1
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Sarabi PA, Rismani E, Shabanpouremam M, Talehahmad S, Vosough M. Developing a multi-epitope vaccine against Helicobacter Pylori. Hum Immunol 2025; 86:111212. [PMID: 39642777 DOI: 10.1016/j.humimm.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori, a significant factor in the development of gastric cancer and peptic ulcers, poses challenges for drug development due to its resilience. Computational approaches offer potential solutions for effective vaccine development targeting its antigens while ensuring stability and safety. The four critical antigenic proteins included in this study's innovative vaccine design are neuraminyllactose-binding hemagglutinin (HpaA), catalase (KatA), urease (UreB), and vacuolating toxin (VacA). Advanced immunoinformatics methods identified the possibility of triggering an immunological reaction. An adjuvant (50S ribosomal protein L7/L12) was fused to the vaccine sequence's N-terminus to improve immunogenicity. GROMACS molecular dynamics simulations with the OPLS-AA force field further improved the structure. The vaccine design and human Toll-like receptor 5 (TLR5) demonstrated a strong binding in docking tests. A model of simulating immune response confirmed the vaccine's efficacy and predicted how it would affect the immune system. Using the optimal restriction sites of the pET28b (+) expression vector, the vaccine candidate was cloned in silico. To validate the findings, this vaccine design will be synthesized in a bacterial system, and in experimental studies will be conducted in the following phase.
Collapse
Affiliation(s)
- Pedram Asadi Sarabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Shabanpouremam
- Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Sara Talehahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran..
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Cui M, Ji X, Guan F, Su G, Du L. Design of a Helicobacter pylori multi-epitope vaccine based on immunoinformatics. Front Immunol 2024; 15:1432968. [PMID: 39247202 PMCID: PMC11377293 DOI: 10.3389/fimmu.2024.1432968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious bacterium that colonizes the stomach of approximately half of the global population. It has been classified as a Group I carcinogen by the World Health Organization due to its strong association with an increased incidence of gastric cancer and exacerbation of stomach diseases. The primary treatment for H. pylori infection currently involves triple or quadruple therapy, primarily consisting of antibiotics and proton pump inhibitors. However, the increasing prevalence of antibiotic resistance poses significant challenges to this approach, underscoring the urgent need for an effective vaccine. In this study, a novel multi-epitope H. pylori vaccine was designed using immunoinformatics. The vaccine contains epitopes derived from nine essential proteins. Software tools and online servers were utilized to predict, evaluate, and analyze the physiochemical properties, secondary and tertiary structures, and immunogenicity of the candidate vaccine. These comprehensive assessments ultimately led to the formulation of an optimal design scheme for the vaccine. Through constructing a novel multi-epitope vaccine based on immunoinformatics, this study offers promising prospects and great potential for the prevention of H. pylori infection. This study also provides a reference strategy to develop multi-epitope vaccines for other pathogens.
Collapse
Affiliation(s)
- Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Fengtao Guan
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
4
|
Zhang Z, Cui M, Ji X, Su G, Zhang YX, Du L. Candidate Antigens and the Development of Helicobacter pylori Vaccines. Helicobacter 2024; 29:e13128. [PMID: 39177204 DOI: 10.1111/hel.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Infection with Helicobacter pylori (Hp) mostly occurs during childhood, and persistent infection may lead to severe gastric diseases and even gastric cancer. Currently, the primary method for eradicating Hp is through antibiotic treatment. However, the increasing multidrug resistance in Hp strains has diminished the effectiveness of antibiotic treatments. Vaccination could potentially serve as an effective intervention to resolve this issue. AIMS Through extensive research and analysis of the vital protein characteristics involved in Hp infection, we aim to provide references for subsequent vaccine antigen selection. Additionally, we summarize the current research and development of Hp vaccines in order to provide assistance for future research. MATERIALS AND METHODS Utilizing the databases PubMed and the Web of Science, a comprehensive search was conducted to compile articles pertaining to Hp antigens and vaccines. The salient aspects of these articles were then summarized to provide a detailed overview of the current research landscape in this field. RESULTS Several potential antigens have been identified and introduced through a thorough understanding of the infection process and pathogenic mechanisms of Hp. The conserved and widely distributed candidate antigens in Hp, such as UreB, HpaA, GGT, and NAP, are discussed. Proteins such as CagA and VacA, which have significant virulence effects but relatively poor conservatism, require further evaluation. Emerging antigens like HtrA and dupA have significant research value. In addition, vaccines based on these candidate antigens have been compiled and summarized. CONCLUSIONS Vaccines are a promising method for preventing and treating Hp. While some Hp vaccines have achieved promising results, mature products are not yet available on the market. Great efforts have been directed toward developing various types of vaccines, underscoring the need for developers to select appropriate antigens and vaccine formulations to improve success rates.
Collapse
Affiliation(s)
- Zhanhua Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
5
|
Huang TT, Cao YX, Cao L. Novel therapeutic regimens against Helicobacter pylori: an updated systematic review. Front Microbiol 2024; 15:1418129. [PMID: 38912349 PMCID: PMC11190606 DOI: 10.3389/fmicb.2024.1418129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a strict microaerophilic bacterial species that exists in the stomach, and H. pylori infection is one of the most common chronic bacterial infections affecting humans. Eradicating H. pylori is the preferred method for the long-term prevention of complications such as chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. However, first-line treatment with triple therapy and quadruple therapy has been unable to cope with increasing antibacterial resistance. To provide an updated review of H. pylori infections and antibacterial resistance, as well as related treatment options, we searched PubMed for articles published until March 2024. The key search terms were "H. pylori", "H. pylori infection", "H. pylori diseases", "H. pylori eradication", and "H. pylori antibacterial resistance." Despite the use of antimicrobial agents, the annual decline in the eradication rate of H. pylori continues. Emerging eradication therapies, such as the development of the new strong acid blocker vonoprazan, probiotic adjuvant therapy, and H. pylori vaccine therapy, are exciting. However, the effectiveness of these treatments needs to be further evaluated. It is worth mentioning that the idea of altering the oxygen environment in gastric juice for H. pylori to not be able to survive is a hot topic that should be considered in new eradication plans. Various strategies for eradicating H. pylori, including antibacterials, vaccines, probiotics, and biomaterials, are continuously evolving. A novel approach involving the alteration of the oxygen concentration within the growth environment of H. pylori has emerged as a promising eradication strategy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Sedarat Z, Taylor-Robinson AW. Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines. Pathogens 2024; 13:392. [PMID: 38787244 PMCID: PMC11124246 DOI: 10.3390/pathogens13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Helicobacter pylori is a gastric oncopathogen that infects over half of the world's human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology, structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases.
Collapse
Affiliation(s)
- Zahra Sedarat
- Cellular & Molecular Research Centre, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran;
| | - Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi 67000, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 1904, USA
| |
Collapse
|
7
|
Rabienia M, Mortazavidehkordi N, Roudbari Z, Daneshi R, Abdollahi A, Yousefian Langeroudi M, Behmard E, Farjadfar A. Designing of a new multi-epitope vaccine against Leishmania major using Leish-F1 epitopes: An In-silico study. PLoS One 2024; 19:e0295495. [PMID: 38165973 PMCID: PMC10760699 DOI: 10.1371/journal.pone.0295495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2023] [Indexed: 01/04/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is the most common form of the disease which can cause malignant lesions on the skin. Vaccination for the prevention and treatment of leishmaniasis can be the most effective way to combat this disease. In this study, we designed a novel multi-epitope vaccine against Leishmania major (L. major) using immunoinformatics tools to assess its efficacy in silico. Sequences of Leish-F1 protein (TSA, Leif, and LMSTI1) of L. major were taken from GenBank. The helper T (Th) and cytotoxic T (Tc) epitopes of the protein were predicted. The final multi-epitope consisted of 18 CTL epitopes joined by AAY linker. There were also nine HTL epitopes in the structure of the vaccine construct, joined by GPGPG linker. The profilin adjuvant (the toll-like receptor 11 agonist) was also added into the construct by AAY Linker. There were 613 residues in the structure of the vaccine construct. The multi-epitope vaccine candidate was stable and non-allergic. The data obtained from the binding of final multi-epitope vaccine-TLR11 residues (band lengths and weighted scores) unveiled the ligand and the receptor high score of binding affinity. Moreover, in silico assessment of the vaccine construct cloning achieved its suitable expression in E. coli host. Based on these results, the current multi-epitope vaccine prevents L. major infection in silico, while further confirmatory assessments are required.
Collapse
Affiliation(s)
- Mahsa Rabienia
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Rasoul Daneshi
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Abdollahi
- Department of Medical Microbiology, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
8
|
Yunle K, Tong W, Jiyang L, Guojun W. Advances in Helicobacter pylori vaccine research: From candidate antigens to adjuvants-A review. Helicobacter 2024; 29:e13034. [PMID: 37971157 DOI: 10.1111/hel.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Helicobacter pylori is a Gram-negative, spiral-shaped bacterium that infects approximately 50% of the world's population and has been strongly associated with chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoma, and gastric cancer. The elimination of H. pylori is currently considered one of the most effective strategies for the treatment of gastric-related diseases, so antibiotic therapy is the most commonly used regimen for the treatment of H. pylori infection. Although this therapy has some positive effects, antibiotic resistance has become another clinically prominent problem. Therefore, the development of a safe and efficient vaccine has become an important measure to prevent H. pylori infection. METHODS PubMed and ClinicalTrials.gov were systematically searched from January 1980 to March 2023 with search terms-H. pylori vaccine, adjuvants, immunization, pathogenesis, and H. pylori eradication in the title and/or abstract of literature. A total of 5182 documents were obtained. Based on the principles of academic reliability, authority, nearly publicated, and excluded the similar documents, finally, 75 documents were selected, organized, and analyzed. RESULTS Most of the candidate antigens used as H. pylori vaccines in these literatures are whole-cell antigens and virulence antigens such as UreB, VacA, CagA, and HspA, and the main types of vaccines for H. pylori are whole bacteria vaccines, vector vaccines, subunit vaccines, nucleic acid vaccines, epitope vaccines, etc. Some vaccines have shown good immune protection in animal trials; however, few vaccines show good in clinical trials. The only H. pylori vaccine passed phase 3 clinical trial is a recombinant subunit vaccine using Urease subunit B (UreB) as the vaccine antigen, and it shows good prophylactic effects. Meanwhile, the adjuvant system for vaccines against this bacterium has been developed considerably. In addition to the traditional mucosal adjuvants such as cholera toxin (CT) and E. coli heat labile enterotoxin (LT), there are also promising safer and more effective mucosal adjuvants. All these advances made safe and effective H. pylori vaccines come into service as early as possible. CONCLUSIONS This review briefly summarized the advances of H. pylori vaccines from two aspects, candidates of antigens and adjuvants, to provide references for the development of vaccine against this bacterium. We also present our prospects of exosomal vaccines in H. pylori vaccine research, in the hope of inspiring future researchers.
Collapse
Affiliation(s)
- Kuang Yunle
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Tong
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Jiyang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Guojun
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
9
|
Skakic I, Francis JE, Dekiwadia C, Aibinu I, Huq M, Taki AC, Walduck A, Smooker PM. An Evaluation of Urease A Subunit Nanocapsules as a Vaccine in a Mouse Model of Helicobacter pylori Infection. Vaccines (Basel) 2023; 11:1652. [PMID: 38005984 PMCID: PMC10674275 DOI: 10.3390/vaccines11111652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Using removable silica templates, protein nanocapsules comprising the A subunit of Helicobacter pylori urease (UreA) were synthesised. The templates were of two sizes, with solid core mesoporous shell (SC/MS) silica templates giving rise to nanocapsules of average diameter 510 nm and mesoporous (MS) silica templates giving rise to nanocapsules of average diameter 47 nm. Both were shown to be highly monodispersed and relatively homogenous in structure. Various combinations of the nanocapsules in formulation were assessed as vaccines in a mouse model of H. pylori infection. Immune responses were evaluated and protective efficacy assessed. It was demonstrated that vaccination of mice with the larger nanocapsules combined with an adjuvant was able to significantly reduce colonisation.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Ibukun Aibinu
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Health, Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mohsina Huq
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aya C. Taki
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| |
Collapse
|
10
|
Li Z, Zhang Y, Mi C, Deng X, Wang X, Hu D, Yin K, Yin C, Zhao L, Shan B. Identification of the immunogenic membrane proteins, catalase, PgbA, and PgbB, as potential antigens against Helicobacter pylori. J Appl Microbiol 2023; 134:lxad218. [PMID: 37777837 DOI: 10.1093/jambio/lxad218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
AIMS This study aims to investigate the specific membrane antigens that are targeted by antibodies raised against Helicobacter pylori. METHODS AND RESULTS Bovine milk antibodies were prepared using whole H. pylori, purified membrane proteins, or both. Enzyme-linked immunosorbent assay and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments revealed that these immunogens triggered anti-H. pylori antibody production in milk. The highest antibody titer was induced by the mixture of whole bacteria and purified membrane proteins. The antibodies induced by mixed immunogens significantly inhibited H. pylori growth in vitro and were used to identify catalase, plasminogen-binding protein A (PgbA), and PgbB via western blotting, immunoprecipitation, and two-dimensional western blotting followed by liquid chromatography with tandem mass spectrophotometry. The immunogenicity of PgbA and PgbB was verified in mice vaccinated with their B-cell epitope vaccines. Following prophylactic vaccination of C57BL/6 mice, each of the three antigens alone and their combination reduced the weight loss in mice, increased antibody titers, and relieved the inflammatory status of the gastric mucosa following H. pylori infection. CONCLUSIONS Catalase, PgbA, and PgbB could serve as valuable membrane antigens for the development of anti-H. pylori immunotherapies.
Collapse
Affiliation(s)
- Zhirong Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Chaoyi Mi
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiaoqing Deng
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xian Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050000, China
| | - Dailun Hu
- Clinical College, Hebei Medical University, Shijiazhuang, Hebei 050020, China
| | - Kaige Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Changfu Yin
- Clinical College, Hebei Medical University, Shijiazhuang, Hebei 050020, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
11
|
Yang H, Wang L, Zhang M, Hu B. The Role of Adhesion in Helicobacter pylori Persistent Colonization. Curr Microbiol 2023; 80:185. [PMID: 37071212 DOI: 10.1007/s00284-023-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023]
Abstract
Helicobacter pylori (H. pylori) has coevolved with its human host for more than 100 000 years. It can safely colonize around the epithelium of gastric glands via their specific microstructures and proteins. Unless patients receive eradication treatment, H. pylori infection is always lifelong. However, few studies have discussed the reasons. This review will focus on the adhesion of H. pylori from the oral cavity to gastric mucosa and summarize the possible binding and translocation characteristics. Adhesion is the first step for persistent colonization after the directional motility, and factors related to adhesion are necessary. Outer membrane proteins, such as the blood group antigen binding adhesin (BabA) and the sialic acid binding adhesin (SabA), play pivotal roles in binding to human mucins and cellular surfaces. And this may offer different perspectives on eradication.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China
| | - Lixia Wang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China.
| |
Collapse
|
12
|
Montiel-Martínez AG, Vargas-Jerónimo RY, Flores-Romero T, Moreno-Muñoz J, Bravo-Reyna CC, Luqueño-Martínez V, Contreras-Escamilla M, Zamudio-López J, Martínez-Rodríguez S, Barrán-Sánchez F, Villegas-García JC, Barrios-Payán J, Pastor AR, Palomares LA, Esquivel-Guadarrama F, Garrido E, Torres-Vega MA. Baculovirus-mediated expression of a Helicobacter pylori protein-based multiepitope hybrid gene induces a potent B cell response in mice. Immunobiology 2023; 228:152334. [PMID: 36641984 DOI: 10.1016/j.imbio.2023.152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Helicobacter pylori is a gram-negative bacterium that is present in over half of the world's population. The colonization of the stomach́s gastric mucosa by H. pylori is related to the onset of chronic gastritis, peptic ulcer, and cancer. The estimated deaths from gastric cancer caused by this bacterial infection are in the 15,000-150,000 range. Current treatment for controlling the colonization of H. pylori includes the administration of two to four antibiotics and a gastric ATPase proton pump inhibitor. Nevertheless, the bacterium has shown increased resistance to antibiotics. Despite an extensive list of attempts to develop a vaccine, no approved vaccine against H. pylori is available. Recombinant viruses are a novel alternative for the control of primary pathogenic agents. In this work, we employed a baculovirus that carries a Thp1 transgene coding for nine H. pylori epitopes, some from the literature, and others were selected in silico from the sequence of H. pylori proteins (carbonic anhydrase, urease B subunit, gamma-glutamyl transpeptidase, Lpp20, Cag7, and CagL). We verified the expression of this hybrid multiepitopic protein in HeLa cells. Mice were inoculated with the recombinant baculovirus Bac-Thp1 using various administration routes: intranasal, intragastric, intramuscular, and a combination of intranasal and intragastric. We identified a strong adjuvant-independent IgG-antibody response in the serum of recombinant baculovirus-Thp1 inoculated mice, which was specific for a strain of H. pylori isolated from a human patient. The bacterium-specific IgG-antibodies were present in sera 125 days after the first vaccine administration. Also, H. pylori-specific IgA-antibodies were found in feces at 82 days after the first inoculation. A baculovirus-based vaccine for H. pylori is promising for controlling this pathogen in humans.
Collapse
Affiliation(s)
- Ana G Montiel-Martínez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico; Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Roxana Y Vargas-Jerónimo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico; Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Tania Flores-Romero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Jaime Moreno-Muñoz
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Verónica Luqueño-Martínez
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan 14080 Ciudad de México, Mexico
| | - Mariela Contreras-Escamilla
- Departamento de Investigación Experimental y Bioterio, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Jovani Zamudio-López
- Departamento de Investigación Experimental y Bioterio, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Susana Martínez-Rodríguez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Fernanda Barrán-Sánchez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Juan C Villegas-García
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Barrios-Payán
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Vasco de Quiroga no. 15, col. Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - A Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | | | - Efraín Garrido
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Miguel A Torres-Vega
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico.
| |
Collapse
|
13
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Yang H, Mou Y, Hu B. Discussion on the common controversies of Helicobacter pylori infection. Helicobacter 2023; 28:e12938. [PMID: 36436202 DOI: 10.1111/hel.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Helicobacter pylori ( H. pylori ) can persistently colonize on the gastric mucosa after infection and cause gastritis, atrophy, metaplasia, and even gastric cancer (GC). METHODS Therefore, the detection and eradication of H. pylori are the prerequisite. RESULTS Clinically, there are some controversial issues, such as why H. pylori infection is persistent, why it translocases along with the lesser curvature of the stomach, why there is oxyntic antralization, what the immunological characteristic of gastric chronic inflammation caused by H. pylori is, whether H. pylori infection is associated with extra-gastric diseases, whether chronic atrophic gastritis (CAG) is reversible, and what the potential problems are after H. pylori eradication. What are the possible answers? CONCLUSION In the review, we will discuss these issues from the attachment to eradication in detail.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Keikha M, Askari P, Ghazvini K, Karbalaei M. Levofloxacin-based therapy as an efficient alternative for eradicating Helicobacter pylori infection in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist 2022; 29:420-429. [PMID: 34788690 DOI: 10.1016/j.jgar.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Despite excessive resistance of Helicobacter pylori to clarithromycin among the Iranian population, clarithromycin-based therapy is still prescribed in Iran. Recent studies have shown high rates of H. pylori eradication in patients treated with levofloxacin. The main purpose of this study was to compare the effect of levofloxacin with clarithromycin on the eradication of H. pylori infection in the Iranian population. METHODS A comprehensive meta-analysis was done for relevant cohort studies and clinical trials to compare the therapeutic effects of levofloxacin and clarithromycin in the Iranian population. We pooled the data using odds ratio (OR) and corresponding 95% confidence interval (CI) to determine the clinical efficacy of levofloxacin versus clarithromycin to treat H. pylori infection. Heterogeneity and publication bias were also measured for the included studies. RESULTS Thirteen studies were included in the quantitative synthesis. The eradication rate was significantly higher in patients receiving levofloxacin compared with clarithromycin (75.2% vs. 66.3%; OR = 1.76, 95% CI 1.40-2.20). Additionally, in the subgroup analyses it was confirmed that the cure rate was relatively higher in levofloxacin-treated cases. However, there was significant heterogeneity and publication bias, thus the results should be interpreted with caution. CONCLUSION We found that the success of levofloxacin treatment was significantly higher than clarithromycin. Therefore, it is suggested that clarithromycin-based triple therapy be replaced by levofloxacin-based triple therapy in countries with high resistance to clarithromycin such as Iran. Nevertheless, the findings of this study need to be approved with a larger investigation on the Iranian population.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Askari
- Department of Microbiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
16
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
17
|
Xu J, Xie G, Li X, Wen X, Cao Z, Ma B, Zou Y, Zhang N, Mi J, Wang Y, Liao X, Wu Y. Sodium butyrate reduce ammonia and hydrogen sulfide emissions by regulating bacterial community balance in swine cecal content in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112827. [PMID: 34571416 DOI: 10.1016/j.ecoenv.2021.112827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Reducing the production of odor during swine breeding has attracted attention. Ammonia (NH3) and hydrogen sulfide (H2S) contributed to the odor emissions from swine breeding because NH3 emissions are high and hydrogen sulfide (H2S) has a low odor threshold. Sodium butyrate reduces the odor emissions caused by NH3 and H2S, but the corresponding mechanism is unclear. After mixing the feces of six fattening pigs, the mixture was used to process in vitro fermentation experiment. The purpose was researching the effect of sodium butyrate reduced NH3 and H2S emissions in swine cecal contents. The control group was denoted CK, and the treatment groups with different sodium butyrate concentrations (0.015%, 0.030% and 0.150%) were denoted L, M and H. The NH3, H2S, total gas production and physicochemical indexes were measured, and the bacterial communities in the fermented product were analyzed by 16 S rDNA sequencing. The results showed that group M reduced NH3, H2S and total gas production by 17.96%, 12.26% and 30.30%, respectively. Sodium butyrate promoted SO42- accumulation and lowered the pH. Importantly, sodium butyrate decreased the relative abundance of bacteria positively correlated with NH3 and H2S production, but increased the negatively correlated ones. Proteobacteria made a greater contribution to reducing emissions than did other bacterial phyla. Our results showed that adding 0.030% sodium butyrate can significantly reduce NH3 and H2S production, which occurred via alterations in the physicochemical indicators to adjust the abundance of the bacteria related to odor production, including Proteobacteria.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | | | - Xinhua Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
18
|
Cheok YY, Lee CYQ, Cheong HC, Vadivelu J, Looi CY, Abdullah S, Wong WF. An Overview of Helicobacter pylori Survival Tactics in the Hostile Human Stomach Environment. Microorganisms 2021; 9:microorganisms9122502. [PMID: 34946105 PMCID: PMC8705132 DOI: 10.3390/microorganisms9122502] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
- Correspondence:
| |
Collapse
|
19
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. RESULT In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. CONCLUSION Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
20
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Yuan LZ, Shi X, Tang D, Zheng SP, Xiao ZM, Wang F. Construction and preservation of a stable and highly expressed recombinant Helicobacter pylori vacuolating cytotoxin A with apoptotic activity. BMC Microbiol 2021; 21:229. [PMID: 34407768 PMCID: PMC8371779 DOI: 10.1186/s12866-021-02262-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Background H. pylori is closely related to the occurrence and development of various digestive gastritis, peptic ulcer and mucosa-associated lymphoid tissue (MALT) lymphoma. H. pylori is also a class I carcinogen of gastric cancer. VacA is the only exocrine toxin of H. pylori, which plays a very important role in the pathogenesis of H. pylori. The production of VacA in natural circumstances is complex with heavy workload and low yield. Therefore, it is very important to obtain recombinant VacA protein which is stable and biologically active. This study therefore aims to explore the expression, purification and stable storage of VacA toxin of H. pylori in E.coli, and to provide experimental basis for further exploration of the role of VacA in H. pylori -induced inflammation of cancer. Results A 2502-bp fragment and VacA gene were identified. An 89.7-kDa VacA34–854 recombinant protein was expressed and purified from the recombinant engineering bacteria and was preserved stably in 50 mM acetic acid buffer (pH 2.9). The amount of the recombinant protein was larger in the inclusion bodies than in the supernatant. In addition, after a 24-h culture with VacA recombinant protein, GES-1 cells demonstrated evidence of apoptosis including early nuclear immobilization and clustering under inverted microscope and TEM. It was found that VacA recombinant protein induced apoptosis by TUNEL assay. Conclusions A VacA recombinant protein that is stably and highly expressed and possesses pro-apoptotic activity is successfully constructed. The protein is stably preserved in 50 mM acetic acid buffer (pH 2.9). Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02262-7.
Collapse
Affiliation(s)
- Ling-Zhi Yuan
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, 410013, China
| | - Xiao Shi
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, 410013, China
| | - Dan Tang
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, 410013, China
| | - Shao-Peng Zheng
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, 410013, China
| | - Zhi-Ming Xiao
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, 410013, China
| | - Fen Wang
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China. .,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
22
|
Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, Lima de Souza Gonçalves V, Bittencourt de Brito B, França da Silva FA, Oliveira E Silva N, Dantas Pinheiro F, Fernandes Teixeira A, Tanajura Costa D, Oliveira Souza B, Lima Souza C, Vasconcelos Oliveira M, Freire de Melo F. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape. Expert Rev Vaccines 2021; 20:989-999. [PMID: 34139141 DOI: 10.1080/14760584.2021.1945450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Introduction: The interest of the world scientific community for an effective vaccine against Helicobacter pylori infection arises from its high prevalence and association with many diseases. Moreover, with an immunological response that is not always effective for the eradication of the bacteria and an increasing antibiotic resistance in the treatment of this infection, the search for a vaccine and new therapeutic modalities to control this infection is urgent.Areas covered: We bring an overview of the infection worldwide, discussing its prevalence, increasing resistance to antibiotics used in its therapy, in addition to the response of the immune system to the infection registered so far. Moreover, we address the most used antigens and their respective immunological responses expected or registered up to now. Finally, we address the trials and their partial results in development for such vaccines.Expert opinion: Although several studies for the development of an effective vaccine against this pathogen are taking place, many are still in the preclinical phase or even without updated information. In this sense, taking into account the high prevalence and association with important comorbidities, the interest of the pharmaceutical industry in developing an effective vaccine against this pathogen is questioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Davi Tanajura Costa
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Briza Oliveira Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | |
Collapse
|
23
|
Helicobacter pylori BabA-SabA Key Roles in the Adherence Phase: The Synergic Mechanism for Successful Colonization and Disease Development. Toxins (Basel) 2021; 13:toxins13070485. [PMID: 34357957 PMCID: PMC8310295 DOI: 10.3390/toxins13070485] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that successfully inhabits the human stomach, colonizing it by producing several virulence factors responsible for preventing host self-defense mechanisms. The adherence mechanism to gastric mucosal tissue is one of the most important processes for effective colonization in the stomach. The blood group antigen-binding adhesion (BabA) and sialic acid-binding adherence (SabA) are two H. pylori outer membrane proteins able to interact with antigens in the gastroduodenal tract. H. pylori possesses several mechanisms to control the regulation of both BabA and SabA in either the transcriptional or translational level. BabA is believed to be the most important protein in the early infection phase due to its ability to interact with various Lewis antigens, whereas SabA interaction with sialylated Lewis antigens may prove important for the adherence process in the inflamed gastric mucosal tissue in the ongoing-infection phase. The adherence mechanisms of BabA and SabA allow H. pylori to anchor in the gastric mucosa and begin the colonization process.
Collapse
|
24
|
Karbalaei M, Keikha M, Kobyliak N, Khatib Zadeh Z, Yousefi B, Eslami M. Alleviation of halitosis by use of probiotics and their protective mechanisms in the oral cavity. New Microbes New Infect 2021; 42:100887. [PMID: 34123388 PMCID: PMC8173312 DOI: 10.1016/j.nmni.2021.100887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Regarding the relation of halitosis with oral infections and its effects on social relations between humans, the present study investigated the positive effects of probiotics on prevention or treatment of halitosis. The causative agents of halitosis are volatile sulphur compounds (VSCs), and halitosis is divided into oral and non-oral types according to the source of the VSCs. H2S and CH3SH are two main halitosis metabolites-produced following the degradation of proteins by bacteria in the mouth-however, CH3SCH3 has a non-oral origin, and is a blood neutral molecule. Just as much as halitosis is important in medicine, its psychological aspects are also considered, which can even lead to suicide. Today, the use of probiotics as a new therapeutic in many roles is in progress. Most probiotics are used for the treatment of gastrointestinal tract disorders, but various studies on the alleviation of halitosis by use of probiotics have reported satisfactory results. The genera Lactobacillus, Streptococcus and Weissella are among the most useful probiotics for the prevention or treatment of halitosis in the oral cavity.
Collapse
Affiliation(s)
- M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - M. Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - N.M. Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Z. Khatib Zadeh
- School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - B. Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - M. Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
25
|
Youssefi M, Tafaghodi M, Farsiani H, Ghazvini K, Keikha M. Helicobacter pylori infection and autoimmune diseases; Is there an association with systemic lupus erythematosus, rheumatoid arthritis, autoimmune atrophy gastritis and autoimmune pancreatitis? A systematic review and meta-analysis study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:359-369. [PMID: 32891538 DOI: 10.1016/j.jmii.2020.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/07/2020] [Accepted: 08/16/2020] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases are considered as one of the most important disorders of the immune system, in which the prolonged and chronic processes eliminate self-tolerance to the auto-antigens. The prevalence of autoimmune diseases has been increasing worldwide in the recent years. According to the literature, biological processes such as the host genome, epigenetic events, environmental condition, drug consumption, and infectious agents are the most important risk factors that make the host susceptible to the development of autoimmune diseases. In the recent years, the role of Helicobacter pylori in the induction of autoimmune diseases has attracted extensive attention. Via molecular mimicry, epitope spreading, bystander activation, polyclonal activation, dysregulation in immune response, and highly immune-dominant virulence, such as cagA, H. pylori causes tissue damage, polarity, and proliferation of the host cells leading to the modulation of host immune responses. Moreover, given the large population worldwide infected with H. pylori, it seems likely that the bacterium may develop into autoimmune diseases through dysregulation of the immune response. The frequency and relationship between H. pylori infection and systemic lupus erythematosus, rheumatoid arthritis, autoimmune atrophy gastritis, and autoimmune pancreatitis were evaluated using the data from 43 studies involving 5052 patients. According to statistical analysis it is probable that infection with more virulent strains of H. pylori (such as H. pylori cagA positive) can increase the risk of autoimmune diseases. In addition, it was shown that infection with H. pylori can prevent the development of atrophic gastritis by stimulating inflammation in the gastric antrum. However, future studies should confirm the validity of this study.
Collapse
Affiliation(s)
- Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Keikha M, Karbalaei M. EPIYA motifs of Helicobacter pylori cagA genotypes and gastrointestinal diseases in the Iranian population: a systematic review and meta-analysis. New Microbes New Infect 2021; 41:100865. [PMID: 33912350 PMCID: PMC8066700 DOI: 10.1016/j.nmni.2021.100865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is one of the best risk factors for gastric cancer. Recent studies have examined the relationship between virulence factors, in particular CagA toxin, and the development of gastrointestinal diseases. According to the literature, there is a significant relationship between the polymorphism of cagA-EPIYA motifs and progression to severe clinical outcomes. The main goal of our study was to determine the possible association between cagA genotypes and the risk of severe clinical outcomes in the Iranian population. We investigated these ambiguities using a comprehensive meta-analysis study, in which we evaluated data from 1762 Iranian patients for a potential correlation between all cagA gene genotypes and gastrointestinal diseases. According to statistical analysis, the frequencies of cagA genotypes including ABC, ABCC, AB and ABCCC in the Iranian population were estimated at 80.18%, 22.81%, 5.52% and 2.76%, respectively; the ABD genotype was not detected in these PCR-based studies. There was a significant relationship between cagA genotypes ABCC and ABCCC and severe clinical outcomes of infection such as peptic ulcer and gastric cancer. Overall, it can be concluded that there is a positive correlation with the number of copies of EPIYA-C and the increase of gastric cancer. Therefore, according to our results, it seems that the EPIYA-ABCCC motif has a strong positive relationship with gastric cancer in the Iranian population.
Collapse
Affiliation(s)
- M. Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
27
|
Keikha M, Karbalaei M. Correlation between the geographical origin of Helicobacter pylori homB-positive strains and their clinical outcomes: a systematic review and meta-analysis. BMC Gastroenterol 2021; 21:181. [PMID: 33879080 PMCID: PMC8056685 DOI: 10.1186/s12876-021-01764-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In general, all virulence factors of Helicobacter pylori (H. pylori) are involved in its infections. However, recent studies have shown that the homB gene is one of the virulence genes that affects the severity of the clinical results of this bacterium. METHODS The main purpose of this study was to investigate the relationship between the presence of homB gene in H. pylori and the progression of its infection to peptic ulcer and gastric cancer. In the present study, we conducted a systematic search to collect all articles related to the effect of homB-positive strains on clinical outcomes. Finally, 12 eligible studies according to our criteria were included in this meta-analysis and the effect of homB gene on gastric ulcer and gastric cancer diseases was evaluated by summary odds ratio (OR). RESULTS Current results showed that the homB-positive strains significantly increase the risk of peptic ulcer (OR 1.36; 1.07-1.72 with 95% CIs), especially in western countries (OR 1.61; 1.20-2.14 with 95% CIs). Moreover, we observed a positive association between the homB gene and risk of gastric cancer (OR 2.16; 1.37-3.40 with 95% CIs). In addition, based on subgroup analysis, it was found that the presence of this gene in H. pylori strains increases the risk of gastric cancer in the Asian population (OR 3.71; 1.85-7.45 with 95% CIs). CONCLUSIONS Overall, in the present study we found that homB gene is responsible for the progressing of primary infection to severe complications, in particular peptic ulcer in western countries and gastric cancer in Asian countries.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
28
|
Ghazvini K, Keikha M. Can Curcumin be used as a therapeutic agent to eradicate Helicobacter pylori infection? Evidence from human clinical trials. LE PHARMACIEN HOSPITALIER ET CLINICIEN 2021; 56:93-97. [DOI: 10.1016/j.phclin.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Cen Q, Gao T, Ren Y, Lu X, Lei H. Immune evaluation of a Saccharomyces cerevisiae-based oral vaccine against Helicobacter pylori in mice. Helicobacter 2021; 26:e12772. [PMID: 33219579 DOI: 10.1111/hel.12772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a common human pathogenic bacterium that is associated with gastric diseases. The current leading clinical therapy is combination antibiotics, but this treatment has safety issues, especially the induction of drug resistance. Therefore, developing a safe and effective vaccine against H. pylori is one of the best alternatives. OBJECTIVE To develop Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines and then demonstrate the feasibility of this platform for preventing H. pylori infection in the absence of a mucosal adjuvant. MATERIALS AND METHODS Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines, including EBY100/pYD1-UreB and EBY100/pYD1-VacA, were generated and analyzed by Western blot, Immunofluorescence analysis, flow cytometric assay, and indirect enzyme-link immunosorbent assay (ELISA). Further, antibody responses induced by oral administration of EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA were measured in a mouse model. Lastly, the vaccinated mice were infected with H. pylori SS1, and colonization in the stomach were evaluated. RESULTS Saccharomyces cerevisiae-based H. pylori oral vaccines were successfully constructed. Mice orally administered with EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA exhibited a significant humoral immune response as well as a mucosal immune response. Importantly, S. cerevisiae-based oral vaccines could effectively reduce bacterial loads with statistical significance after H. pylori infection. CONCLUSIONS Our study shows that S. cerevisiae-based platforms can serve as an alternative approach for the future development of promising bacterial oral vaccine candidates.
Collapse
Affiliation(s)
- Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
30
|
Importance of Heme Oxygenase-1 in Gastrointestinal Cancers: Functions, Inductions, Regulations, and Signaling. J Gastrointest Cancer 2021; 52:454-461. [PMID: 33484436 DOI: 10.1007/s12029-021-00587-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION : Colorectal cancer (CRC) is one of the important gastrointestinal tract tumors. Heme is mainly absorbed in the colon and induces nitrosamine formation, genotoxicity, and oxidative stress, and increases the risk of CRC. MATERIALS AND METHODS Information was collected from articles on Scopus, Google Scholar, and PubMed. RESULTS Heme can irritate intestinal epithelial cells and increases the proliferation of colonic mucosa. Heme can be considered as a carcinogenic agent for CRC induction. In typical situations, Heme Oxygenase-1 (HO-1) is expressed at low concentration in the gastrointestinal tract, but its expression is elevated during lesion and inflammation. Based on the multiple reports, the impact of HO-1 on tumor growth is related to the cancer cell type. Increased HO-1 levels were also indicated in different human and animal malignancies, possibly through its contribution to tumor cell growth, metastasis, expression of angiogenic factors, and resistance to chemotherapy. Recent studies noted that HO-1 can act as an immunomodulator that suppresses immune cell maturation, activation, and infiltration. It also inhibits apoptosis through CO production that leads to p53 suppression. The upregulation of HO-1 significantly increases the endurance of colon cancer cell lines. Therefore, it is supposed that HO-1 inhibitors could become a novel antitumor agent. Lactobacillus rhamnosus and its metabolites can activate Nrf2 and improves anti-oxidant levels along with upregulation of its objective genes like HO-1, and downregulation of NF-κB which reduce phosphorylated TNF-α, IL-1β, and PAI-1. CONCLUSION The precise mechanism accountable for the anti-inflammatory features of HO-1 is not completely understood; nevertheless, the CO signaling function associated with the antioxidant property shown by bilirubin possibly will play an act in the improvement of inflammation.
Collapse
|
31
|
Karbalaei M, Keikha M. Potential association between the hopQ alleles of Helicobacter pylori and gastrointestinal diseases: A systematic review and meta-analysis. Meta Gene 2020; 26:100816. [DOI: 10.1016/j.mgene.2020.100816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
32
|
Effects of Different Laying Hen Species on Odour Emissions. Animals (Basel) 2020; 10:ani10112172. [PMID: 33233353 PMCID: PMC7700304 DOI: 10.3390/ani10112172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
Odour is one of the main environmental concerns in the laying hen industry and may also influence animal health and production performance. Previous studies showed that odours from the laying hen body are primarily produced from the microbial fermentation (breakdown) of organic materials in the caecum, and different laying hen species may have different odour production potentials. This study was conducted to evaluate the emissions of two primary odorous gases, ammonia (NH3) and hydrogen sulphide (H2S), from six different laying hen species (Hyline, Lohmann, Nongda, Jingfen, Xinghua and Zhusi). An in vitro fermentation technique was adopted in this study, which has been reported to be an appropriate method for simulating gas production from the microbial fermentation of organic materials in the caecum. The results of this study show that Jingfen produced the greatest volume of gas after 12 h of fermentation (p < 0.05). Hyline had the highest, while Lohmann had the lowest, total NH3 emissions (p < 0.05). The total H2S emissions of Zhusi and Hyline were higher than those of Lohmann, Jingfen and Xinghua (p < 0.05), while Xinghua exhibited the lowest total H2S emissions (p < 0.05). Of the six laying hen species, Xinghua was identified as the best species because it produced the lowest total amount of NH3 + H2S (39.94 µg). The results for the biochemical indicators showed that the concentration of volatile fatty acids (VFAs) from Zhusi was higher than that for the other five species, while the pH in Zhusi was lower (p < 0.01), and the concentrations of ammonium nitrogen (NH4+), uric acid and urea in Xinghua were lower than those in the other species (p < 0.01). Hyline had the highest change in SO42- concentration during the fermentation processes (p < 0.05). In addition, the results of the correlation analysis suggested that NH3 emission is positively related to urease activities but is not significantly related to the ureC gene number. Furthermore, H2S emission was observed to be significantly related to the reduction of SO42- but showed no connection with the aprA gene number. Overall, our findings provide a reference for future feeding programmes attempting to reduce odour pollution in the laying hen industry.
Collapse
|
33
|
Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr) 2020; 48:771-788. [PMID: 32763025 DOI: 10.1016/j.aller.2020.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Allergic diseases have been a global problem over the past few decades. The effect of allergic diseases on healthcare systems and society is generally remarkable and is considered as one of the most common causes of chronic and hospitalized disease. The functional ability of probiotics to modulate the innate/acquired immune system leads to the initiation of mucosal/systemic immune responses. Gut microbiota plays a beneficial role in food digestion, development of the immune system, control/growth of the intestinal epithelial cells and their differentiation. Prescribing probiotics causes a significant change in the intestinal microflora and modulates cytokine secretion, including networks of genes, TLRs, signaling molecules and increased intestinal IgA responses. The modulation of the Th1/Th2 balance is done by probiotics, which suppress Th2 responses with shifts to Th1 and thereby prevent allergies. In general, probiotics are associated with a decrease in inflammation by increasing butyrate production and induction of tolerance with an increase in the ratio of cytokines such as IL-4, IL-10/IFN-γ, Treg/TGF-β, reducing serum eosinophil levels and the expression of metalloproteinase-9 which contribute to the improvement of the allergic disease's symptoms. Finally, it can be said that the therapeutic approach to immunotherapy and the reduction of the risk of side effects in the treatment of allergic diseases is the first priority of treatment and the final approach that completes the first priority in maintaining the condition and sustainability of the tolerance along with the recovery of the individual.
Collapse
Affiliation(s)
- M Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - A Bahar
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - M Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - N M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - B Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
34
|
Ghazvini K, Youssefi M, Keikha M. The in silico evaluation of microbial community of gastric microbiota and their role in dyspepsia in two populations from southwestern in Colombia. GENE REPORTS 2020; 20:100794. [DOI: 10.1016/j.genrep.2020.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Karbalaei M, Khorshidi M, Sisakht-pour B, Ghazvini K, Farsiani H, Youssefi M, Keikha M. What are the effects of IL-1β (rs1143634), IL-17A promoter (rs2275913) and TLR4 (rs4986790) gene polymorphism on the outcomes of infection with H. pylori within as Iranian population; A systematic review and meta-analysis. GENE REPORTS 2020; 20:100735. [DOI: 10.1016/j.genrep.2020.100735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Keikha M, Ali-Hassanzadeh M, Karbalaei M. Association of Helicobacter pylori vacA genotypes and peptic ulcer in Iranian population: a systematic review and meta-analysis. BMC Gastroenterol 2020; 20:266. [PMID: 32795257 PMCID: PMC7427722 DOI: 10.1186/s12876-020-01406-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Helicobacter pylori is accounted as the most etiologic agent for digestive disorders, in particular, the most important of them i.e. peptic ulcer and gastric cancer. In the recent years, association of vacA genotypes and gastrointestinal disorders has attracted a lot of attention. In present study, we assessed the correlation between vacA genotypes (s1, s2, m1, m2, s1m1, s1m2, s2m1 and s2m2) and development to peptic ulcer in Iranian population. METHODS In our study, first, 24 original articles containing of information of 3328 patients were evaluated. Statistical analysis was done by Comprehensive Meta-Analysis version 2.0 software (Biostat, Englewood, NJ, USA). In this regards, we used from fixed-effects model for analysis of data with low heterogeneity, while for analysis of data with high heterogeneity (I2 statistic index > 25%, Cochrane Q statistic p value < 0.05), random-effects model was used. RESULTS Abundance of each of s1, s2, m1, m2, s1m1, s1m2, s2m1, and s2m2 was estimated 36.24, 28.32, 42.90 29.86, 27.88, 32.34, 15.70, and 25.94%, respectively. According to the results, the m1, s1, and s1m2 genotypes were among the most prevalent genotypes among the Iranian patients, whereas, s2m1 genotype had the lowest frequency. CONCLUSIONS Overall, 24 articles (total participants = 3328) were included in this comprehensive analysis. H. pylori infection rate were 90.26% in these cases, so that 33.65% of whom had peptic ulcer. Moreover, the abundance of each vacA genotypes including s1, s2, m1, m2, s1m1, s1m2, s2m1, and s2m2 was estimated as 36.24, 28.32, 42.90 29.86, 27.88, 32.34, 15.70, and 25.94% respectively. We demonstrated that there is a significant relationship between infection of stomach with m1, s1m1, and s2m1 genotypes and development to peptic ulcer disease.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
37
|
Keikha M. Is there a relationship between Helicobacter pylori vacA i1 or i2 alleles and development into peptic ulcer and gastric cancer? A meta-analysis study on an Iranian population. New Microbes New Infect 2020; 36:100726. [PMID: 32714559 PMCID: PMC7378689 DOI: 10.1016/j.nmni.2020.100726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori has several virulance factor i.e. VacA, CagA, BabA, SabA, AlpA, AlpB and etc. VacA has several polymorphic region in the nucleotide sequence such as s,m,i,d and, c. It has been suggested that each variation in these polymorphic region has been influenced the toxicity of VacA toxin. We performed a comprehensive meta-analysis to determine the main role of VacAi1/i2 in development into peptic ulcer and gastric cancer in an Iranian population.
Collapse
Affiliation(s)
- M. Keikha
- Antimicrobial Resistance Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur J Clin Microbiol Infect Dis 2020; 39:1821-1830. [PMID: 32557327 PMCID: PMC7299134 DOI: 10.1007/s10096-020-03948-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is associated with some gastric diseases, such as gastritis, peptic ulcer, and gastric cancer. CagA and VacA are known virulence factors of H. pylori, which play a vital role in severe clinical outcomes. Additionally, the expression of outer membrane proteins (OMPs) helps H. pylori attach to gastric epithelial cells at the primary stage and increases the virulence of H. pylori. In this review, we have summarized the paralogs of H. pylori OMPs, their genomic loci, and the different receptors of OMPs identified so far. We focused on five OMPs, BabA (HopS), SabA (HopP), OipA (HopH), HopQ, and HopZ, and one family of OMPs: Hom. We highlight the coexpression of OMPs with other virulence factors and their relationship with clinical outcomes. In conclusion, OMPs are closely related to the pathogenic processes of adhesion, colonization, persistent infection, and severe clinical consequences. They are potential targets for the prevention and treatment of H. pylori–related diseases.
Collapse
Affiliation(s)
- Chenjing Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Yao Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shunfu Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Cardoso VM, Campani G, Santos MP, Silva GG, Pires MC, Gonçalves VM, de C. Giordano R, Sargo CR, Horta AC, Zangirolami TC. Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00441. [PMID: 32140446 PMCID: PMC7049567 DOI: 10.1016/j.btre.2020.e00441] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing E. coli BL21(DE3). Cultivation strategies and corresponding process costs covered a wide range of operational conditions, including different media, inducers, and temperatures. The core expenses were related to the medium and cooling. When the price of peptone was above the threshold value of US$ 30/kg, defined medium became the best choice. IPTG and temperatures around 32 °C led to shorter cultures and lower PspA4Pro production costs. The procedure offers a simple, accessible theoretical tool to identify cost-effective production strategies using bioreactors.
Collapse
Affiliation(s)
- Valdemir M. Cardoso
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Gilson Campani
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
- Department of Engineering, Federal University of Lavras, 37200-000, Lavras, MG, Brazil
| | - Maurício P. Santos
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Gabriel G. Silva
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Manuella C. Pires
- Laboratory of Vaccine Development, Butantan Institute, Av. Vital Brasil 1500, 05508-900, São Paulo, SP, Brazil
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Av. Vital Brasil 1500, 05508-900, São Paulo, SP, Brazil
| | - Roberto de C. Giordano
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Cíntia R. Sargo
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Antônio C.L. Horta
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Teresa C. Zangirolami
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|