1
|
Fu W, Sun A, Dai H. Lipid metabolism involved in progression and drug resistance of breast cancer. Genes Dis 2025; 12:101376. [PMID: 40256431 PMCID: PMC12008617 DOI: 10.1016/j.gendis.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 06/22/2024] [Indexed: 04/22/2025] Open
Abstract
Breast cancer is the most common malignant tumor threatening women's health. Alteration in lipid metabolism plays an important role in the occurrence and development of many diseases, including breast cancer. The uptake, synthesis, and catabolism of lipids in breast cancer cells are significantly altered, among which the metabolism of fatty acids, cholesterols, sphingolipids, and glycolipids are most significantly changed. The growth, progression, metastasis, and drug resistance of breast cancer cells are tightly correlated with the increased uptake and biosynthesis of fatty acids and cholesterols and the up-regulation of fatty acid oxidation. Cholesterol and its metabolite 27-hydroxycholesterol promote the progression of breast cancer in a variety of ways. The alteration of lipid metabolism could promote the epithelial-mesenchymal transition of breast cancer cells and lead to changes in the tumor immune microenvironment that are conducive to the survival of cancer cells. While the accumulation of ceramide in cancer cells shows an inhibitory effect on breast cancer. This review focuses on lipid metabolism and elaborates on the research progress of the correlation between different lipid metabolism and the growth, progression, and drug resistance of breast cancer.
Collapse
Affiliation(s)
- Wenxiang Fu
- Renji School of Clinical Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, Jiangsu 223001, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
2
|
Huber K, Garg S, Schlautmann L, Wang R, He L, Huth R, Pouya A, Rohde C, Janssen M, Lüchtenborg C, Arnold C, Luque‐Navarro PM, Zaugg JB, Raffel S, Müller‐Tidow C, Jeremias I, López‐Cara LC, Brügger B, Pabst C. Phosphatidic acid phosphatase LPIN1 in phospholipid metabolism and stemness in hematopoiesis and AML. Hemasphere 2025; 9:e70118. [PMID: 40265168 PMCID: PMC12012646 DOI: 10.1002/hem3.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 04/24/2025] Open
Abstract
Targeting metabolism represents a promising approach to eradicate leukemic stem cells (LSCs) that are considered critical drivers of relapse in acute myeloid leukemia (AML). In this study, we demonstrate that the phosphatidic acid phosphatase LPIN1, which regulates the synthesis of diacylglycerol, the key substrate for triacylglycerol, and phospholipid production, is crucial for the function of healthy and leukemic hematopoietic stem and progenitor cells (HSPC and LSC). LPIN1 mRNA was highly expressed in the CD34+ compartment of primary human AML samples. LPIN1 suppression inhibited the proliferation of primary leukemic cells and normal HSPCs in vitro and in xenotransplantation assays. Lipidomics analyses revealed a reduction of phosphatidylcholine (PC) and phosphatidylethanolamine and an upregulation of sphingomyelin upon LPIN1 depletion. Distinct phospholipid composition was associated with genetic AML groups, and targeting PC production by choline kinase inhibitors showed strong anti-leukemic activity. In summary, our data establish a regulatory role of LPIN1 in HSPC and LSC function and provide novel insights into the role of glycerophospholipid homeostasis in stemness and differentiation.
Collapse
Affiliation(s)
- Karin Huber
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Department of Medicine II, Hematology and OncologyUniversity Hospital Schleswig HolsteinCampus KielGermany
| | - Swati Garg
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Department of Medical OncologyDana Farber Cancer InstituteBostonMassachusettsUSA
| | - Lena Schlautmann
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Rui Wang
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Lixiazi He
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)University of Heidelberg and European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Richard Huth
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Alireza Pouya
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Christian Rohde
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)University of Heidelberg and European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | | | - Christian Arnold
- Molecular Medicine Partnership Unit (MMPU)University of Heidelberg and European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Pilar M. Luque‐Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Judith B. Zaugg
- Molecular Medicine Partnership Unit (MMPU)University of Heidelberg and European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Carsten Müller‐Tidow
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)University of Heidelberg and European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem CellsHelmholtz MunichOberschleißheimGermany
- Department of PediatricsDr. Von Hauner Children's Hospital, LMU University HospitalLMU MunichMunichGermany
- German Cancer Consortium (DKTK), Partner Site MunichMunichGermany
| | - Luisa C. López‐Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)University of Heidelberg and European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| |
Collapse
|
3
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
4
|
Carman GM, Stukey GJ, Jog R, Han GS. Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target. Adv Biol Regul 2025; 95:101074. [PMID: 39788800 PMCID: PMC11832324 DOI: 10.1016/j.jbior.2025.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Phosphatidic acid phosphatase, a conserved eukaryotic enzyme that catalyzes the Mg2+-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol, has emerged as a vital regulator of lipid homeostasis. By controlling the balance of phosphatidic acid and diacylglycerol, the enzyme governs the use of the lipids for synthesis of the storage lipid triacylglycerol and the membrane phospholipids needed for cell growth. The mutational, biochemical, and cellular analyses of yeast phosphatidic acid phosphatase have provided insights into the structural determinants of enzyme function with the understanding of its regulation by phosphorylation and dephosphorylation. The key role that the enzyme plays in triacylglycerol synthesis indicates it may be a potential drug target to ameliorate obesity in humans. The enzyme activity, which is critical to the growth and virulence of pathogenic fungi, is a proposed target for therapeutic development to ameliorate fungal infections.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
5
|
Stukey GJ, Breuer MR, Burchat N, Jog R, Schultz K, Han GS, Sachs MS, Sampath H, Marmorstein R, Carman GM. The antidepressant drug sertraline is a novel inhibitor of yeast Pah1 and human lipin 1 phosphatidic acid phosphatases. J Lipid Res 2025; 66:100711. [PMID: 39577771 PMCID: PMC11721541 DOI: 10.1016/j.jlr.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Phosphatidic acid phosphatase (PAP) is an evolutionarily conserved eukaryotic enzyme that catalyzes the Mg2+-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol. The product and substrate of PAP are key intermediates in the synthesis of triacylglycerol and membrane phospholipids. PAP activity is associated with lipid-based cellular defects indicating the enzyme is an important target for regulation. We identified that the antidepressant sertraline is a novel inhibitor of PAP. Using Saccharomyces cerevisiae Pah1 as a model PAP, sertraline inhibited the activity by a noncompetitive mechanism. Sertraline also inhibited the PAP activity of human lipin 1 (α, β, and γ), an orthologue of Pah1. The inhibitor constants of sertraline for the S. cerevisiae and human PAP enzymes were 7-fold and ∼2-fold, respectively, lower than those of propranolol, a commonly used PAP inhibitor. Consistent with the inhibitory mechanism of sertraline and propranolol, molecular docking of the inhibitors predicts that they interact with non-catalytic residues in the haloacid dehalogenase-like catalytic domain of Pah1. The Pah1-CC (catalytic core) variant, which lacks regulatory sequences, was inhibited by both drugs in accordance with molecular docking data. That Pah1 is a physiological target of sertraline in S. cerevisiae is supported by the observations that the overexpression of PAH1 rescued the sertraline-mediated inhibition of pah1Δ mutant cell growth, the lethal effect of overexpressing Pah1-CC was rescued by sertraline supplementation, and that a sublethal dose of the drug resulted in a 2-fold decrease in TAG content.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Matthew R Breuer
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Natalie Burchat
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ruta Jog
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gil-Soo Han
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M Carman
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Hu S, Tey SK, Kwong A. Adipogenesis biomarkers as the independent predictive factors for breast cancer recurrence: a systematic review and meta-analysis. BMC Cancer 2024; 24:1181. [PMID: 39333940 PMCID: PMC11438415 DOI: 10.1186/s12885-024-12931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Comprehensive analysis of clinical evidence for breast cancer adipogenesis with prognosis is lacking. This study aims to consolidate the latest evidence on the relationship between adipogenesis and breast cancer outcomes. DATA SOURCES Medline, Web of Science, Embase, Scopus, Clinicaltrials.gov, Cochrane library. METHODS A systematic review was conducted according to the PRISMA guidelines. Studies that reported the correlation between tumor adipogenesis and cancer recurrence or empirical pathological markers were included for meta-analysis. The standard reference for pathological markers determination was set as histopathological examination. The PROSPERO ID was CRD489135. RESULTS Eleven studies were included in this systematic review and meta-analysis. Several adipogenesis biomarkers involved in the synthesis, elongation, and catabolism of fatty acids, such as FASN, Spot 14, pS6K1, lipin-1, PLIN2, Elovl6, and PPARγ, were identified as the potential biomarkers for predicting outcomes. Through meta-analysis, the predictive value of adipogenesis biomarkers for 5-year recurrence rate was calculated, with a pooled predictive risk ratio of 2.19 (95% CI: 1.11-4.34). In terms of empirical pathological markers, a negative correlation between adipogenesis biomarkers and ki-67 was observed (RR: 0.69, 95% CI: 0.61-0.79). However, no significant correlation was found between the adipogenesis and ER, PR, HER2, or p53 positivity. CONCLUSIONS Biomarker of adipogenesis in breast cancer is a significant predictor of long-term recurrence, and this prediction is independent of HR, HER2, and ki-67. The diverse roles of adipogenesis in different breast cancer subtypes highlight the need for further research to uncover specific biomarkers that can used for diagnosis and prediction. PROTOCOL REGISTRATION PROSPERO ID: CRD489135.
Collapse
Affiliation(s)
- Shihang Hu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sze Keong Tey
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ava Kwong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Dinarvand N, Azizi R, Rastaghi S, Karimi F, Sheikhi A, Pourfarzam M. Evaluation of MYC Oncogene Expression in Human Breast Cancer and Its Relationship with ACSL4 and Lipin-1 Expression. Adv Biomed Res 2024; 13:83. [PMID: 39512404 PMCID: PMC11542691 DOI: 10.4103/abr.abr_419_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 11/15/2024] Open
Abstract
Background Disturbances in lipid metabolism are one of the hallmarks of cancer cells. Fatty acid synthesis and oxidation play a crucial role in the proliferation, growth, and survival of cancer cells. Several enzymes are involved in lipid metabolism. MYC is an oncogene and plays various regulatory roles in lipid metabolism. This study aimed to evaluate MYC expression and its association with the expressions of Lipin-1, ACSL4 (enzymes involved in lipid metabolism), in pairs of breast cancer (BC) and adjacent normal tissues to further understand the MYC influence on metabolic regulation. Materials and Methods Fifty-five pairs of samples of BC and noncancerous adjacent tissues were utilized in the present study to analyze MYC, Lipin-1, and ACSL4 by quantitative real-time polymerase chain reaction. Further, the expression of Lipin-1 and ACSL4 proteins and a number of other clinicopathologically relevant variables were studied employing immunohistochemistry staining. Results MYC expression was substantially higher in BC tissues than in adjacent normal tissues, according to our findings. This upregulation was positively correlated with tumor size and stage. Although MYC expression was not correlated with that of ACSL4 and Lipin-1 expression, this may result from the complex metabolic changes that occur when cells become malignant. Conclusions Although further research is required to assess MYC's impact on tumor metabolic regulation, the correlations seen here between MYC, the pathological stage, and tumor size may indicate its prognostic significance in BC. Hence, it may be considered as a potential therapeutic target for further studies.
Collapse
Affiliation(s)
- Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizi
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Sedighe Rastaghi
- Department of Biostatistics, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Abdolkarim Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Slane EG, Tambrini SJ, Cummings BS. Therapeutic potential of lipin inhibitors for the treatment of cancer. Biochem Pharmacol 2024; 222:116106. [PMID: 38442792 DOI: 10.1016/j.bcp.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Lipins are phosphatidic acid phosphatases (PAP) that catalyze the conversion of phosphatidic acid (PA) to diacylglycerol (DAG). Three lipin isoforms have been identified: lipin-1, -2 and -3. In addition to their PAP activity, lipin-1 and -2 act as transcriptional coactivators and corepressors. Lipins have been intensely studied for their role in regulation of lipid metabolism and adipogenesis; however, lipins are hypothesized to mediate several pathologies, such as those involving metabolic diseases, neuropathy and even cognitive impairment. Recently, an emerging role for lipins have been proposed in cancer. The study of lipins in cancer has been hampered by lack of inhibitors that have selectivity for lipins, that differentiate between lipin family members, or that are suitable for in vivo studies. Such inhibitors have the potential to be extremely useful as both molecular tools and therapeutics. This review describes the expression and function of lipins in various tissues and their roles in several diseases, but with an emphasis on their possible role in cancer. The mechanisms by which lipins mediate cancer cell growth are discussed and the potential usefulness of selective lipin inhibitors is hypothesized. Finally, recent studies reporting the crystallization of lipin-1 are discussed to facilitate rational design of novel lipin inhibitors.
Collapse
Affiliation(s)
- Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samantha J Tambrini
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Brian S Cummings
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
10
|
Nguyen YDH, Yoshida H, Tran TM, Kamei K. Lipin knockdown in pan-neuron of Drosophila induces reduction of lifespan, deficient locomotive behavior, and abnormal morphology of motor neuron. Neuroreport 2023; 34:629-637. [PMID: 37470742 PMCID: PMC10344432 DOI: 10.1097/wnr.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The Lipin family is evolutionarily conserved among insects and mammals, and its crucial roles in lipid synthesis and homeostatic control of energy balance have been well documented. This study investigated the function of Lipin in neuronal function and neurodegeneration. The GAL4/UAS system was used to knock down Lipin in the nervous system of Drosophila and investigate its behavioral and cellular phenotypes. The neuromuscular junction (NMJ) morphology was detected by immunostaining. Moreover, triacylglycerol and ATP levels were analyzed by using assay Kit. This study found that Lipin is localized almost in the cytoplasm of neurons in the brain lobe and ventral nerve cord, which are part of the central nervous system (CNS) of Drosophila melanogaster. Lipin knockdown larvae exhibit decreased locomotor activity, aberrant morphology of motor nerve terminals at NMJs, and reduced number and size of lipid droplets in the CNS. Furthermore, neuron-specific knockdown of Lipin leads to locomotor defects and a shortened lifespan, accompanied by a reduction in ATP levels in the adult stage. These results indicate that Lipin plays a crucial role in the CNS of Drosophila.
Collapse
Affiliation(s)
- Yen D H Nguyen
- Department of Functional Chemistry, Kyoto Institute of Technology
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Thanh Men Tran
- Department of Biology, College of Natural Sciences, Cantho University, Cantho City, Vietnam
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology
| |
Collapse
|
11
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
12
|
Evaluation of the gene encoding carnitine transporter (OCTN2/SLC22A5) expression in human breast cancer and its association with clinicopathological characteristics. Mol Biol Rep 2023; 50:2061-2066. [PMID: 36539562 DOI: 10.1007/s11033-022-08152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fatty acid oxidation (FAO) is a major energy-generating process in the mitochondria and supports proliferation, growth, and survival of cancer cells. L-Carnitine is an essential co-factor for carrying long-chain fatty acids into the mitochondria. The entry of l-carnitine across cell membrane is regulated by OCTN2 (SLC22A5). Thus, it can plays a significant role in the mitochondrial fatty acid oxidation. This study aimed to evaluate the OCTN2 expression and its association with clinicopathological characteristics in breast cancer. METHODS In this work, OCTN2 was examined in 54 pairs of fresh samples of breast cancer (BC) and adjacent noncancerous tissue using quantitative real-time polymerase chain reaction and immunohistochemistry (IHC). The IHC approach was also used to investigate the expression of additional clinicopathological features. RESULTS The present research findings revealed that the relative expression of OCTN2 in BC tissues was substantially higher than the adjacent normal tissues. This up-regulation was correlated positively with tumor size and Ki-67 and negatively with the progesterone receptor (PR) status, providing evidence of the opposite effects of OCTN2 and PR on tumor development. CONCLUSION The study shows that the OCTN2 expression in BC patients may be used as a prognostic biomarker and a tumor oncogene. As a result, it could be considered a possible therapeutic target. Nevertheless, the significance of the findings needs to be confirmed by further studies.
Collapse
|
13
|
Wei W, Tlili I, Mahmoud M, Sajadi SM, Li Z. Numerical simulation to model the effect of injection velocity on the thermo-hydraulic behavior of the microchannel fluid flow via Navier–Stokes equations joined with the slip velocity boundary condition. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:1363. [DOI: 10.1140/epjp/s13360-022-03565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2025]
|
14
|
Adinew GM, Messeha S, Taka E, Soliman KFA. The Prognostic and Therapeutic Implications of the Chemoresistance Gene BIRC5 in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14215180. [PMID: 36358602 PMCID: PMC9659000 DOI: 10.3390/cancers14215180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance affects TNBC patient treatment responses. Therefore, identifying the chemoresistant gene provides a new approach to understanding chemoresistance in TNBC. BIRC5 was examined in the current study as a tool for predicting the prognosis of TNBC patients and assisting in developing alternative therapies using online database tools. According to the examined studies, BIRC5 was highly expressed in 45 to 90% of TNBC patients. BIRC5 is not only abundantly expressed but also contributes to resistance to chemotherapy, anti-HER2 therapy, and radiotherapy. Patients with increased expression of BIRC5 had a median survival of 31.2 months compared to 85.8 months in low-expression counterparts (HR, 1.73; CI, 1.4−2.13; p = 2.5 × 10−7). The overall survival, disease-free survival, relapse-free survival, distant metastasis-free survival, and the complete pathological response of TNBC patients with high expression of BIRC5 who received any chemotherapy (Taxane, Ixabepilone, FAC, CMF, FEC, Anthracycline) and anti-HER2 therapy (Trastuzumab, Lapatinib) did not differ significantly from those patients receiving any other treatment. Data obtained indicate that the BIRC5 promoter region was substantially methylated, and hypermethylation was associated with higher BIRC5 mRNA expression (p < 0.05). The findings of this study outline the role of BIRC5 in chemotherapy-induced resistance of TNBC, further indicating that BIRC5 may serve as a promising prognostic biomarker that contributes to chemoresistance and could be a possible therapeutic target. Meanwhile, several in vitro studies show that flavonoids were highly effective in inhibiting BIRC5 in genetically diverse TNBC cells. Therefore, flavonoids would be a promising strategy for preventing and treating TNBC patients with the BIRC5 molecule.
Collapse
|
15
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
16
|
Zhu D, Shi C, Jiang Y, Zhu K, Wang X, Feng W. Cisatracurium inhibits the growth and induces apoptosis of ovarian cancer cells by promoting lincRNA-p21. Bioengineered 2021; 12:1505-1516. [PMID: 33944652 PMCID: PMC8806207 DOI: 10.1080/21655979.2021.1916271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As a common muscle relaxant, cisatracurium has shown good antitumor effect on some tumors. Recent studies reported that cisatracurium could inhibit the progression of colon cancer by upregulating tumor suppressor gene p53. However, its role in ovarian cancer and its regulatory effect on p53 and p53 downstream targeting gene long intergenic noncoding RNA p21 (lincRNA-p21) is still unknown. Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) was used to assess the expression of p53, lincRNA-p21 and miR-181b. Cell viability and proliferation were detected by CCK-8 assay and Edu staining, respectively. Wound-healing and Transwell assays were performed to determine the abilities of cell migration and invasion. Apoptosis was evaluated by TUNEL staining. Luciferase reporter assay was conducted to detect the relationship between lincRNA-p21 and miR-181b. As a result, cisatracurium could increase the expressions of p53 and lincRNA-p21 of ovarian cancer cell line (OVCAR-3) in a dose-dependent manner. In addition, cisatracurium significantly inhibited the proliferation, migration and invasion of OVACR-3 cells, and induced apoptosis. However, these above changes in biological function can be attenuated by lincRNA-p21 knockdown. Next, lincRNA-p21 could directly target miR-181b and negatively regulate its expression by luciferase reporter assay. In conclusion, cisatracurium inhibited the progression of OVCAR-3 cells through upregulation of lincRNA-p21 expression activated by p53 inhibiting miR-181b expression. The experimental results provide a new research idea for the application of cisatracurium in ovarian cancer.
Collapse
Affiliation(s)
- Dezhang Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Caifeng Shi
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanan Jiang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kongjuan Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangzhen Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Kim JY, Kim G, Lim SC, Choi HS. IL-33-Induced Transcriptional Activation of LPIN1 Accelerates Breast Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092174. [PMID: 33946554 PMCID: PMC8124251 DOI: 10.3390/cancers13092174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipids are crucial materials that are not only required for cell membrane construction but also play significant roles as signaling molecules. LPIN1 is an enzyme that displays phosphatidate phosphatase activity in the triglyceride and phospholipid synthesis pathway. Recent studies have shown that overexpression of LPIN1 is involved in breast tumorigenesis, but the underlying mechanism regulating LPIN1 expression has not been elucidated yet. In the present study, we showed that the IL-33-induced COT-JNK1/2 signaling pathway regulates LPIN1 mRNA and protein expression by recruiting c-Jun to the LPIN1 promoter in breast cancer cells. IL-33 dose-dependently and time-dependently increased LPIN1 mRNA and protein expression. Moreover, IL-33 promoted colony formation and mammary tumorigenesis via induction of LPIN1 expression, while inhibition of LPIN1 disturbed IL-33-induced cell proliferation and mammary tumorigenesis. IL-33-driven LPIN1 expression was mediated by the COT-JNK1/2 signaling pathway, and inhibition of COT or JNK1/2 reduced LPIN1 expression. COT-JNK1/2-mediated IL-33 signaling activated c-Jun and promoted its binding to the promoter region of LPIN1 to induce LPIN1 expression. These findings demonstrated the regulatory mechanism of LPIN1 transcription by the IL-33-induced COT/JNK1/2 pathway for the first time, providing a potential mechanism underlying the upregulation of LPIN1 in cancer.
Collapse
Affiliation(s)
- Jin-Young Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
| | - Garam Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju 61452, Korea;
| | - Hong-Seok Choi
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
- Correspondence: ; Fax: +82-62-222-5414
| |
Collapse
|
18
|
Brohée L, Crémer J, Colige A, Deroanne C. Lipin-1, a Versatile Regulator of Lipid Homeostasis, Is a Potential Target for Fighting Cancer. Int J Mol Sci 2021; 22:ijms22094419. [PMID: 33922580 PMCID: PMC8122924 DOI: 10.3390/ijms22094419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.
Collapse
|
19
|
Ma T, Kong M. Interleukin-18 and -10 may be associated with lymph node metastasis in breast cancer. Oncol Lett 2021; 21:253. [PMID: 33664817 PMCID: PMC7882877 DOI: 10.3892/ol.2021.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/06/2021] [Indexed: 12/09/2022] Open
Abstract
Reports on the expression of interleukin (IL)-10 in breast cancer are rare. The present study investigated the correlation between IL-18 and −10 in breast cancer, and assessed their clinical significance. Breast cancer (n=104) and breast fibroadenoma (n=31) tissues that were surgically removed and pathologically confirmed at Jinan Central Hospital Affiliated to Shandong University (Jinan, China) between November 2016 and January 2019 were collected. The expression of IL-18 and −10 was observed via immunohistochemistry. Breast cancer tissues were positive for IL-18 expression, which was primarily located in the cell membrane and cytoplasm. A significant difference in IL-18 expression was observed between breast cancer and fibroadenoma tissues (75.0 vs. 19.4%; P<0.001). IL-10 was expressed in breast cancer tissues and primarily located in the cytoplasm. Breast cancer tissues showed a significantly higher level of IL-10 expression compared with breast fibroadenoma tissues (78.8 vs. 22.6%; P<0.001). The regions of positive IL-18 and −10 expression were consistent. Tissues with positive expression of IL-18 and/or −10 had a significantly higher rate of lymph node metastasis than those with negative expression (IL-18: 67.9 vs. 42.3%; P=0.035; and IL-10: 67.1 vs. 40.9%; P=0.047). In conclusion, IL-18 is highly expressed in breast cancer and correlates positively with IL-10. Both IL-18 and −10 may correlate positively with lymph node metastasis in breast cancer.
Collapse
Affiliation(s)
- Teng Ma
- Department of Internal Medicine, The Fifth People's Hospital of Jinan, Jinan, Shandong 250000, P.R. China
| | - Meng Kong
- Department of General Surgery, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
20
|
Zhang J. Targeting mTOR by CZ415 Suppresses Cell Proliferation and Promotes Apoptosis via Lipin-1 in Cervical Cancer In Vitro and In Vivo. Reprod Sci 2021; 28:524-531. [PMID: 32944878 DOI: 10.1007/s43032-020-00313-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
CZ415, a novel inhibitor of mammalian target of rapamycin (mTOR) kinase, has demonstrated anti-tumor activity in several types of cancer. However, its biological function and underlying mechanism of action in cervical cancer (CC) have not been fully studied. Two CC cell lines (Hela and Siha) were treated with increasing concentrations of CZ415. Cell viability was tested with the CCK-8 assay, cell proliferation was determined by Edu staining and the colony formation assay, and apoptosis was determined by flow cytometry and Hoechst 33342 staining. Protein expression was evaluated by western blotting. A nude mouse xenograft model was used to confirm the anti-tumor activity of CZ415 in vivo. Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining were performed on samples of tumor tissue. Results showed that CZ415 inhibited CC cell survival in a dose- and time-dependent manner, and 100 nanomolar and 48 h were the optimal conditions. In vitro and in vivo experiments showed that treatment with CZ415 significantly inhibited spheroid formation, cell proliferation, and tumor growth. Further studies showed that the anti-cancer effects of CZ415 were due to an induction of apoptosis, which was accompanied by an upregulation of Bax and downregulation of Bcl-2 through Lipin-1. CZ415 also reduced the levels of mTOR/STAT3 expression. However, these phenotypic changes were reversed by overexpression of Lipin-1. Our results suggest that the novel mTOR inhibitor CZ415 mediates tumor malignancy via Lipin-1 and might be useful for treating CC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Women's Health Care, Xiaonan District Maternity and Child Healthcare Hospital, Xiaogan City, 432000, Hubei Province, China.
| |
Collapse
|
21
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
23
|
Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. An innovative cell selection approach in developing human cells overexpressing aspartyl/asparaginyl β-hydroxylase. Res Pharm Sci 2020; 15:291-299. [PMID: 33088329 PMCID: PMC7540811 DOI: 10.4103/1735-5362.288436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022] Open
Abstract
Background and purpose: Aspartyl/asparaginyl β-hydroxylase (ASPH) is abundantly expressed in malignant neoplastic cells. The establishment of a human cell line overexpressing ASPH could provide the native-like recombinant protein needed for developing theranostic probes. In the process of transfection, the obtained cells normally contain a range of cells expressing the different levels of the target of interest. In this paper, we report on our simple innovative approach in the selection of best-transfected cells with the highest expression of ASPH using subclone selection, quantitative real-time polymerase chain reaction, and gradual increment of hygromycin concentration. Experimental approach: To achieve this goal, human embryonic kidney (HEK 293T) cells were transfected with an ASPH-bearing pcDNA3.1/Hygro(+) vector. During antibiotic selection, single accumulations of the resistant cells were separately cultured and the ASPH mRNA levels of each flask were evaluated. The best subclones were treated with a gradually increasing amount of hygromycin. The ASPH protein expression of the obtained cells was finally evaluated using flow cytometry and immunocytochemistry. Findings / Results: The results showed that different selected subclones expressed different levels of ASPH. Furthermore, the gradual increment of hygromycin (up to 400mg/mL) improved the expression of ASPH. The best relative fold change in mRNA levels was 57.59 ± 4.11. Approximately 90.2% of HEKASPH cells overexpressed ASPH on their surface. Conclusion and implications: The experiments indicated that we have successfully constructed and evaluated a recombinant human cell line overexpressing ASPH on the surface. Moreover, our innovative selection approach provided an effective procedure for enriching highly expressing recombinant cells.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Abbas Ali Palizban
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|