1
|
Hu X, Sun H, Shan L, Ma C, Quan H, Zhang Y, Zhang J, Fan Z, Tang Y, Deng L. Unraveling Disease-Associated PIWI-Interacting RNAs with a Contrastive Learning Methods. J Chem Inf Model 2025. [PMID: 40263714 DOI: 10.1021/acs.jcim.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small, non-coding RNAs predominantly expressed in the germ cells of animals and play a crucial role in maintaining genomic integrity, mediating transposon suppression, and ensuring gene stability. Beyond their functions in reproductive cells, piRNAs also play roles in various human diseases, including cancer, suggesting their potential as significant biomarkers critical for disease diagnosis and treatment. Wet-lab methods to identify piRNA-disease associations require substantial resources and are often hit-or-miss. With advancements in computational technologies, an increasing number of researchers are employing computational methods to efficiently predict potential piRNA-disease associations. The sparsity of data in piRNA-disease association studies significantly limits model performance improvement. In this study, we propose a novel computational model, iPiDA_CL, to predict potential piRNA-disease associations through contrastive learning methods, which do not require negative samples. The model represents piRNA-disease association pairs as a bipartite graph and computes the initial embeddings of piRNAs and diseases using Gaussian kernel similarity, with features updated via LightGCN. Based on the siamese network framework, iPiDA_CL constructs online and target networks and employs data augmentation in the target network to build a contrastive learning objective that optimizes model parameters without introducing negative samples. Finally, cross-prediction methods are used to calculate specific piRNA-disease association scores. A series of experimental results demonstrate that iPiDA_CL surpasses state-of-the-art methods in both performance and computational efficiency. The application of iPiDA_CL to the miRNA-disease association dataset underscores its versatility across various ncRNA-disease association task. Furthermore, a case study highlights iPiDA_CL as an efficient and promising tool for predicting piRNA-disease associations.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Hao Sun
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Linchao Shan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Chenxi Ma
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Hanming Quan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Yuanpeng Zhang
- School of software, Xinjiang University, Urumqi 830049, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92161, United States
| | - Ziyu Fan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Yongjun Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410083, China
| | - Lei Deng
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| |
Collapse
|
2
|
Yao TT, Chen L, Du Y, Jiang ZY, Cheng Y. MicroRNAs as Regulators, Biomarkers, and Therapeutic Targets in Autism Spectrum Disorder. Mol Neurobiol 2025; 62:5039-5056. [PMID: 39503812 DOI: 10.1007/s12035-024-04582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 03/05/2025]
Abstract
The pathogenesis of autism spectrum disorder (ASD) is complex and is mainly influenced by genetic and environmental factors. Some research has indicated that environmental aspects may interplay with genetic aspects to enhance the risk, and microRNAs (miRNAs) are probably factors in explaining this link between heredity and the environment. MiRNAs are single-stranded noncoding RNAs that can regulate gene expression at the posttranscriptional level. Some research has indicated that miRNAs are closely linked to neurological diseases. Many aberrantly expressed miRNAs have been observed in autism, and these dysregulated miRNAs are expected to be potential biomarkers and provide new strategies for the treatment of this disease. This article reviews the research progress of miRNAs in autism, including their biosynthesis and function. It is found that some miRNAs show aberrant expression patterns in brain tissue and peripheral blood of autistic patients, which may serve as biomarkers of the disease. In addition, the article explores the novel role of exosomes as carriers of miRNAs with the ability to cross the blood-brain barrier and unique expression profiles, offering new possibilities for diagnostic and therapeutic interventions in ASD. The potential of miRNAs in exosomes as diagnostic markers for ASD is specifically highlighted, as well as the prospect of using engineered exosome-encapsulated miRNAs for targeted therapies.
Collapse
Affiliation(s)
- Tong-Tong Yao
- Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zhong-Yong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, China.
| | - Yong Cheng
- Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China.
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
3
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Szabó I, Szenczi Á, Zand A, Varjas T, Varga C. The Effect of Szigetvár Medicinal Water on HaCaT Cells Exposed to Dithranol. Life (Basel) 2024; 14:1318. [PMID: 39459618 PMCID: PMC11509105 DOI: 10.3390/life14101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Introduction: Topical dithranol is still commonly used today as an effective treatment for psoriasis. Dithranol treatment is often supplemented with balneotherapy, which has been shown to increase effectiveness and reduce side effects. The inorganic salts (sulfhide, selenium, zinc) are usually thought to be responsible for the effect. The antioxidant effect of the waters is thought to be behind the therapeutic effect, for which inorganic substances (sulfides, selenium, zinc) are thought to be responsible. The organic matter content of medicinal waters is also particularly important, as humic acids, which are often found in medicinal waters, have antioxidant effects. (2) Methods: In this short-term experiment, we aimed to test the possible protective effect of Szigetvár medicinal water and its organic matter isolate on HaCaT cells exposed to dithranol. Malondialdehyde levels were measured, and RT-qPCR was used to investigate the gene expression of selected cytokines relevant in the oxidative stress response (IL-6, IL-8, TNF-α, GM-CSF) and the expression of microRNA-21. (3) Results: Szigetvár medicinal water and the organic isolate prevented the increase in malondialdehyde levels caused by dithranol treatment. The cytokine gene expressions elevated by dithranol exposure were reduced by the treatment. (4) Conclusions: Szigetvár medicinal water and organic substances alone may have a protective effect on patients' healthy skin surfaces against dithranol damage. We also demonstrated that the organic compounds are also responsible for the protective effect.
Collapse
Affiliation(s)
- István Szabó
- Department of Public Health Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary; (Á.S.); (A.Z.); (T.V.); (C.V.)
| | | | | | | | | |
Collapse
|
5
|
Fumimoto C, Yamauchi N, Minagawa E, Umeda M. MiR-146a Is Mutually Regulated by High Glucose-Induced Oxidative Stress in Human Periodontal Ligament Cells. Int J Mol Sci 2024; 25:10702. [PMID: 39409031 PMCID: PMC11476635 DOI: 10.3390/ijms251910702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The high-glucose conditions caused by diabetes mellitus (DM) exert several effects on cells, including inflammation. miR-146a, a kind of miRNA, is involved in inflammation and may be regulated mutually with reactive oxygen species (ROS), which are produced under high-glucose conditions. In the present study, we used human periodontal ligament cells (hPDLCs) to determine the effects of the high-glucose conditions of miR-146a and their involvement in the regulation of oxidative stress and inflammatory cytokines using Western blotting, PCR, ELISA and other methods. When hPDLCs were subjected to high glucose (24 mM), cell proliferation was not affected; inflammatory cytokine expression, ROS induction, interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) expression increased, but miR-146a expression decreased. Inhibition of ROS induction with the antioxidant N-acetyl-L-cysteine restored miR-146a expression and decreased inflammatory cytokine expression compared to those under high-glucose conditions. In addition, overexpression of miR-146a significantly suppressed the expression of the inflammatory cytokines IRAK1 and TRAF6, regardless of the glucose condition. Our findings suggest that oxidative stress and miR-146a expression are mutually regulated in hPDLCs under high-glucose conditions.
Collapse
Affiliation(s)
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata 573-1121, Osaka, Japan; (C.F.); (E.M.); (M.U.)
| | | | | |
Collapse
|
6
|
Sindhu KJ, Nalini V, Suraishkumar GK, Karunagaran D. MiR-34b promotes oxidative stress and induces cellular senescence through TWIST1 in human cervical cancer. Transl Oncol 2024; 48:102063. [PMID: 39094513 PMCID: PMC11342277 DOI: 10.1016/j.tranon.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE The aim of this research was to elucidate the role of miR-34b in cervical cancer progression and the underlying mechanism behind the miR-34b-mediated tumor suppression. The study revealed the role of miR-34b as a senescence inducer and serves as a potential therapeutic target in developing combination therapy with senotherapeutics. METHODS MiR-34b was ectopically expressed in cervical cancer cell lines using a tetracycline inducible system and its effects on cell viability, apoptosis, senescence, DNA damage and oxidative stress were studied using MTT assay, acridine orange/ ethidium bromide staining, senescence associated β-galactosidase assay, gamma H2AX foci staining assay, western blotting and specific dyes for the detection of total and individual ROS species. RESULTS Ectopic expression of miR-34b promoted cellular senescence but no significant induction of apoptosis was observed in cervical cancer cell lines. MiR-34b promoted increase in oxidative stress through increase in total and individual ROS species and contributed to increase in cellular senescence. Mechanistically, miR-34b mediates its action by targeting TWIST1 as evidenced by the similar actions of TWIST1 shRNA in cervical cancer cell lines. Furthermore, our study revealed TWIST1 is one of the most significant targets of miR-34b targetome and identified RITA as a novel senolytic agent for use in combination therapy with miR-34b. CONCLUSION MiR-34b promotes cellular senescence and oxidative stress by targeting TWIST1, a known oncogene and EMT regulator. This study delved into the mechanism of miR-34b-mediated tumor suppression and provided novel insights for development of miR-34b based therapeutics for cervical cancer.
Collapse
Affiliation(s)
- K J Sindhu
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Venkatesan Nalini
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - G K Suraishkumar
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
7
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
8
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Hu S, Chen W, Tan X, Zhang Y, Wang J, Huang L, Duan J. Early Identification of Metabolic Syndrome in Adults of Jiaxing, China: Utilizing a Multifactor Logistic Regression Model. Diabetes Metab Syndr Obes 2024; 17:3087-3102. [PMID: 39193547 PMCID: PMC11348986 DOI: 10.2147/dmso.s468718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose The purpose of this study is to develop and validate a clinical prediction model for diagnosing Metabolic Syndrome (MetS) based on indicators associated with its occurrence. Patients and Methods This study included a total of 26,637 individuals who underwent health examinations at the Jiaxing First Hospital Health Examination Center from January 19, 2022, to December 31, 2022. They were randomly divided into training (n = 18645) and validation (n = 7992) sets in a 7:3 ratio. Firstly, the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was employed for variable selection. Subsequently, a multifactor Logistic regression analysis was conducted to establish the predictive model, accompanied by nomograms. Thirdly, model validation was performed using Receiver Operating Characteristic (ROC) curves, Harrell's concordance index (C-index), calibration plots, and Decision Curve Analysis (DCA), followed by internal validation. Results In this study, six predictive indicators were selected, including Body Mass Index, Triglycerides, Blood Pressure, High-Density Lipoprotein Cholesterol, Low-Density Lipoprotein Cholesterol, and Fasting Blood Glucose. The model demonstrated excellent predictive performance, with an AUC of 0.978 (0.976-0.980) for the training set and 0.977 (0.974-0.980) for the validation set in the nomogram. Calibration curves indicated that the model possessed good calibration ability (Training set: Emax 0.081, Eavg 0.005, P = 0.580; Validation set: Emax 0.062, Eavg 0.007, P = 0.829). Furthermore, decision curve analysis suggested that applying the nomogram for diagnosis is more beneficial when the threshold probability of MetS is less than 89%, compared to either treating-all or treating-none at all. Conclusion We developed and validated a nomogram based on MetS risk factors, which can effectively predict the occurrence of MetS. The proposed nomogram demonstrates significant discriminative ability and clinical applicability. It can be utilized to identify variables and risk factors for diagnosing MetS at an early stage.
Collapse
Affiliation(s)
- Shiyu Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Wenyu Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaoli Tan
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Ye Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiaye Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Lifang Huang
- Health Management Center, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jianwen Duan
- Department of Hepatobiliary Surgery, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
11
|
Mustafov D, Siddiqui SS, Kukol A, Lambrou GI, Shagufta, Ahmad I, Braoudaki M. MicroRNA-Dependent Mechanisms Underlying the Function of a β-Amino Carbonyl Compound in Glioblastoma Cells. ACS OMEGA 2024; 9:31789-31802. [PMID: 39072119 PMCID: PMC11270567 DOI: 10.1021/acsomega.4c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Glioblastoma (GB) is an aggressive brain malignancy characterized by its invasive nature. Current treatment has limited effectiveness, resulting in poor patients' prognoses. β-Amino carbonyl (β-AC) compounds have gained attention due to their potential anticancerous properties. In vitro assays were performed to evaluate the effects of an in-house synthesized β-AC compound, named SHG-8, upon GB cells. Small RNA sequencing (sRNA-seq) and biocomputational analyses investigated the effects of SHG-8 upon the miRNome and its bioavailability within the human body. SHG-8 exhibited significant cytotoxicity and inhibition of cell migration and proliferation in U87MG and U251MG GB cells. GB cells treated with the compound released significant amounts of reactive oxygen species (ROS). Annexin V and acridine orange/ethidium bromide staining also demonstrated that the compound led to apoptosis. sRNA-seq revealed a shift in microRNA (miRNA) expression profiles upon SHG-8 treatment and significant upregulation of miR-3648 and downregulation of miR-7973. Real-time polymerase chain reaction (RT-qPCR) demonstrated a significant downregulation of CORO1C, an oncogene and a player in the Wnt/β-catenin pathway. In silico analysis indicated SHG-8's potential to cross the blood-brain barrier. We concluded that SHG-8's inhibitory effects on GB cells may involve the deregulation of various miRNAs and the inhibition of CORO1C.
Collapse
Affiliation(s)
- Denis Mustafov
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
- College
of Health, Medicine and Life Sciences, Brunel
University London, Uxbridge UB8 3PH, United
Kingdom
| | - Shoib S. Siddiqui
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
| | - Andreas Kukol
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
| | - George I. Lambrou
- Choremeio
Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens,
Greece, Thivon and Levadeias
8, Goudi, 11527 Athens, Greece
- University
Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Thivon and Levadeias 8, 11527 Athens, Greece
| | - Shagufta
- Department
of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Irshad Ahmad
- Department
of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Maria Braoudaki
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
- University
Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Thivon and Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
12
|
Monteiro MM, Gomes CC, Cruz MC, Horliana ACRT, Hamassaki DE, Lima CR, Santos MF. High glucose impairs human periodontal ligament cells migration through lowered microRNAs 221 and 222. J Periodontal Res 2024; 59:336-345. [PMID: 38041212 DOI: 10.1111/jre.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To investigate the effects of miR-221 and miR-222 and high glucose on human periodontal ligament (PL) cells morphology, cytoskeleton, adhesion, and migration. BACKGROUND Chronic hyperglycemia is common in uncontrolled diabetes mellitus (DM) and plays a central role in long-term DM complications, such as impaired periodontal healing. We have previously shown that high glucose increases apoptosis of human PL cells by inhibiting miR-221 and miR-222 and consequently augmenting their target caspase-3. However, other effects of miR-221/222 downregulation on PL cells are still unknown. METHODS Cells from young humans' premolar teeth were cultured for 7 days under 5 or 30 mM glucose. Directional and spontaneous migration on fibronectin were studied using transwell and time-lapse assays, respectively. F-actin staining was employed to study cell morphology and the actin cytoskeleton. MiR-221 and miR-222 were inhibited using antagomiRs, and their expressions were evaluated by real-time RT-PCR. RESULTS High glucose inhibited PL cells early adhesion, spreading, and migration on fibronectin. Cells exposed to high glucose showed reduced polarization, velocity, and directionality. They formed several simultaneous unstable and short-lived protrusions, suggesting impairment of adhesion maturation. MiR-221 and miR-222 inhibition also reduced migration, decreasing cell directionality but not significantly cell velocity. After miR-221 and miR-222 downregulation cells showed morphological resemblance with cells exposed to high glucose. CONCLUSION High glucose impairs human PL cells migration potentially through a mechanism involving reduction of microRNA-221 and microRNA-222 expression. These effects may contribute to the impairment of periodontal healing, especially after surgery and during guided regeneration therapies.
Collapse
Affiliation(s)
- Mariana Marin Monteiro
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mario Costa Cruz
- Center of Facilities for Research Support (CEFAP-USP), Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Dânia Emi Hamassaki
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marinilce F Santos
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Hong X, Fu R. Construction of a 5-gene prognostic signature based on oxidative stress related genes for predicting prognosis in osteosarcoma. PLoS One 2023; 18:e0295364. [PMID: 38039294 PMCID: PMC10691720 DOI: 10.1371/journal.pone.0295364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The understanding of the complex biological scenario of osteosarcoma will open the way to identifying new strategies for its treatment. Oxidative stress is a cancer-related biological scenario. At present, it is not clear the oxidative stress genes in affecting the prognosis and progression of osteosarcoma, the underlying mechanism as well as their impact on the classification of osteosarcoma subtypes. METHODS We selected samples and sequencing data from TARGET data set and GSE21257 data set, and downloaded oxidative stress related-genes (OSRGs) from MsigDB. Univariate Cox analysis of OSRG was conducted using TARGET data, and the prognostic OSRG was screened to conduct unsupervised clustering analysis to identify the molecular subtypes of osteosarcoma. Through least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression analysis of differentially expressed genes (DEGs) between subgroups, a risk assessment system for osteosarcoma was developed. RESULTS 45 prognosis-related OSRGs genes were acquired, and two molecular subtypes of osteosarcoma were clustered. C2 cluster displayed prolonged overall survival (OS) accompanied with high degree of immune infiltration and enriched immune pathways. While cell cycle related pathways were enriched in C2 cluster. Based on DEGs between subgroups and Lasso analysis, 5 hub genes (ZYX, GJA5, GAL, GRAMD1B, and CKMT2) were screened to establish a robust prognostic risk model independent of clinicopathological features. High-risk group had more patients with cancer metastasis and death as well as C1 subtype with poor prognosis. Low-risk group exhibited favorable OS and high immune infiltration status. Additionally, the risk assessment system was optimized by building decision tree and nomogram. CONCLUSIONS This study defined two molecular subtypes of osteosarcoma with different prognosis and tumor immune microenvironment status based on the expression of OSRGs, and provided a new risk assessment system for the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaofang Hong
- Department of Stomatology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ribin Fu
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Wang LJ, Lee YC, Chiou JT, Chen YJ, Chang LS. Effects of SIDT2 on the miR-25/NOX4/HuR axis and SIRT3 mRNA stability lead to ROS-mediated TNF-α expression in hydroquinone-treated leukemia cells. Cell Biol Toxicol 2023; 39:2207-2225. [PMID: 35302183 DOI: 10.1007/s10565-022-09705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
Our previous studies indicated that the benzene metabolite hydroquinone (HQ) evokes the ROS/p38 MAPK/protein phosphatase 2A/tristetraprolin axis, leading to increased TNF-α expression in human acute myeloid leukemia cell lines U937 and HL-60. In this study, we aimed to identify the upstream pathway involved in ROS-mediated TNF-α expression. HQ treatment increased SIDT2 expression, which subsequently decreased miR-25 and SIRT3 expression in U937 cells. Notably, miR-25 downregulation promoted SIDT2 expression in HQ-treated U937 cells. SIDT2 induced lysosomal degradation of SIRT3 mRNA, but inhibited miR-25 expression through a lysosome-independent pathway. MiR-25 inhibition reduced NOX4 mRNA turnover, resulting in increased NOX4 protein levels. NOX4 induces mitochondrial ROS production and HuR downregulation. Restoration of HuR expression increased SIRT3 expression, suggesting that NOX4-mediated HuR downregulation promotes SIDT2-mediated degradation of SIRT3 mRNA. Inhibition of NOX4 or SIRT3 overexpression abolished HQ-induced ROS production, thereby abolishing TNF-α upregulation. Overall, these results indicate that SIDT2 regulates the miR-25/NOX4/HuR axis and SIRT3 mRNA destabilization, leading to ROS-mediated TNF-α upregulation in HQ-treated U937 cells. HQ-induced increase in TNF-α expression in HL-60 cells was also mediated through a similar pathway.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
15
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
16
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Pizzi G, Groppetti D, Brambilla E, Pecile A, Grieco V, Lecchi C. MicroRNA as epigenetic regulators of canine cryptorchidism. Res Vet Sci 2023; 162:104961. [PMID: 37487386 DOI: 10.1016/j.rvsc.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Cryptorchidism, the failed descent of one or both testes into the scrotum, is a common developmental disorder in male dogs. Cryptorchidism may affect canine fertility, reducing the quality of the semen, and may promote spermatic cord torsion and onset of neoplasia. MicroRNAs (miRNAs) are epigenetic regulators of gene expression and their dysregulation is associated with disorders of spermatogenesis and testis neoplasia. The present study aimed at investigating the expression of miRNAs in formalin-fixed, paraffin-embedded (FFPE) canine retained testes and testes affected by seminoma, and at integrating miRNAs to their target genes. Forty testicular FFPE specimens from 30 dogs were included - 10 scrotal and 10 contralateral retained from 10 unilateral cryptorchid dogs; 10 tumoral testes affected by seminoma from non-cryptorchid dogs; 10 scrotal normal testes from non-cryptorchid dogs included as the control. The expression level of three miRNAs, namely miR-302c-3p, miR-302a-3p, and miR-371-3p, associated with testicular disorders, were quantified using RT-qPCR. The comparative analysis demonstrated that the level of miR-302a-3p and miR-371a-3p were quantifiable exclusively in control testes. The expression level of miR-302c-3p was higher in the control than in the other groups; its expression decreased in retained testes compared to scrotal testes and testes with seminoma. Gene Ontology analysis pointed out that these miRNAs may be involved in the modulation of estrogen and thyroid hormone signaling pathways. In conclusion, this study demonstrated that miRNAs are dysregulated in canine cryptorchid and seminoma-affected testes compared to control tissues, confirming the pivotal role of miRNAs in cryptorchidism.
Collapse
Affiliation(s)
- Giulia Pizzi
- Università degli Studi di Milano, Lodi 26900, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Jiang L, Cai H, Qin W, Li Z, Zhang L, Bi H. Meticulously Designed Carbon Dots as Photo-Triggered RNA-Destroyer for Evoking Pyroptosis. Bioconjug Chem 2023; 34:1387-1397. [PMID: 37534892 DOI: 10.1021/acs.bioconjchem.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
An ideal photosensitizer for photodynamic therapy should not only possess high reactive oxygen species (ROS) generation efficiency but also maximize utilization of the in situ produced ROS species, where the latter is closely related to its intracellular location. However, rational design of such photosensitizer without tedious conjugation procedures remains a grand challenge. Here, we report the one-pot preparation of carbon dots (CDs)-based photosensitizer from levofloxacin and neutral red featuring both high 1O2 quantum yield (φΔ = 38.85%) and superior RNA selectivity. Moreover, the φΔ value shows a further 40% improvement and reaches 54.33% in response to RNA binding. Owing to these combined attributes, the CDs could exert great damage to the cellular RNA system (termed the RNA-destroyer) under extremely low dosage of light irradiation (15 mW cm-2, 1 min). It induces pyroptotic cell death and causes rapid release of different cytokines that served as molecular markers in photodynamic immunotherapy. This work represents the meticulously designed CDs with high ROS generation and utilization efficiency via good organization of the photosensitive and targeting modularity. Moreover, it is the first CDs-based pyroptosis inducer to the best of our knowledge.
Collapse
Affiliation(s)
- Lei Jiang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Weixia Qin
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Liang Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
19
|
Soares RB, Manguinhas R, Costa JG, Saraiva N, Gil N, Rosell R, Camões SP, Batinic-Haberle I, Spasojevic I, Castro M, Miranda JP, Guedes de Pinho P, Fernandes AS, Oliveira NG. The Redox-Active Manganese(III) Porphyrin, MnTnBuOE-2-PyP 5+, Impairs the Migration and Invasion of Non-Small Cell Lung Cancer Cells, Either Alone or Combined with Cisplatin. Cancers (Basel) 2023; 15:3814. [PMID: 37568630 PMCID: PMC10416961 DOI: 10.3390/cancers15153814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head and neck cancer, anal squamous cell carcinoma and multiple brain metastases. There is yet an insufficient understanding of the impact of MnBuOE on lung cancer. Therefore, this study aims to fill this gap by demonstrating the effects of MnBuOE on non-small cell lung cancer (NSCLC) A549 and H1975 cell lines. The cytotoxicity of MnBuOE alone or combined with cisplatin was evaluated by crystal violet (CV) and/or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-Tetrazolium (MTS) reduction assays. Intracellular ROS levels were assessed using two fluorescent probes. Furthermore, the impact of MnBuOE alone or in combination with cisplatin on collective cell migration, individual chemotactic migration and chemoinvasion was assessed using the wound-healing and transwell assays. The expression of genes related to migration and invasion was assessed through RT-qPCR. While MnBuOE alone decreased H1975 cell viability at high concentrations, when combined with cisplatin it markedly reduced the viability of the more invasive H1975 cell line but not of A549 cell line. However, MnBuOE alone significantly decreased the migration of both cell lines. The anti-migratory effect was more pronounced when MnBuOE was combined with cisplatin. Finally, MnBuOE alone or combined with cisplatin significantly reduced cell invasion. MnBuOE alone or combined with cisplatin downregulated MMP2, MMP9, VIM, EGFR and VEGFA and upregulated CDH1 in both cell lines. Overall, our data demonstrate the anti-metastatic potential of MnBuOE for the treatment of NSCLC.
Collapse
Affiliation(s)
- Rita B. Soares
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
- Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal;
| | - Rita Manguinhas
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - João G. Costa
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; (J.G.C.); (N.S.)
| | - Nuno Saraiva
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; (J.G.C.); (N.S.)
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal;
| | - Rafael Rosell
- Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias I Pujol (IGTP), Campus Can Ruti, Ctra de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Barcelona, Spain;
| | - Sérgio P. Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA;
- PK/PD Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matilde Castro
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - Joana P. Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana S. Fernandes
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; (J.G.C.); (N.S.)
| | - Nuno G. Oliveira
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (R.B.S.); (R.M.); (S.P.C.); (M.C.); (J.P.M.)
| |
Collapse
|
20
|
Ruiz-Manriquez LM, Villarreal-Garza C, Benavides-Aguilar JA, Torres-Copado A, Isidoro-Sánchez J, Estrada-Meza C, Arvizu-Espinosa MG, Paul S, Cuevas-Diaz Duran R. Exploring the Potential Role of Circulating microRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. Int J Mol Sci 2023; 24:9984. [PMID: 37373139 PMCID: PMC10297903 DOI: 10.3390/ijms24129984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths among women worldwide. Neoadjuvant therapy (NAT) is increasingly being used to reduce tumor burden prior to surgical resection. However, current techniques for assessing tumor response have significant limitations. Additionally, drug resistance is commonly observed, raising a need to identify biomarkers that can predict treatment sensitivity and survival outcomes. Circulating microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have been shown to play a significant role in cancer progression as tumor inducers or suppressors. The expression of circulating miRNAs has been found to be significantly altered in breast cancer patients. Moreover, recent studies have suggested that circulating miRNAs can serve as non-invasive biomarkers for predicting response to NAT. Therefore, this review provides a brief overview of recent studies that have demonstrated the potential of circulating miRNAs as biomarkers for predicting the clinical response to NAT in BC patients. The findings of this review will strengthen future research on developing miRNA-based biomarkers and their translation into medical practice, which could significantly improve the clinical management of BC patients undergoing NAT.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64700, Mexico;
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, Monterrey 64700, Mexico;
| | | | - Andrea Torres-Copado
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - José Isidoro-Sánchez
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | |
Collapse
|
21
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
22
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
23
|
MiRNA-21-5p Accelerates EMT and Inhibits Apoptosis of Laryngeal Carcinoma via Inhibiting KLF6 Expression. Biochem Genet 2023; 61:101-115. [PMID: 35761154 DOI: 10.1007/s10528-022-10246-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
The incidence of laryngeal carcinoma accounts for 1 to 5% of systemic malignancies and ranks second among head and neck malignancies. Screening more effective targets are meaningful for the treatment of laryngeal carcinoma. The purpose was to research the action of miR-21-5p in the occurrence of laryngeal carcinoma. Genecards combined with g:profiler was used for cluster analysis to predict gene-related miRNAs. Q-PCR assay was performed for measuring the level of miR-21-5p and Kruppel-like factor 6 (KLF6). miR-21-5p-mimic, miR-21-5p-inhibitor and sh-KLF6 were transfected using LipofectamineTM 2000. Both CCK-8 and EdU experiments were undertaken to detect cell proliferation ability. Western blot was used to detect apoptosis and epithelial-mesenchymal transition (EMT) related proteins. Wound healing assay and transwell assay were undertaken for migration and invasion, respectively. Three online software (ENCORI, miRWalk, and miRDB) were applied to screen the downstream of miR-21-5p. At the same time, a dual-luciferase reporter experiment was processed to verify the binding. Finally, a rescue experiment was applied to reveal the mediating role of miR-21-5p and KLF6. MiR-21-5p expressed highly in laryngeal carcinoma tissues and cell lines. Knockdown of miR-21-5p reduced the EMT, while enhancing apoptosis of laryngeal carcinoma cell lines. MiR-21-5p targeted KLF6 with negative relationships. The rescue assay results confirmed that sh-KLF6 rescued the action of miR-21-5p knockdown in developing laryngeal carcinoma cells. MiR-21-5p promotes the occurrence and development of laryngeal cancer by targeting KLF6. This finding may provide new insights into miRNA as a biomarker for diagnosing and treating laryngeal carcinoma in the future.
Collapse
|
24
|
Zhang S, Yang J, Wu H, Cao T, Ji T. Establishment of a 7-gene prognostic signature based on oxidative stress genes for predicting chemotherapy resistance in pancreatic cancer. Front Pharmacol 2023; 14:1091378. [PMID: 37138854 PMCID: PMC10149707 DOI: 10.3389/fphar.2023.1091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Oxidative stress is involved in regulating various biological processes in human cancers. However, the effect of oxidative stress on pancreatic adenocarcinoma (PAAD) remained unclear. Methods: Pancreatic cancer expression profiles from TCGA were downloaded. Consensus ClusterPlus helped classify molecular subtypes based on PAAD prognosis-associated oxidative stress genes. Limma package filtered differentially expressed genes (DEGs) between subtypes. A multi-gene risk model was developed using Lease absolute shrinkage and selection operator (Lasso)-Cox analysis. A nomogram was built based on risk score and distinct clinical features. Results: Consistent clustering identified 3 stable molecular subtypes (C1, C2, C3) based on oxidative stress-associated genes. Particularly, C3 had the optimal prognosis with the greatest mutation frequency, activate cell cycle pathway in an immunosuppressed status. Lasso and univariate cox regression analysis selected 7 oxidative stress phenotype-associated key genes, based on which we constructed a robust prognostic risk model independent of clinicopathological features with stable predictive performance in independent datasets. High-risk group was found to be more sensitive to small molecule chemotherapeutic drugs including Gemcitabine, Cisplatin, Erlotinib and Dasatinib. The 6 of 7 genes expressions were significantly associated with methylation. Survival prediction and prognostic model was further improved through a decision tree model by combining clinicopathological features with RiskScore. Conclusion: The risk model containing seven oxidative stress-related genes may have a greater potential to assist clinical treatment decision-making and prognosis determination.
Collapse
Affiliation(s)
| | | | | | | | - Tengfei Ji
- *Correspondence: Tengfei Ji, ; Tiansheng Cao,
| |
Collapse
|
25
|
Dong Y, Yuan Q, Ren J, Li H, Guo H, Guan H, Jiang X, Qi B, Li R. Identification and characterization of a novel molecular classification incorporating oxidative stress and metabolism-related genes for stomach adenocarcinoma in the framework of predictive, preventive, and personalized medicine. Front Endocrinol (Lausanne) 2023; 14:1090906. [PMID: 36860371 PMCID: PMC9969989 DOI: 10.3389/fendo.2023.1090906] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is one of the primary contributors to deaths that are due to cancer globally. At the moment, STAD does not have any universally acknowledged biological markers, and its predictive, preventive, and personalized medicine (PPPM) remains sufficient. Oxidative stress can promote cancer by increasing mutagenicity, genomic instability, cell survival, proliferation, and stress resistance pathways. As a direct and indirect result of oncogenic mutations, cancer depends on cellular metabolic reprogramming. However, their roles in STAD remain unclear. METHOD 743 STAD samples from GEO and TCGA platforms were selected. Oxidative stress and metabolism-related genes (OMRGs) were acquired from the GeneCard Database. A pan-cancer analysis of 22 OMRGs was first performed. We categorized STAD samples by OMRG mRNA levels. Additionally, we explored the link between oxidative metabolism scores and prognosis, immune checkpoints, immune cell infiltration, and sensitivity to targeted drugs. A series of bioinformatics technologies were employed to further construct the OMRG-based prognostic model and clinical-associated nomogram. RESULTS We identified 22 OMRGs that could evaluate the prognoses of patients with STAD. Pan-cancer analysis concluded and highlighted the crucial part of OMRGs in the appearance and development of STAD. Subsequently, 743 STAD samples were categorized into three clusters with the enrichment scores being C2 (upregulated) > C3 (normal) > C1 (downregulated). Patients in C2 had the lowest OS rate, while C1 had the opposite. Oxidative metabolic score significantly correlates with immune cells and immune checkpoints. Drug sensitivity results reveal that a more tailored treatment can be designed based on OMRG. The OMRG-based molecular signature and clinical nomogram have good accuracy for predicting the adverse events of patients with STAD. Both transcriptional and translational levels of ANXA5, APOD, and SLC25A15 exhibited significantly higher in STAD samples. CONCLUSION The OMRG clusters and risk model accurately predicted prognosis and personalized medicine. Based on this model, high-risk patients might be identified in the early stage so that they can receive specialized care and preventative measures, and choose targeted drug beneficiaries to deliver individualized medical services. Our results showed oxidative metabolism in STAD and led to a new route for improving PPPM for STAD.
Collapse
Affiliation(s)
- Ying Dong
- Gastroenterology and Hepatology Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hanshuo Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hewen Guan
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueyan Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Rongkuan Li, ; Bing Qi,
| | - Rongkuan Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Rongkuan Li, ; Bing Qi,
| |
Collapse
|
26
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
27
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Tu J, Tang M, Li G, Chen L, Huang Y. Molecular Typing Based on Oxidative Stress Genes and Establishment of Prognostic Characteristics of 7 Genes in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9683819. [PMID: 36148413 PMCID: PMC9485712 DOI: 10.1155/2022/9683819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress could maintain different biological processes in human cancer. However, the effect of oxidative stress on lung adenocarcinoma (LUAD) should be studied. This study analyzed the expression and clinical importance of oxidative stress in LUAD in detail. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were employed for obtaining LUAD expression profiles. Based on oxidative stress-related genes, molecular subtypes substantially correlated with the LUAD prognosis were discovered with ConsensusClusterPlus. Differentially expressed genes (DEGs) among subtypes were found using the Limma software package. Least absolute shrinkage and selection operator- (Lasso-) Cox analysis was employed to create the polygenic risk model. RiskScore and clinically relevant features were used to create nomograms. By utilizing oxidative stress-related genes and reliable clustering, stable molecular subtypes were first discovered. The prognosis, clinical characteristics, route characteristics, and immunological characteristics of these three molecular subtypes were all different. Subsequently, by using differential expression genes among molecular subtypes and Lasso, 7 main genes linked with the oxidative stress phenotype were discovered. A prognostic risk model was also built on the basis of major genes associated with the oxidative stress phenotype. The model demonstrated a high level of resilience and was unaffected by clinical-pathological features. It played a stable predictive role in independent datasets. Ultimately, to improve the prognosis model and survival prediction, RiskScore (RS) was combined with clinicopathological variables, and a decision tree model was used. The model exhibited a high prediction accuracy as well as the ability to predict survival. This research found that oxidative stress-related genes have a major involvement in the onset and progression of LUAD and that they may influence LUAD susceptibility to immunotherapy and standard chemotherapy. Furthermore, the identified risk models for 7 genes linked with oxidative stress exhibited could assist clinical treatment decisions and prognosis prediction. The classifier could be used as a molecular diagnostic tool for assessing LUAD patients' prognosis risk.
Collapse
Affiliation(s)
- Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Guoqing Li
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Liang Chen
- Intensive Care Unit, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Yong Huang
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| |
Collapse
|
30
|
Li Q, Jiang Y, Song N, Zhou B, Li Z, Lin L. An Immune-Related Genetic Feature Depicted the Heterogeneous Nature of Lung Adenocarcinoma and Squamous Cell Carcinoma and Their Distinctive Predicted Drug Responses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8447083. [PMID: 36071867 PMCID: PMC9442502 DOI: 10.1155/2022/8447083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
One of the primary causes of global cancer-associated mortality is lung cancer (LC). Current improvements in the management of LC rely mainly on the advancement of patient stratification, both molecularly and clinically, to achieve the maximal therapeutic benefit, while most LC screening protocols remain underdeveloped. In this research, we first employed two algorithms (ESTIMATE and xCell) to calculate the immune/stromal infiltration scores. This helped identify the altered immune infiltration landscapes in lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Afterward, based on their immune-related characteristics, we successfully stratified the LUAD and LUSC into 2 and 3 clusters, respectively. Different from the conventional bioinformatic approaches that start from the investigation of differential expression of single genes, differentially enriched curated gene sets identified through gene set variation analyses (GSVA) were curated, and gene names were reconstructed afterward. Furthermore, weighted gene correlation network analyses (WGCNA) were used to reveal hub genes highly connected with the clustering process. Actual expression levels of critical hub genes among different clusters were compared and so were the functional pathways these genes enriched into. Lastly, a computational method was applied to predict and compare the responses of each cluster to primary therapeutic agents. The heterogeneity presented in our study, along with the drug responses expected for identified clusters, may shed light on future exploration of combination immunochemotherapy that facilitates the optimization of individualized therapy.
Collapse
Affiliation(s)
- Qiuyuan Li
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China
| | - Yan Jiang
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China
| | - Nan Song
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China
| | - Bin Zhou
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China
| | - Zhao Li
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China
| | - Lei Lin
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China
| |
Collapse
|
31
|
Carboxyl Group-Modified Myoglobin Induces TNF-α-Mediated Apoptosis in Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15091066. [PMID: 36145287 PMCID: PMC9501283 DOI: 10.3390/ph15091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that chemical modification may increase the activity of proteins or confer novel activity to proteins. Some studies have indicated that myoglobin (Mb) is cytotoxic; however, the underlying mechanisms remain unclear. In this study, we investigated whether chemical modification of the carboxyl group by semicarbazide could promote the Mb cytotoxicity in human leukemia U937 cells and the underlying mechanism of semicarbazide-modified myoglobin (SEM-Mb)-induced U937 cell death. The semicarbazide-modified Mb (SEM-Mb) induced U937 cell apoptosis via the production of cleaved caspase-8 and t-Bid, while silencing of FADD abolished this effect. These findings suggest that SEM-Mb can induce U937 cell death by activating the death receptor-mediated pathway. The SEM-Mb inhibited miR-99a expression, leading to increased NOX4 mRNA and protein expression, which promoted SIRT3 degradation, and, in turn, induced ROS-mediated p38 MAPK phosphorylation. Activated p38 MAPK stimulated miR-29a-dependent tristetraprolin (TTP) mRNA decay. Downregulation of TTP slowed TNF-α mRNA turnover, thereby increasing TNF-α protein expression. The SEM-Mb-induced decrease in cell viability and TNF-α upregulation were alleviated by abrogating the NOX4/SIRT3/ROS/p38 MAPK axis or ectopic expression of TTP. Taken together, our results demonstrated that the NOX4/SIRT3/p38 MAPK/TTP axis induces TNF-α-mediated apoptosis in U937 cells following SEM-Mb treatment. A pathway regulating p38 MAPK-mediated TNF-α expression also explains the cytotoxicity of SEM-Mb in the human leukemia cell lines HL-60, THP-1, K562, Jurkat, and ABT-199-resistant U937. Furthermore, these findings suggest that the carboxyl group-modified Mb is a potential structural template for the generation of tumoricidal proteins.
Collapse
|
32
|
Downregulation of miR-192 Alleviates Oxidative Stress-Induced Porcine Granulosa Cell Injury by Directly Targeting Acvr2a. Cells 2022; 11:cells11152362. [PMID: 35954205 PMCID: PMC9368079 DOI: 10.3390/cells11152362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Follicular atresia is primarily caused by breakdown to granulosa cells (GCs) due to oxidative stress (OS). MicroRNAs (miRNAs) elicit a defense response against environmental stresses, such as OS, by acting as gene-expression regulators. However, the association between miRNA expression and OS in porcine GCs (PGCs) is unclear. Here, we examined the impact of H2O2-mediated OS in PGCs through miRNA-Seq. We identified 22 (14 upregulated and 8 downregulated) and 33 (19 upregulated and 14 downregulated) differentially expressed miRNAs (DEmiRNAs) at 100 μM and 300 μM H2O2, respectively, compared with the control group. Among the DEmiRNAs, mi-192 was most induced by H2O2-mediated OS, and the downregulation of miR-192 alleviated PGC oxidative injury. The dual-luciferase reporter assay results revealed that miR-192 directly targeted Acvr2a. The Acvr2a level was found to be remarkably decreased after OS. Furthermore, grape seed procyanidin B2 (GSPB2) treatment significantly reduced the H2O2-induced upregulation of miR-192, and decreased PGC apoptosis and oxidative damage. Meanwhile, GSPB2 prevented an H2O2-induced increase in caspase-3 activity, which was enhanced by the application of the miR-192 inhibitor. These results indicate that GSPB2 protects against PGC oxidative injury via the downregulation of miR-192, the upregulation of Acvr2a expression, and the suppression of the caspase-3 apoptotic signaling pathway.
Collapse
|
33
|
ROS-Related miRNAs Regulate Immune Response and Chemoradiotherapy Sensitivity in Hepatocellular Carcinoma by Comprehensive Analysis and Experiment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4713518. [PMID: 35585886 PMCID: PMC9110211 DOI: 10.1155/2022/4713518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) plays an essential role in the development of cancer. Here, we chose ROS-related miRNAs for consensus clustering analysis and ROS score construction. We find that ROS is extremely associated with prognosis, tumor immune microenvironment (TIME), gene mutations, N6-methyladenosine (m6A) methylation, and chemotherapy sensitivity in hepatocellular carcinoma (HCC). Mechanistically, ROS may affect the prognosis of HCC patients in numerous ways. Moreover, miR-210-3p and miR-106a-5p significantly increased the ROS level and stagnated cell cycle at G2/M in HCC; the results were more obvious in cells after ionizing radiation (IR). Finally, the two miRNAs suppressed cell proliferation, migration, and invasion and promoted apoptosis in huh7 and smmc7721 cells. It indicated that ROS might affect the prognosis of HCC patients through immune response and increase the sensitivity of HCC patients to radiotherapy and chemotherapy.
Collapse
|
34
|
Hebbar S, Panzade G, Vashisht AA, Wohlschlegel JA, Veksler-Lublinsky I, Zinovyeva AY. Functional identification of microRNA-centered complexes in C. elegans. Sci Rep 2022; 12:7133. [PMID: 35504914 PMCID: PMC9065084 DOI: 10.1038/s41598-022-10771-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 02/02/2023] Open
Abstract
microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2'O-methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, 66506, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, 66506, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
- Genomics Institute of the Novartis Research Foundation, San Diego, 92121, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, 66506, USA.
| |
Collapse
|
35
|
Scuruchi M, D'Ascola A, Avenoso A, Zappone A, Mandraffino G, Campo S, Campo GM. miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Arch Biochem Biophys 2022; 718:109139. [PMID: 35114139 DOI: 10.1016/j.abb.2022.109139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the expression of miR9 and its correlation with cytokines, proteolytic enzymes and apoptosis in an experimental model of 6-mer HA induced inflammation in human chondrocytes. Human articular chondrocytes, transfected with a miR-9 mimic and miR-9 inhibitor, were stimulated with 6-mer HA in presence/absence of a specific NF-kB inhibitor. 6-mer HA induced a significant increase of TLR-4, CD44, IL-8, IL-18, MMP-9, ADAMTS-5, BAX and BCL-2 mRNAs expression and the related proteins, as well as NF-kB activation, associated with a significant up regulation of miR-9. In chondrocytes transfected with the miR-9 mimic before 6-mer HA treatment we found a decrease of such inflammatory cytokines, metalloproteases and pro-apoptotic molecules, while we found them increased in chondrocytes transfected with the miR9 inhibitor before 6-mer HA stimulation. The activities of TLR-4 and CD44, up regulated by 6-mer HA, were not modified by miR9 mimic/inhibitor, while the NF-kB activation was significantly affected. We suggested that the up regulation of miR9, induced by 6-mer HA, could be a cellular attempt to limit cell damage during inflammation.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Annie Zappone
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| |
Collapse
|
36
|
Epigenetics is Promising Direction in Modern Science. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Epigenetics studies the inherited changes in a phenotype or in expression of genes caused by other mechanisms, without changing the nucleotide sequence of DNA. The most distinguished epigenetic tools are: modifications of histones, enzymatic DNA methylation, and gene silencing mediated by small RNAs (miRNA, siRNA). The resulting m5C residues in DNA substantially affect the cooperation of proteins with DNA. It is organized by hormones and aging-related alterations, one of the mechanisms controlling sex and cellular differentiation. DNA methylation regulates all genetic functions: repair, recombination, DNA replication, as well as transcription. Distortions in DNA methylation and other epigenetic signals lead to diabetes, premature aging, mental dysfunctions, and cancer.
Collapse
|
37
|
Xing L, Zhu M, Luan M, Zhang M, Jin L, Liu Y, Zou J, Wang L, Xu M. miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS. PLANT PHYSIOLOGY 2022; 188:608-623. [PMID: 34718783 PMCID: PMC8774724 DOI: 10.1093/plphys/kiab498] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Salt stress significantly reduces the productivity of crop plants including maize (Zea mays). miRNAs are major regulators of plant growth and stress responses, but few studies have examined the potential impacts of miRNAs on salt stress responses in maize. Here, we show that ZmmiR169q is responsive to stress-induced ROS signals. After detecting that salt stress and exogenous H2O2 treatment reduced the accumulation of ZmmiR169q, stress assays with transgenic materials showed that depleting ZmmiR169q increased seedling salt tolerance whereas overexpressing ZmmiR169q decreased salt tolerance. Helping explain these observations, we found that ZmmiR169q repressed the transcript abundance of its target NUCLEAR FACTOR YA8 (ZmNF-YA8), and overexpression of ZmNF-YA8 in maize improved salt tolerance, specifically by transcriptionally activating the expression of the efficient antioxidant enzyme PEROXIDASE1. Our study reveals a direct functional link between salt stress and a miR169q-NF-YA8 regulatory module that plants use to manage ROS stress and strongly suggests that ZmNF-YA8 can be harnessed as a resource for developing salt-tolerant crop varieties.
Collapse
Affiliation(s)
- Lijuan Xing
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
| | - Ming Zhu
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, 100081 Beijing, China
| | - Mingda Luan
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
| | - Min Zhang
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
| | - Lian Jin
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
| | - Yueping Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, 102206 Beijing, China
| | - Junjie Zou
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
| | - Lei Wang
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
| | - Miaoyun Xu
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, Biotechnology Research Institute, 100081 Beijing, China
- Author for communication:
| |
Collapse
|
38
|
Wang LJ, Chiou JT, Lee YC, Chang LS. Docetaxel-triggered SIDT2/NOX4/JNK/HuR signaling axis is associated with TNF-α-mediated apoptosis of cancer cells. Biochem Pharmacol 2021; 195:114865. [PMID: 34863979 DOI: 10.1016/j.bcp.2021.114865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Previous studies have confirmed that docetaxel (DTX) treatment increases TNF-α production in cancer cells, but its mechanism of action remains unclear. Therefore, this study aimed to determine the signaling axis by which DTX induced the expression of TNF-α in U937 leukemia and MCF-7 breast carcinoma cells. DTX treatment promoted Ca2+-controlled autophagy and SIDT2 expression, resulting in lysosomal degradation of miR-25 in U937 cells. Downregulation of miR-25 increased NOX4 mRNA stability and protein expression. NOX4-stimulated ROS generation led to JNK-mediated phosphorylation of cytosolic HuR at Ser221, thereby increasing TNF-α protein expression by stabilizing TNF-α mRNA. Consequently, DTX induced TNF-α-dependent death in U937 cells. Depletion of HuR using siRNA or abolishment of JNK activation reduced TNF-α expression and eliminated DTX-mediated cytotoxicity. Knockdown of SIDT2 or pretreatment with chloroquine (a lysosome inhibitor) reduced DTX-induced NOX4 and TNF-α expression and mitigated JNK-mediated HuR phosphorylation. Altogether, our data indicate that DTX triggers HuR-mediated TNF-α mRNA stabilization through the Ca2+/SIDT2/NOX4/ROS/JNK axis, thereby inducing TNF-α-dependent apoptosis in U937 cells. In addition, DTX induces apoptosis in MCF-7 cells through SIDT2/NOX4/JNK/HuR axis-mediated TNF-α expression.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
39
|
Singh K, Nassar N, Bachari A, Schanknecht E, Telukutla S, Zomer R, Piva TJ, Mantri N. The Pathophysiology and the Therapeutic Potential of Cannabinoids in Prostate Cancer. Cancers (Basel) 2021; 13:4107. [PMID: 34439262 PMCID: PMC8392233 DOI: 10.3390/cancers13164107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the second most frequently occurring cancer diagnosed among males. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation. In this review, we focused on studies that demonstrated anticancer effects of cannabinoids and their possible mechanisms of action in prostate cancer. Besides the palliative effects of cannabinoids, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of cancers. This analysis may provide pharmacological insights into the selection of specific cannabinoids for the development of antitumor drugs for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Kanika Singh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
40
|
Song X, Xu X, Lu J, Chi X, Pang Y, Li Q. Lamprey Immune Protein Mediates Apoptosis of Lung Cancer Cells Via the Endoplasmic Reticulum Stress Signaling Pathway. Front Oncol 2021; 11:663600. [PMID: 34307136 PMCID: PMC8292836 DOI: 10.3389/fonc.2021.663600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023] Open
Abstract
Lamprey immune protein (LIP), a novel protein derived from the Lampetra japonica, has been shown to exert efficient tumoricidal actions without concomitant damage to healthy cells. Our study aimed to ascertain the mechanisms by which LIP inhibits lung cancer cells, thus delineating potential innovative therapeutic strategies. LIP expression in lung cancer cells was evaluated by western blotting and immunohistochemistry. Functional assays, such as high-content imaging, 3D-structured illumination microscopy (3D-SIM) imaging, flow cytometry, and confocal laser scanning microscopy, were performed to examine the proliferation and lung cancer cell apoptosis. Tumor xenograft assays were performed using an in vivo imaging system. We observed that LIP induces the decomposition of certain lung cancer cell membranes by destroying organelles such as the microtubules, mitochondria, and endoplasmic reticulum (ER), in addition to causing leakage of cytoplasm, making the maintenance of homeostasis difficult. We also demonstrated that LIP activates the ER stress pathway, which mediates lung cancer cell apoptosis by producing reactive oxygen species (ROS). In addition, injection of LIP significantly retarded the tumor growth rate in nude mice. Taken together, these data revealed a role of LIP in the regulation of lung cancer cell apoptosis via control of the ER stress signaling pathway, thus revealing its possible application in lung cancer treatment.
Collapse
Affiliation(s)
- Xiaoping Song
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Respiratory Medicine, Affiliated Zhong shan Hospital of Dalian University, Dalian, China
| | - Xiangting Xu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Xiaoyuan Chi
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
41
|
Zheng F, Zhu J, Zhang W, Fu Y, Lin Z. Thal protects against paraquat-induced lung injury through a microRNA-141/HDAC6/IκBα-NF-κB axis in rat and cell models. Basic Clin Pharmacol Toxicol 2021; 128:334-347. [PMID: 33015978 PMCID: PMC7894280 DOI: 10.1111/bcpt.13505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The protective functions of thalidomide in paraquat (PQ)-induced injury have been reported. But the mechanisms remain largely unknown. In this research, a PQ-treated rat model was established and further treated with thalidomide. Oedema and pathological changes, oxidative stress, inflammation, fibrosis and cell apoptosis in rat lungs were detected. A PQ-treated RLE-6TN cell model was constructed, and the viability and apoptosis rate of cells were measured. Differentially expressed microRNAs (miRNAs) after thalidomide administration were screened out. Binding relationship between miR-141 and histone deacetylase 6 (HDAC6) was validated. Altered expression of miR-141 and HDAC6 was introduced to identify their involvements in thalidomide-mediated events. Consequently, thalidomide administration alone exerted no damage to rat lungs; in addition it reduced PQ-induced oedema. The oxidative stress, inflammation and cell apoptosis in rat lungs were reduced by thalidomide. In RLE-6TN cells, thalidomide increased cell viability and decreased apoptosis. miR-141 was responsible for thalidomide-mediated protective events by targeting HDAC6. Overexpression of HDAC6 blocked the protection of thalidomide against PQ-induced injury via activating the IkBα-NF-κB signalling pathway. Collectively, this study evidenced that thalidomide protects lung tissues from PQ-induced injury through a miR-141/HDAC6/IkBα-NF-κB axis.
Collapse
Affiliation(s)
- Fenshuang Zheng
- Department of Emergency MedicineSecond People's Hospital of Yunnan ProvinceKunmingChina
| | - Junbo Zhu
- Department of Emergency MedicineSecond People's Hospital of Yunnan ProvinceKunmingChina
| | - Wei Zhang
- Department of Emergency MedicineSecond People's Hospital of Yunnan ProvinceKunmingChina
| | - Yangshan Fu
- Department of Emergency MedicineSecond People's Hospital of Yunnan ProvinceKunmingChina
| | - Zhaoheng Lin
- Department of Critical Care MedicinePeople's Hospital of Xishuangbanna Dai Nationality Autonomous PrefecturePingpongChina
| |
Collapse
|
42
|
Liu J, Liu Y, Pan W, Li Y. Angiotensin-(1-7) attenuates collagen-induced arthritis via inhibiting oxidative stress in rats. Amino Acids 2021; 53:171-181. [PMID: 33398523 DOI: 10.1007/s00726-020-02935-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The present study was designed to investigate the anti-rheumatic effects and the mechanism of angiotensin (Ang)-(1-7) in rat models with collagen-induced arthritis (CIA). The CIA model was established using male Wistar rats by intradermal injection of bovine collagen-II in complete Freund's adjuvant at the base of the tail. The levels of angiotensin converting enzyme 2 (ACE2)/Ang-(1-7)/Mas receptor (MasR) were reduced in CIA rats. The attenuation of paw swelling and arthritis scores and improvement of indexes of spleen and thymus were done by Ang-(1-7) injection in CIA rats. The increased levels of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the serum and hind paw were blocked by Ang-(1-7) administration. In addition, enhanced NADPH oxidase (Nox) activity, increased levels of superoxide anions and malondialdehyde (MDA), and weakened superoxide dismutase (SOD) activity, were all reversed by treatment with Ang-(1-7). Nox1 overexpression reversed the suppressing effects of Ang-(1-7) on paw swelling and arthritis scores in CIA rats. The Ang-(1-7)-induced improvement in spleen and thymus indexes in CIA rats was abolished by Nox1 overexpression. Nox1 overexpression reversed the inhibitory effects of Ang-(1-7) by increasing IL-1β, IL-6, TNF-α, and IFN-γ levels in the serum and hind paw of CIA rats. These results demonstrated that Nox1 increased the oxidative stress in arthritis, and Ang-(1-7) improved rheumatism in arthritis via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Juan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China
| | - Yan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China
| | - Wenyou Pan
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China
| | - Yongsheng Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China.
| |
Collapse
|
43
|
Lu C, Hu G, Gao S, Mou D. Apoptotic and anti-proliferative effect of essential oil from turmeric (<i>Curcuma longa L.</i>) on HepG2 and H1299 cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caihui Lu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| | - Gaoshuang Hu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| | - Shan Gao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| | - Dehua Mou
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| |
Collapse
|
44
|
Wei M, Li L, Zhang Y, Zhang M, Su Z. Downregulated circular RNA zRANB1 mediates Wnt5a/β-Catenin signaling to promote neuropathic pain via miR-24-3p/LPAR3 axis in CCI rat models. Gene 2020; 761:145038. [DOI: 10.1016/j.gene.2020.145038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
|
45
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|