A, Kumagai Y, Kimura Y, Yamaguchi H, Hosoya Y, Lefor AK, Sata N, Kitayama J. Reduced expression of exosomal miR‑29s in peritoneal fluid is a useful predictor of peritoneal recurrence after curative resection of gastric cancer with serosal involvement. Oncol Rep 2020; 43:1081-1088. [PMID: 32323853 PMCID: PMC7057811 DOI: 10.3892/or.2020.7505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
The peritoneal surface is the most frequent site of metastasis disease in patients with gastric cancer. Even after curative surgery and adjuvant chemotherapy, peritoneal recurrences often develop. Exosomes play pivotal roles in tumor metastasis via the transfer of microRNAs (miRNAs). In the present study, exosomes were isolated from peritoneal lavage fluid or ascites in 85 patients with gastric cancer and the relative expression levels of miR-29s were examined. The expression of miR-29a-3p, miR-29b-3p and miR-29c-3p in peritoneal exosomes were all downregulated in patients with peritoneal metastases (PM) compared to those without PM. In 30 patients who underwent curative gastrectomy with serosa-involved (T4) gastric cancer, 6 patients exhibited recurrence in the peritoneum within 12 months. The expression levels of miR-29s at gastrectomy tended to be lower in these 6 patients than in the other 24 patients with significant differences in miR-29b-3p (P=0.003). When the patients were divided into two groups based on median levels of miR-29s, peritoneal recurrence developed more frequently in patients with low expression of miR-29b-3p, and lower expression of miR-29s were related with worse overall survival. miR-29s are thought to play a suppressive role in the growth of disseminated peritoneal tumor cells. Reduced expression of miR-29b in peritoneal exosomes is a strong risk factor of developing postoperative peritoneal recurrence.
Collapse
Affiliation(s)
- Hideyuki Ohzawa
- Center for Clinical Research, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Akira Saito
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Yuko Kumagai
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Yuki Kimura
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Hironori Yamaguchi
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Yoshinori Hosoya
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Alan Kawarai Lefor
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Naohiro Sata
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Joji Kitayama
- Center for Clinical Research, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| |
Collapse
|
50
|
The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int J Mol Sci 2020; 21:ijms21030980. [PMID: 32024140 PMCID: PMC7037112 DOI: 10.3390/ijms21030980] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Collapse
|