1
|
Xu Q, Zhou Y, Wu M, Wu S, Yu J, Xu Y, Wei Z, Jin L. MTHFD2: A metabolic checkpoint altering trophoblast invasion and migration by remodeling folate-nucleotide metabolism in recurrent spontaneous abortion. Cell Signal 2025; 132:111808. [PMID: 40250694 DOI: 10.1016/j.cellsig.2025.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Recurrent spontaneous abortion (RSA) affects female reproduction worldwide, yet its pathological mechanisms are still unclear. It has been reported that cellular metabolism reprogramming is a critical step for trophoblasts during embryo implantation. Herein, MTHFD2 was recognized as a key metabolic checkpoint attributed to RSA occurrence. This work figured out that the expression level of MTHFD2 was significantly inhibited in villus tissues from RSA patients, suggesting the potential role of MTHFD2 in RSA occurrence. Moreover, MTHFD2 knockdown impaired cellular folate-nucleotide metabolism, induced the accumulation of AICAR, and thereby impairing the EMT process to inhibit the invasion and migration of trophoblasts Besides, the AICAR accumulation further activated the downstream AMPK which deactivated the JAK/STAT/Slug pathway and ultimately deactivated the EMT process. Using a mouse model, MTHFD2 inhibition was observed to induce embryo implantation failure in vivo. Our results highlighted MTHFD2 as a metabolic checkpoint that remodeled folate-nucleotide metabolism to regulate the EMT process and ultimately altered the migration and invasion of trophoblasts in RSA occurrence. Our findings suggested that MTHFD2 was a promising therapeutic target in recurrent spontaneous abortion treatment.
Collapse
Affiliation(s)
- Qingxin Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yicheng Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meijuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shengnan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| |
Collapse
|
2
|
Bipasha M, Deepali V, Prabal D, Supriya K, Megha B. Ferroptosis: A Mechanism of Cell Death With Potential Scope in Cancer Therapy. Asia Pac J Clin Oncol 2025. [PMID: 40235436 DOI: 10.1111/ajco.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/30/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Ferroptosis is a type of regulated cell death caused by oxidative imbalance of the intracellular microenvironment. This causes the accumulation of toxic lipid peroxides, depicted by iron overload and lipid peroxidation, which results in disease development. The affected cell population displays unique morphological and biochemical features, which are distinct from other modes of cell death, like apoptosis, pyroptosis, and necroptosis. The individual pathways of each of these modes are interrelated and tend to counterbalance each other in the mechanism of cell death. The process of ferroptosis is associated with disturbances in iron metabolism, in conjunction with glutathione peroxidase and lipid peroxidation, culminating in a reduction of antioxidant capacity and accumulation of lipid peroxides in the dying cell. It has been observed that even excess cellular levels of iron can cause cell death, where ferroptosis is initiated by diminishing the levels of glutathione and glutathione peroxidase 4, and thus leading to excess build-up of lipid reactive oxygen species (ROS). In the case of a neoplastic cell, ferroptosis along with its regulators tends to orchestrate cell death and also affects cancer progression by modulation of proliferation activity, apoptosis suppression, metastasis, and drug resistance. Comprehending the complex network of molecular processes implicated in ferroptosis regulation is vital for developing targeted therapies for diseases where ferroptosis plays a significant role.
Collapse
Affiliation(s)
- Mukherjee Bipasha
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Vidhate Deepali
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Deb Prabal
- Sultan Qaboos Comprehensive Cancer Care & Research Centre, University Medical City, Muscat, Sultanate of Oman
| | - Khillare Supriya
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Bangar Megha
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| |
Collapse
|
3
|
Gao W, Wang M, Xu W, Ma R, Wang X, Sun T, Li P, Li F, He Y, Xie X, Pang X, Zhou Y, Pang G. Modified weiling decoction inhibited excessive autophagy via AKT/mTOR/ULK1 pathway to alleviate T2DM: Integrating network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119753. [PMID: 40194640 DOI: 10.1016/j.jep.2025.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weiling Decoction is a traditional Chinese herbal formula that has the function of removing dampness and transforming turbidity, and it is widely used in the treatment of metabolic diseases. The hypoglycemic and antihyperlipidemic effects of Modified Weiling Decoction (MWLD) have been clinically verified in patients with type 2 diabetes mellitus (T2DM), however, the molecular mechanism remains unclear. AIM OF THE STUDY To explore the hypoglycemic mechanism of MWLD based on integrative network pharmacology and experimental validation in vivo and in vitro. MATERIALS AND METHODS The overlap between T2DM-related genes and target genes of MWLD were deemed to the potential targets of MWLD in alleviating T2DM. Protein-protein interaction analysis was performed to find the core targets from above-mentioned potential targets, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) analysis were carried out to gain the key pathways involved in the T2DM improvement by MWLD. T2DM mice and palmitic acid-induced HepG2 cells were employed to validate the mechanism of MWLD predicated by network pharmacology. RESULTS A total of 292 target genes from 113 bioactive compounds in MWLD were identified, among of which 42 genes were recognized as core genes of MWLD in ameliorating T2DM. KEGG analysis showed that the therapeutic effect of MWLD on T2DM may be associated with insulin resistance (IR), islet β cell dysfunction, AKT, and MAPK. We found that MWLD significantly reduced fasting blood glucose and improved oral glucose tolerance in T2DM mice. Meanwhile, MWLD activated the AKT/GSK3β pathway to increase liver glycogen production and improve glucose metabolism in T2DM mice. MWLD activated the AKT/mTOR/ULK1 signaling pathway and reversed the increase of autophagy associated proteins (LC3II, Beclin1, Cathepsin B, and LAMP2) in the liver of T2DM mice. Similar results were also confirmed palmitic acid-induced HepG2 cells, an in vitro model for IR. Conversely, AKT inhibitor MK2206 neutralized the effects of MWLD on autophagy and glucose uptake, which was consistent with these results that the main active components of MWLD show strong affinity with AKT1 analyzed by molecular docking. CONCLUSION Both in vivo and in vitro experiments showed that MWLD inhibited excessive autophagy through the AKT/mTOR/ULK1 pathway to improve hepatic IR, and stimulate liver glycogen production through AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Weiping Gao
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Mengwei Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wangjun Xu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ruichen Ma
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China; Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Xian Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Taimeng Sun
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China; Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Penghui Li
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Fangxu Li
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Yangyang He
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xinmei Xie
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaobin Pang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yunfeng Zhou
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Guoming Pang
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China.
| |
Collapse
|
4
|
Yan X, Xu L, Qi C, Chang Y, Zhang J, Li N, Shi B, Guan B, Hu S, Huang C, Wang H, Chen Y, Xu X, Lu J, Xu G, Chen C, Li S, Chen Y. Brazilin alleviates acute lung injury via inhibition of ferroptosis through the SIRT3/GPX4 pathway. Apoptosis 2025; 30:768-783. [PMID: 39720978 DOI: 10.1007/s10495-024-02058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Ferroptosis is a novel type of programmed cell death dependent on iron and is characterized by the accumulation of lipid peroxides, which is involved in acute lung injury (ALI). Brazilin, an organic compound known for its potent antioxidant and anti-inflammatory properties, has not been thoroughly studied for its potential impact on lipopolysaccharide (LPS)-induced ALI. Here, we found that pretreatment of brazilin mitigated LPS-induced lung injury and inflammation by inhibiting mitochondrial oxidative stress and ferroptosis, both in vivo and in vitro. Sirtuin 3 (SIRT3) was identified as a downstream target of brazilin, and overexpression of SIRT3 mirrored the protective effects of brazilin against LPS-induced ALI. Additionally, SIRT3 contributed to the upregulation, mitochondrial translocation and deacetylation of glutathione peroxidase 4 (GPX4). Through screening potential acetylation sites on GPX4, we identified lysine 148 (K148) as the residue deacetylated by SIRT3. Mutating the acetylation site of GPX4 within mitochondria (mitoGPX4-K148R) reduced LPS or SIRT3 knockdown-induced GPX4 acetylation, oxidative stress, and ferroptosis, ultimately ameliorating ALI. In conclusion, our study demonstrates the beneficial effects of brazilin in treating LPS-induced ALI. Brazilin enhances SIRT3 expression, which in turn deacetylates and facilitates the mitochondrial translocation of GPX4, thereby reducing mitochondrial oxidative stress and ferroptosis. These findings suggest that the SIRT3/GPX4 pathway may represent a critical mechanism, and brazilin emerges as a promising therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Xiaopei Yan
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Li Xu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chang Qi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiling Chang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Juanjuan Zhang
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ning Li
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Baoyu Shi
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bo Guan
- Department of Geriatrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Siming Hu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- Ministry of Science and Technology, Public Experimental Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hui Wang
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Chen
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiao Xu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Lu
- Department of Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guopeng Xu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China.
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
5
|
Mao Y, Wan J, Lin B, Xu P, Zhang K, Jin M, Xuan S, Wang M, Du J, Zhang L, Tang Z. Felodipine Promotes the Recovery of Mice With Spinal Cord Injury by Activating Macrolipophagy Through the AMPK-mTOR Pathway. J Cell Mol Med 2025; 29:e70543. [PMID: 40259510 PMCID: PMC12011640 DOI: 10.1111/jcmm.70543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025] Open
Abstract
Spinal cord injury (SCI) is a serious clinical condition characterised by extensive mechanical damage that compromises the tissue structure and microenvironment of the affected area. This damage leads to the formation of fibrotic blood vessels and impaired energy metabolism, both of which hinder recovery. Felodipine, a clinically approved antihypertensive drug, acts as a selective calcium antagonist, primarily inhibiting extracellular calcium influx in arteriolar smooth muscle and selectively dilating arterioles. Additionally, felodipine has been demonstrated to induce autophagy. Considering these properties collectively, we hypothesised that felodipine could modulate the microenvironment of the injured spinal cord. In this study, we employed immunofluorescence and Western blot analyses to evaluate the effects of felodipine on microenvironment repair and neuroprotection, both in vitro and in vivo. Particular attention was given to its regulatory role in AMPK-mTOR pathway-mediated macrolipophagy. Our results demonstrated that felodipine effectively improved the injured spinal cord microenvironment by activating macrolipophagy, facilitating the clearance of myelin debris. Furthermore, felodipine promoted the restoration of endothelial cell tight junctions, thereby enhancing the integrity of the blood-spinal cord barrier. This attenuation of barrier disruption after SCI contributed to improved neuronal survival. These findings expanded the clinical application prospect of felodipine and presented new therapeutic avenues for treating SCI.
Collapse
Affiliation(s)
- Yuqin Mao
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Jinlong Wan
- Department of GastroenterologyGaozhou People's HospitalMaomingChina
| | - Binghao Lin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pengtao Xu
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Ke Zhang
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Mengyun Jin
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Shaoyan Xuan
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Minxiu Wang
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Jiqing Du
- School of Life and Health TechnologyDongguan University of TechnologyDongguanChina
| | - Lin Zhang
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| | - Zhihua Tang
- Department of PharmacyShaoxing People's HospitalShaoxingChina
| |
Collapse
|
6
|
Lan D, Huang S, Li J, Zhou S, Deng J, Qin S, Zhou T, Meng F, Li W. Ferroptosis in Endometriosis: Traditional Chinese Medicine Interventions and Mechanistic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:385-408. [PMID: 40145281 DOI: 10.1142/s0192415x25500156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease affecting 5-10% of women of reproductive age, characterized by the growth of endometrial tissue on the outside of the uterus. The dysregulation of iron metabolism leads to the accumulation of iron ions at the lesion sites, resulting in oxidative stress and pro-inflammatory responses that promote the progression of EMS. The mechanisms underlying ferroptosis in EMS primarily involve iron accumulation, lipid peroxidation, and loss of glutathione peroxidase 4 activity. These mechanisms confer resistance to ferroptosis within the ectopic tissues and facilitate cell survival and proliferation. Traditional Chinese medicine (TCM) has demonstrated therapeutic potential for modulating ferroptosis. Studies have shown that TCM monomers may regulate ferroptosis by modulating iron transport proteins and anti-oxidant defense mechanisms. TCM formulas employ distinct treatment strategies depending on the stage of EMS: in the early stages, they promote ferroptosis to control lesion growth, whereas in the later stages, they inhibit ferroptosis to reduce oxidative stress and inflammation in order to improve reproductive health and slow disease progression. This study provides a new perspective on potential therapeutic strategies for the management of EMS by summarizing the role of ferroptosis in its pathological mechanisms and reviewing findings on the use of TCM in regulating ferroptosis.
Collapse
Affiliation(s)
- Dingli Lan
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shuping Huang
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Jing Li
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shilang Zhou
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Jianli Deng
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shuiyun Qin
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Ting Zhou
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Fengyun Meng
- Yao College of Medicine Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Weihong Li
- Department of Nursing Guangxi University of Chinese Medicine Nanning, P. R. China
| |
Collapse
|
7
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Wei M, Wu Y, Yang Q, Zhou Z, Xu X. Serum Starvation Regulates Autophagy of Human Periodontal Ligament Cells Through Reactive Oxygen Species Mediated Adenosine Monophosphate-Activated Protein Kinase/Mechanistic Target of RAPAMYCIN Axis. Int Dent J 2025; 75:1461-1471. [PMID: 40120460 PMCID: PMC11982979 DOI: 10.1016/j.identj.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
INTRODUCTION AND AIMS Human periodontal ligament cells (hPDLCs) play a pivotal role in periodontal tissue remodelling, a process essential for orthodontic tooth movement (OTM). Autophagy, a survival mechanism under cellular stress, is induced by nutrient deprivation and impacts hPDLC function. This study aimed to explore the role of autophagy in the adaptive response of hPDLCs to nutritional stress, an environment simulating conditions during OTM. METHODS Nutrient deprivation in hPDLCs was modelled through serum starvation. Autophagy levels and relevant markers were assessed using electron microscopy, protein assays, and gene expression analyses. Emphasis was placed on adenosine monophosphate-activated protein kinase (AMPK) signalling, specifically phosphorylation of AMPKα at Thr172, as a regulatory node in autophagy induction. Loss- and gain-of-function approaches were utilized to investigate the role of Thr172 in AMPK-mediated autophagy under nutrient stress. RESULTS Findings indicated a marked increase in reactive oxygen species-mediated autophagy in hPDLCs under nutrient deprivation. This process was significantly regulated by AMPK activation through Thr172 phosphorylation, establishing AMPK as a critical factor in autophagy induction during cellular adaptation to nutritional stress. CONCLUSION Nutritional stress enhances reactive oxygen species-mediated autophagy in hPDLCs via AMPK signalling, underscoring the role of autophagy in cellular adaptation during OTM. Targeting the AMPK pathway could provide novel insights for optimizing orthodontic treatment by leveraging cellular adaptive mechanisms. CLINICAL RELEVANCE Understanding the molecular mechanisms underlying autophagy in hPDLCs opens potential therapeutic pathways to improve OTM outcomes. Modulating autophagy may lead to advances in orthodontic therapies that facilitate periodontal tissue remodelling, enhancing clinical effectiveness.
Collapse
Affiliation(s)
- Mianxing Wei
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yujie Wu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Qian Yang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zheng Zhou
- University of Detroit Mercy, School of Dentistry, Graduate Periodontics, Detroit, Michigan, USA.
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, P.R. China.
| |
Collapse
|
9
|
Lv P, Hu Y, Ding L, Xiang W. Puerarin triggers sensitivity to ferroptosis in glioblastoma cells by activating SIRT3/NCOA4-dependent autophagy. Int Immunopharmacol 2025; 149:114246. [PMID: 39929095 DOI: 10.1016/j.intimp.2025.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
SIRT3 has been found to involve in the tumorigenesis and progression of glioblastoma, and it is reported that puerarin can inhibit the growth of glioblastoma cells. Therefore, we aimed to investigate the biological function of SIRT3 in autophagy and ferroptosis in glioblastoma cells and study the effects of puerarin on ferroptosis and SIRT3/NCOA4-dependent autophagy in cancer cells. The results showed that overexpression of SIRT3 significantly promoted ferroptosis sensitization by reducing cell viability and GSH/GSSH ratio and increasing ROS levels, whereas knockout of SIRT3 significantly triggered cell viability and GSH/GSSH ratio and decreasing ROS levels in U87MG cells (P < 0.05). Moreover, overexpression of SIRT3 significantly also promoted the ratio of LC3-Ⅱ/Ⅰ and upregulated NCOA4 and Fe2+ levels, but downregulated the expression of p62 and FTH (P < 0.05); while knockout of SIRT3 has the opposite effects. Besides, autophagy inhibitor antagonized the effects of SIRT3 overexpression on the expression of autophagy-associated proteins and Fe2+ levels. Additionally, knockout of NCOA4 significantly increased cell viability and GSH/GSSH ratio and reduced ROS levels in RSL3-treated cells overexpressing SIRT3. Puerarin treatment significantly upregulated the levels of ROS, Fe2+, SIRT3, NCOA4, and the ratio of LC3-Ⅱ/Ⅰ, but downregulated the levels of cell viability, GSH/GSSH ratio, p62, and FTH in U87MG cells (all P < 0.05). Autophagy inhibitor, SIRT3 or NCOA4 deletion significantly reduced the effects of puerarin on the autophagy-dependent ferroptosis in U87MG cells (all P < 0.05). SIRT3 drives sensitivity to ferroptosis by activating NCOA4-mediated autophagy, and we proposed puerarin, a promising therapeutic drug for glioblastoma.
Collapse
Affiliation(s)
- Peng Lv
- Department of Neurosurgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China; Department of Neurosurgery Suizhou Central Hospital Hubei University of Medicine Suizhou Hubei China
| | - Yueyun Hu
- Department of Neurosurgery Wuhan No 8 Hospital Wuhan China
| | - Lei Ding
- General Hospital of the Yangtze River Shipping Wuhan Brain Hospital Wuhan China.
| | - Wei Xiang
- Department of Neurosurgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.
| |
Collapse
|
10
|
Fang L, Lu S, Fang L, Yu J, Kakongma N, Hu W. Metformin ameliorates gestational diabetes mellitus via inhibiting ferroptosis of trophoblasts through the Nrf2/HO-1 signaling pathway. Free Radic Res 2025; 59:190-203. [PMID: 39959960 DOI: 10.1080/10715762.2025.2468737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Both mothers and infants experience oxidative stress due to gestational diabetes mellitus (GDM), which is strongly associated with adverse pregnancy outcomes. Ferroptosis, a novel form of programmed cell death characterized by iron-dependent lipid peroxidation, is believed to play a critical role in the pathogenesis and progression of GDM. Metformin (MET) has shown potential in alleviating oxidative stress; however, research on its specific mechanisms of action in GDM remains limited. We collected placental tissues from GDM patients and healthy controls and established an in vitro GDM cell model. We measured markers of ferroptosis including malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) activity. Additionally, we evaluated reactive oxygen species (ROS) levels, apoptosis, cell viability, and migration in the cell model. Our findings revealed significant changes in the GDM group compared to controls, including increased MDA and GSSG levels, decreased GSH levels, and reduced expression of GPX4 protein in the GDM placenta. High-glucose (HG) conditions were shown to reduce trophoblast cell viability and migration, accompanied by elevated ROS and MDA levels, as well as reduced expression of GSH, GPX4, Nrf2, and HO-1 proteins. Importantly, treatment with MET reversed these effects, similar to the action of deferoxamine mesylate (DFOM), a known ferroptosis inhibitor. These results confirm the occurrence of ferroptosis in the placentas of GDM patients and demonstrate that MET mitigates high-glucose-induced ferroptosis in trophoblasts through the Nrf2/HO-1 signaling pathway. This study provides novel insights into the protective mechanisms of MET, offering potential therapeutic strategies for GDM. management.
Collapse
Affiliation(s)
- Lingya Fang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Xiuzhou District Maternal and Child Health Care Hospital, Xiuzhou, Jiaxing, China
| | - Sha Lu
- Hangzhou Women's Hospital, Hangzhou, Zhejiang, China
- The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liuyuan Fang
- The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Junxin Yu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nisile Kakongma
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wensheng Hu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Wu H, Feng L, Wu H, Wang L, Xu H, Fu F. Synergistic effects of PS-NPs and Cd on ovarian toxicity in adolescent rats: Ferroptosis by induction of mitochondrial redox imbalance via the SIRT3-SOD2/Gpx4 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117622. [PMID: 39732061 DOI: 10.1016/j.ecoenv.2024.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Nanoplastics (NPs) are an emerging class of pollutants. They can act as a"Trojan horse" to change the bioavailability and toxicity of heavy metals in the environment. However, research on the combined toxicity of heavy metals and NPs is scarce, especially during the critical developmental period of adolescence. In this study, polystyrene nanoplastics (PS-NPs) and/or cadmium (Cd) were exposed to 4-week-old female rats for 28 days, with the aim of exploring the potential effects of combined exposure to PS-NPs and Cd on the ovaries of adolescence rats. Results showed that co-exposure to PS-NPs and Cd exacerbated ovarian toxicity in rats, primarily through increased atretic follicle numbers and endocrine disruption. Further studies revealed that PS-NPs and Cd synergistically repressed the SIRT3-SOD2/Gpx4 pathway, inducing mitochondrial oxidative stress and ferroptosis, resulting in damage to ovarian structure and function. However, the addition of the mitochondrion-targeted antioxidant SS-31 and the ferroptosis inhibitor Fer-1 reversed the harm to the ovaries from co-exposure to PS-NPs and Cd, the aberrant expression of genes related to the SIRT3-SOD2/Gpx4 pathway was also improved. Our results suggested that co-exposure to PS-NPs and Cd may trigger ferroptosis by inhibiting the SIRT3-SOD2/Gpx4 pathway, leading to mitochondrial redox imbalance, which provided novel insights into reproductive toxicity due to the interaction of PS-NPs and Cd during adolescence.
Collapse
Affiliation(s)
- Hua Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Lihua Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huang Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Lihong Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
12
|
Chen Z, Shi J, Huang X, Yang Y, Cheng Y, Qu Y, Gu N. Exosomal miRNAs in patients with chronic heart failure and hyperuricemia and the underlying mechanisms. Gene 2025; 933:148920. [PMID: 39241970 DOI: 10.1016/j.gene.2024.148920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic heart failure (CHF) combined with hyperuricemia (HUA) is a comorbidity that is hard to diagnose by a single biomarker. Exosomal miRNAs are differentially expressed in cardiovascular diseases and are closely associated with regulating most biological functions. This study aimed to provide evidence for miRNA as a new molecular marker for precise diagnosis of the comorbidity of CHF with HUA and further analyze the potential targets of differentially expressed miRNA. This controlled study included 30 CHF patients combined with HUA (Group T) and 30 healthy volunteers (Group C). 6 peripheral blood samples from Group T and Group C were analyzed for exosomal miRNAs by high-throughput sequencing and then validated in the remaining 24 peripheral blood samples from Group T and Group C by applying real-time PCR (RT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software to predict the differential miRNAs' action targets. 42 differentially expressed miRNAs were detected (18 upregulated and 24 downregulated), in which miR-27a-5p was significantly upregulated (P<0.01), and miR-139-3p was significantly downregulated (P<0.01) in Group T. The combination of miR-27a-5p and miR-139-3p predicted the development of CHF combined with HUA with a maximum area under the curve (AUC) of 0.899 (95 % CI: 0.812-0.987, SEN=79.2 %, SPE=91.7 %, J value = 0.709). GO and KEGG enrichment analysis revealed that the differentially expressed miRNAs had a role in activating the AMPK-mTOR signaling pathway to activate the autophagic response. Collectively, our findings suggest that upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p can be used as a novel molecular marker for precise diagnosis of CHF combined with HUA and enhanced autophagy by AMPK-mTOR signaling pathway may be one pathogenesis of the differentially expressed miRNAs.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Jun Shi
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, PR China
| | - Xia Huang
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Yonggang Yang
- Biochemical Labororatory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Yan Cheng
- Pharmaceutical Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Yuan Qu
- Emergency Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Ning Gu
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China.
| |
Collapse
|
13
|
Zgutka K, Tkacz M, Grabowska M, Mikołajek-Bedner W, Tarnowski M. Sirtuins and Their Implications in the Physiopathology of Gestational Diabetes Mellitus. Pharmaceuticals (Basel) 2025; 18:41. [PMID: 39861104 PMCID: PMC11768332 DOI: 10.3390/ph18010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for the mother and her child. An effective therapeutic that can reduce the incidence of GDM and improve long-term outcomes is a major research priority and is very important for public health. Unfortunately, despite numerous studies, the molecular mechanisms underlying GDM are not fully defined and require further study. Chronic low-grade inflammation, oxidative stress, and insulin resistance are central features of pregnancies complicated by GDM. There is evidence of the involvement of sirtuins, which are NAD+-dependent histone deacetylases, in energy metabolism and inflammation. Taking these facts into consideration, the role of sirtuins in the pathomechanism of GDM will be discussed.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Wioletta Mikołajek-Bedner
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| |
Collapse
|
14
|
Mao J, Zhang JN, Zhang QB, Zhu DT, Li XM, Xiao H, Kan XL, Zhang R, Zhou Y. Extracorporeal Shock Wave and Melatonin Alleviate Joint Capsule Fibrosis after Knee Trauma in Rats by Regulating Autophagy. Curr Mol Med 2025; 25:222-236. [PMID: 39279114 DOI: 10.2174/0115665240339436240909100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Joint contracture is a common clinical problem affecting joint function. Capsule fibrosis plays a pivotal role in the progression of joint contracture. Previous studies have reported that autophagy plays a regulatory role in visceral fibrosis. OBJECTIVE This study aimed to investigate whether extracorporeal shock wave therapy (ESWT) and melatonin alleviate joint capsule fibrosis in rats with extended knee joint contracture by regulating autophagy. METHODS A rat traumatic knee joint extension contracture model was made. Then, the rats were treated with ESWT, melatonin, ESWT + melatonin, or ESWT + melatonin + mTOR agonist for 4 weeks. The range of motion (ROM) of the knee joints was measured. Joint capsules were collected and observed for pathological changes by H&E and Masson staining. LC3B protein expression was evaluated by immunofluorescence staining. TGF-β1, MMP-1, Col-Ⅰ, Col-Ⅲ, LC3, ATG7, Beclin1, p-AMPK, p-mTOR and p-ULK1 protein expressions were measured by Western blot assay. RESULTS The intervention groups had significantly improved ROM of knee joint (P < 0.05), significantly improved pathological changes on HE and Masson staining, significantly decreased protein expressions of TGF-β1, MMP-1, Col-Ⅰ, Col-Ⅲ and pmTOR (P < 0.05), and significantly increased protein expressions of LC3B, LC3II/LC3I ratio, ATG7, Beclin1, p-AMPK, and p-ULK1 (P < 0.05). Among these groups, the effects demonstrated by the ESWT + melatonin group were the best. With the mTOR agonist supplement, the therapeutic effects of extracorporeal shock waves and melatonin were significantly reduced. CONCLUSION ESWT plus melatonin alleviated knee joint capsule fibrosis in rats by regulating autophagy.
Collapse
Affiliation(s)
- Jing Mao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin-Niu Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De-Ting Zhu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Ming Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiu-Li Kan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Run Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Zhao H, Fan M, Zhang J, Gao Y, Chen L, Huang L. Amyloid beta-induced mitochondrial dysfunction and endothelial permeability in cerebral microvascular endothelial cells: The protective role of dexmedetomidine. Brain Res Bull 2025; 220:111137. [PMID: 39577505 DOI: 10.1016/j.brainresbull.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in patients who undergo anesthesia in different types of surgeries. Emerging evidence implicates elevated beta-amyloid (Aβ) in the pathogenesis of POCD. Meanwhile, Dexmedetomidine (DEX) has recently shown promise in reducing POCD incidence. This study aimed to elucidate the role of Aβ in inducing endothelial permeability in cerebral microvascular endothelial cells and the underlying mechanisms and testing the effects of DEX. We demonstrated that Aβ1-42, the prevalent Aβ form related to POCD, is cytotoxic to HBMECs, increasing transendothelial permeability and inducing mitochondrial dysfunction, as evidenced by elevated mitochondrial reactive oxygen species (ROS) and decreased ATP production and mitochondrial membrane potential. Furthermore, Aβ1-42 was shown to inhibit Sirt3, exacerbating mitochondrial dysfunction. Conversely, DEX was found to prevent Aβ1-42-induced mitochondrial dysfunction and permeability increases and preserved tight junction proteins in HBMECs.These findings suggest that DEX, as a Sirt3 activator, may offer a pharmacological strategy to mitigate Aβ1-42-related cerebral microvascular endothelial cell dysfunction and preserve cognitive function post-surgery.
Collapse
Affiliation(s)
- Haifeng Zhao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050061, PR China; Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Yi Gao
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Liang Chen
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050061, PR China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, PR China; Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, PR China.
| |
Collapse
|
16
|
Wang J, Yang JH, Xiong D, Chen L. Activation of SIRT3/AMPK/mTOR-mediated autophagy promotes quercetin-induced ferroptosis in oral squamous cell carcinoma. Hum Exp Toxicol 2025; 44:9603271251323753. [PMID: 40009568 DOI: 10.1177/09603271251323753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Quercetin has been reported to inhibit the growth of oral squamous cell carcinoma (OSCC), but the mechanism remains unclear. Therefore, our study aimed to investigate the involvement of sirtuin 3 (SIRT3) and the autophagy-dependent form of cell death, ferroptosis, in the pathogenesis of OSCC, and observe the impacts of quercetin on ferroptosis and SIRT3/AMPK/mTOR-mediated autophagy. METHODS SIRT3 knock out or overexpressing SCC15 cell line was generated, treated with indicated drugs, and malondialdehyde (MDA) and ROS levels were measured. Roles of SIRT3 in regulating autophagy-mediated ferroptosis were assessed by immunoprecipitation and Western blotting. RESULTS SIRT3 overexpression increased levels of MDA and ROS, reducing cell viability, and SIRT3 knockout produced the opposing effect. SIRT3 overexpression upregulated ATG16L1 expression and the conversion of LC3-Ⅰ to LC3-Ⅱ, triggering autophagy. Suppression of autophagy by ATG16L1 knockout impaired SIRT3-triggered ferroptosis. Use of an AMPK inhibitor antagonized the induction of ferroptosis by SIRT3 in SCC15 cells, indicating the involvement of the AMPK/mTOR pathway. Additionally, quercetin significantly increased the levels of SIRT3, p-AMPK, ATG16L1, and the ratio of LC3-Ⅱ/Ⅰ, but reduced cell viability and p-mTOR in SCC15 cells. Autophagy and AMPK inhibitors, or SIRT3 deletion significantly antagonized the impacts of quercetin on the autophagy-mediated ferroptosis in cancer cells. DISCUSSION SIRT3 overexpression activated the AMPK/mTOR pathway and triggered ATG16L1-mediated autophagy, promoting ferroptosis in SCC15 cells, and we proposed that quercetin may be a promising therapeutic drug for OSCC.
Collapse
Affiliation(s)
- Jin Wang
- Department of General Practice, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Jia-Hui Yang
- Department of Cosmetic Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Di Xiong
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| |
Collapse
|
17
|
Zhang Q, Yuan X, Luan X, Lei T, Li Y, Chu W, Yao Q, Baker PN, Qi H, Li H. GLUT1 exacerbates trophoblast ferroptosis by modulating AMPK/ACC mediated lipid metabolism and promotes gestational diabetes mellitus associated fetal growth restriction. Mol Med 2024; 30:257. [PMID: 39707215 DOI: 10.1186/s10020-024-01028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has been associated with several fetal complications, such as macrosomia and fetal growth restriction (FGR). Infants from GDM associated FGR are at increased risk for adult-onset obesity and associated metabolic disorders. However, the underlying mechanisms of GDM associated FGR remain to be explored. METHODS We analyzed placentas from GDM patients with FGR for ferroptosis markers and GLUT1 expression. High glucose conditions were established by adding different concentrations of D-Glucose to the 1640 cell culture medium. RSL3 were used to test ferroptosis sensitivity in trophoblast cells. GLUT1 was inhibited using siRNA or its inhibitor WZB117 to assess its impact on ferroptosis inhibition in HTR8/SVneo cell line. Mechanistic studies explored the effects of GLUT1 on AMPK and ACC phosphorylation, which in turn impacted lipid metabolism and ferroptosis. In mouse models, streptozotocin (STZ)-induced GDM was treated with WZB117 and the ferroptosis inhibitor liproxstatin-1 (Lip-1). Finally, AMPK and ACC phosphorylation levels were evaluated in GDM patient samples. RESULTS In this study, placentas from GDM patients with FGR showed signs of ferroptosis and upregulation of GLUT1. In cell models, high glucose conditions sensitized trophoblast cells to ferroptosis and induced GLUT1 expression. Interestingly, GLUT1 inhibition significantly suppressed ferroptosis in trophoblast cells under high glucose conditions. Mechanistically, elevated GLUT1 inhibited AMPK phosphorylation and reduced ACC phosphorylation, thereby promoting lipid synthesis and facilitating ferroptosis. In pregnant mice, STZ-induced hyperglycemia led to FGR, and treatment with either the GLUT1 inhibitor WZB117 or the ferroptosis inhibitor Lip-1 alleviated the FGR phenotype. Moreover, in vivo elevation of GLUT1 increased ferroptosis markers, decreased AMPK/ACC phosphorylation, and resulted in altered lipid metabolism, which likely contributed to the observed phenotype. Finally, placental samples from GDM patients showed reduced AMPK and ACC phosphorylation. CONCLUSIONS Our findings suggest a potential role of ferroptosis in GDM associated FGR and indicate that the dysregulated GLUT1-AMPK-ACC axis may be involved in the pathogenesis of GDM associated FGR in clinicals.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xi Yuan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Hui Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Zhao X, Yin X. The Expression of SIRT3 in Endometrial Carcinoma and Its Effect on Promoting Apoptosis of Ishikawa Cells. Biochem Genet 2024:10.1007/s10528-024-10995-z. [PMID: 39671142 DOI: 10.1007/s10528-024-10995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Endometrial cancer (EC) is one of the three most common malignancies of the female reproductive system. SIRT3 is an NAD+-dependent protein deacetylase that maintains the stability of the intracellular environment. This study aims to investigate the mechanism of SIRT3 in regulating apoptosis in endometrial cancer and further reveal the role of SIRT3 in endometrial cancer. Differential expression of SIRT3 in tumors was analyzed by GEPIA using TCGA database data. Meanwhile, mRNA and protein expression levels of SIRT3 in tissues and cells were examined using RT-qPCR, Western Blot, and immunohistochemistry. The expression of SIRT3 after estradiol (E2) stimulation of Ishikawa cells was detected using RT-qPCR and Western Blot techniques. The effect of transfection after SIRT3 knockdown and overexpression was verified using RT-qPCR and Western Blot. Flow cytometry and TUNEL assay were used to detect the effect of SIRT3 on apoptosis. Reactive oxygen species (ROS) was used to detect the effect of SIRT3 on the level of oxidative stress in cells. The expression of apoptotic protein (BAX, cleaved-Caspase 3) and autophagy protein (cyto C and LC3A) were detected in transfected Ishikawa cell. Differences analysis of TCGA database data showed that the expression of SIRT3 in EC was significantly lower than that in normal endometrial tissue. The mRNA and protein levels of SIRT3 were significantly lower in EC tissues or cells than normal controls. E2 stimulation in Ishikawa cells resulted in the down-regulation of SIRT3 expression. After transfection, SIRT3 promoted the apoptosis of Ishikawa cells and attenuated the levels of ROS. Overexpression of SIRT3 promoted apoptosis and autophagy-related proteins. Thus, high expression of SIRT3 inhibits the development of EC whereas low expression of SIRT3 may promote the progression of EC, which provides a new direction for studying the treatment of EC.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Xuebei Yin
- Center of Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital of Soochow University, 9 Chongwen Road, 215000, Suzhou, Jiangsu, China.
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
19
|
Li P, Wang H, Chen T, Chen G, Zhou Z, Ye S, Lin D, Fan D, Guo X, Liu Z. Association between iron status, preeclampsia and gestational hypertension: A bidirectional two-sample Mendelian randomization study. J Trace Elem Med Biol 2024; 86:127528. [PMID: 39305811 DOI: 10.1016/j.jtemb.2024.127528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Several recent observational studies have reported that iron overload during pregnancy is associated with preeclampsia (PE) and gestational hypertension (GH). However, the causal association between iron status, PE, and GH is still not clear. METHODS We performed a two-sample Mendelian randomization (MR) study using the genome-wide association study (GWAS) summary statistics of iron status, included serum iron, ferritin, total iron-binding capacity (TIBC), and transferrin saturation (TSAT) from the largest available GWAS meta-analysis, and the summary statistics of PE and GH were obtained from the FinnGen consortium. Fixed-effect inverse variance weighted (IVW), random-effect IVW, maximum likelihood (ML), MR-Egger regression, weighted median, and MR-PRESSO methods were used. RESULTS A total of 21, 58, 28, and 22 SNPs were used as IVs for serum iron, ferritin, TIBC, and TSAT, respectively. The F-statistics of IVs ranged from 95.23 to 421.36. The results of the fixed effects IVW method suggested that for per SD unit increase in serum iron, the risk of PE increases by 24 % (OR = 1.24, 95 % CI: 1.03-1.50, P = 0.02). No significant heterogeneity or horizontal pleiotropy was found. The association between ferritin, TIBC, TSAT and PE were statistically insignificant (P>0.05). Furthermore, the results of each MR methods do not support a causal association between iron status and GH, nor a reverse causal association between PE and GH and iron status. CONCLUSION This two-sample MR study provides evidence supporting a causal association between serum iron level and PE.
Collapse
Affiliation(s)
- Pengsheng Li
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Haiyan Wang
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Ting Chen
- Department of Ultrasound, Foshan Women and Children Hospital, Foshan, China
| | - Gengdong Chen
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Zixing Zhou
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Shaoxin Ye
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Dongxin Lin
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Dazhi Fan
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China
| | - Xiaoling Guo
- Department of Obstetrics, Foshan Women and Children Hospital, Foshan, China
| | - Zhengping Liu
- Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital, Foshan, China; Department of Obstetrics, Foshan Women and Children Hospital, Foshan, China.
| |
Collapse
|
20
|
Zhu J, Wu Y, Zhang L, Bai B, Han W, Wang H, Mei Q. Epithelial Piezo1 deletion ameliorates intestinal barrier damage by regulating ferroptosis in ulcerative colitis. Free Radic Biol Med 2024; 224:272-286. [PMID: 39216559 DOI: 10.1016/j.freeradbiomed.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis, a recently discovered form of regulated cell death, has been implicated in the development of ulcerative colitis (UC). While Piezo1's role in inducing ferroptosis in chondrocytes and pulmonary endothelial cells is documented, its regulatory function in ferroptosis and intestinal epithelial cells in UC remains unclear. To address this, colonic tissue samples from patients with UC were examined, and specific intestinal epithelial Piezo1-deficient (Piezo1ΔIEC) mice were created to investigate Piezo1's role in UC pathogenesis. Elevated epithelial Piezo1 levels were observed in patients with UC, correlating with increased ferroptosis and tight junction (TJ) disruption. In dextran sulfate sodium (DSS)-induced colitis, Piezo1ΔIEC mice exhibited significantly reduced intestinal inflammation and improved gut barrier function compared to wild-type (WT) mice. Moreover, Piezo1 deficiency in colitis mice and lipopolysaccharide (LPS)-stimulated Caco-2 cells led to higher TJ protein levels, reduced lipid peroxidation, enhanced mitochondrial function, and altered expression of ferroptosis-associated proteins. Additionally, erastin, a ferroptosis activator, reversed the protective effect of Piezo1 silencing against LPS-induced ferroptosis in Caco-2 cells. Mechanistically, Piezo1 was found to regulate ferroptosis via the AMPK/mTOR signaling pathway. These findings highlight a novel role for Piezo1 deletion in mitigating ferroptosis in intestinal epithelial cells, suggesting Piezo1 as a potential therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yumei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Luyao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Bingqing Bai
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
21
|
Luo Y, Ye T, Tian H, Song H, Kan C, Han F, Hou N, Sun X, Zhang J. Empagliflozin alleviates obesity-related cardiac dysfunction via the activation of SIRT3-mediated autophagosome formation. Lipids Health Dis 2024; 23:308. [PMID: 39334359 PMCID: PMC11430456 DOI: 10.1186/s12944-024-02293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Empagliflozin (EMPA) has demonstrated efficacy in providing cardiovascular benefits in metabolic diseases. However, the direct effect of EMPA on autophagy in obesity-related cardiac dysfunction remains unclear. Therefore, this study aimed to determine changes in cardiac autophagy during diet-induced obesity and clarify the exact mechanism by which EMPA regulates autophagic pathways. METHODS Male C57BL/6J mice were fed a 12-week high-fat diet (HFD) followed by 8 weeks of EMPA treatment. Body composition analysis and echocardiography were performed to evaluate metabolic alterations and cardiac function. Histological and immunofluorescence staining was used to evaluate potential enhancements in myocardial structure and biological function. Additionally, H9c2 cells were transfected with small interfering RNA targeting sirtuin 3 (SIRT3) and further treated with palmitic acid (PA) with or without EMPA. Autophagy-related targets were analyzed by western blotting and RT‒qPCR. RESULTS EMPA administration effectively ameliorated metabolic disorders and cardiac diastolic dysfunction in HFD-fed mice. EMPA prevented obesity-induced myocardial hypertrophy, fibrosis, and inflammation through the activation of SIRT3-mediated autophagosome formation. The upregulation of SIRT3 triggered by EMPA promoted the initiation of autophagy by activating AMP-activated protein kinase (AMPK) and Beclin1. Furthermore, activated SIRT3 contributed to the elongation of autophagosomes through autophagy-related 4B cysteine peptidase (ATG4B) and autophagy-related 5 (ATG5). CONCLUSIONS EMPA promotes SIRT3-mediated autophagosome formation to alleviate damage to the cardiac structure and function of obese mice. Activated SIRT3 initiates autophagy through AMPK/Beclin1 and further stimulates elongation of the autophagosome membrane via ATG4B/ATG5. These results provide a new explanation for the cardioprotective benefits of EMPA in obesity.
Collapse
Affiliation(s)
- Youhong Luo
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Tongtong Ye
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongwei Song
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
22
|
Bai M, Lu W, Tan J, Mei X. HINT2 may be One Clinical Significance Target for Patient with Diabetes Mellitus and Reduced ROS-Induced Oxidative Stress and Ferroptosis by MCU. Horm Metab Res 2024; 56:670-678. [PMID: 38286402 DOI: 10.1055/a-2238-2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The World Health Organization (WHO) predicted that patients with diabetes around the world will increase to 600 million by 2040, of which about 1/3 will develop diabetic nephropathy (DN). Therefore, the present study aimed to uncover therapeutic effect of HINT2 and determined its possible mechanisms. Patients with diabetes mellitus and normal volunteers were enrolled at our hospital. Male C57BL/6 mice were fed with a high fat diet and injected intraperitoneally with STZ for once (100 mg/kg body weight). Mouse podocytes (MPC5) cells were induced with 20 mmol/l D-glucose. Inhibition of HINT2 mRNA expression levels in patients with DN was observed, compared with normal group. The serum of HINT2 mRNA expression was negative in correlation with blood sugar, tubulo-interstitial damage, glomerular damage score or urine protein level in patients with DN. HINT2 expression in kidney tissue of mice with DN were downregulated. HINT2 presented reduced DN and inflammation and ROS-induced oxidative stress in model of DN. HINT2 promoted ferroptosis in model of DN by mitochondrial membrane potential. HINT2 suppressed MCU expression in model of DN. HINT2 protein combined with MCU protein increased MCU protein ubiquitination. HINT2 triggers mitochondrial Ca2+ influx to increase ROS production level by MCU. Taken together, these findings demonstrated that HINT2 reduced ROS-induced Oxidative stress and ferroptosis by MCU, suggesting that HINT2 may be a feasible strategy to treat DN.
Collapse
Affiliation(s)
- Mei Bai
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wei Lu
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Jun Tan
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Xin Mei
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| |
Collapse
|
23
|
Huang B, Nie G, Dai X, Cui T, Pu W, Zhang C. Environmentally relevant levels of Cd and Mo coexposure induces ferroptosis and excess ferritinophagy through AMPK/mTOR axis in duck myocardium. ENVIRONMENTAL TOXICOLOGY 2024; 39:4196-4206. [PMID: 38717027 DOI: 10.1002/tox.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) are multiorgan toxic, but the detrimental impacts of Cd and/or Mo on poultry have not been fully clarified. Thence, a 16-week sub-chronic toxic experiment was executed with ducks to assess the toxicity of Cd and/or Mo. Our data substantiated that Cd and Mo coexposure evidently reduced GSH-Px, GSH, T-SOD, and CAT activities and elevated H2O2 and MDA concentrations in myocardium. What is more, the study suggested that Cd and Mo united exposure synergistically elevated Fe2+ content in myocardium and activated AMPK/mTOR axis, then induced ferroptosis by obviously upregulating ACSL4, PTGS2, and TFRC expression levels and downregulating SLC7A11, GPX4, FPN1, FTL1, and FTH1 expression levels. Additionally, Cd and Mo coexposure further caused excessive ferritinophagy by observably increasing autophagosomes, the colocalization of endogenous FTH1 and LC3, ATG5, ATG7, LC3II/LC3I, NCOA4, and FTH1 expression levels. In brief, this study for the first time substantiated that Cd and Mo united exposure synergistically induced ferroptosis and excess ferritinophagy by AMPK/mTOR axis, finally augmenting myocardium injure in ducks, which will offer an additional view on united toxicity between two heavy metals on poultry.
Collapse
Affiliation(s)
- Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Ministry of Public Education, Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Yue T, Dong Y, Huo Q, Li W, Wang X, Zhang S, Fan H, Wu X, He X, Zhao Y, Li D. Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism. J Adv Res 2024:S2090-1232(24)00294-7. [PMID: 39029900 DOI: 10.1016/j.jare.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE. OBJECTIVES The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms. METHODS Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection. RESULTS Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR. CONCLUSION In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.
Collapse
Affiliation(s)
- Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
25
|
Li F, Guo L, Zhou M, Han L, Wu S, Wu L, Yang J. Cryptochrome 2 Suppresses Epithelial-Mesenchymal Transition by Promoting Trophoblastic Ferroptosis in Unexplained Recurrent Spontaneous Abortion. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1197-1217. [PMID: 38537935 DOI: 10.1016/j.ajpath.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a serious reproductive issue that affects women of childbearing age. Studies have shown a close association between disrupted circadian rhythm and impaired epithelial-mesenchymal transition (EMT) in trophoblasts during URSA, although the underlying mechanism is not known. The current study investigated the regulatory relationship between circadian rhythm gene cryptochrome 2 (CRY2) and ferroptosis on the migratory ability of trophoblast cells. Cell proliferation experiments, wound-healing assays, and expression of related markers were conducted to study EMT. Trophoblastic ferroptosis was confirmed by the expressions of malondialdehyde, glutathione, mitochondrial membrane potential, divalent iron ions, and related genes. The results showed significant increased expression of CRY2 and decreased expression of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) in the URSA villous tissues, accompanied by iron-dependent oxidative changes and abnormal expression of ferroptosis-related proteins. CRY2 and BMAL1 were co-localized and functioned as a feedback loop, which regulated the dynamic changes of EMT-related markers in trophoblast cells. CRY2 promoted trophoblastic ferroptosis, whereas BMAL1 had the opposite effect. Particularly, the ferroptosis inhibitor (ferrostatin-1) effectively reversed the trophoblastic ferroptosis and EMT inhibition caused by CRY2 overexpression. Collectively, these results suggest that CRY2 regulates trophoblastic ferroptosis and hinders cellular EMT and migratory ability by suppressing BMAL1 expression.
Collapse
Affiliation(s)
- Faminzi Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lu Han
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Shujuan Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lianzhi Wu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| |
Collapse
|
26
|
Xie X, Liu J, Gao J, Shang C, Jiang Y, Chen L, Qian Z, Liu L, Wu D, Zhang Y, Ru Z, Zhang Y. The crosstalk between cell death and pregnancy related diseases: A narrative review. Biomed Pharmacother 2024; 176:116815. [PMID: 38788598 DOI: 10.1016/j.biopha.2024.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Programmed cell death is intricately linked to various physiological phenomena such as growth, development, and metabolism, as well as the proper function of the pancreatic β cell and the migration and invasion of trophoblast cells in the placenta during pregnancy. Traditional and recently identified programmed cell death include apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition to cancer and degenerative diseases, abnormal activation of cell death has also been implicated in pregnancy related diseases like preeclampsia, gestational diabetes mellitus, intrahepatic cholestasis of pregnancy, fetal growth restriction, and recurrent miscarriage. Excessive or insufficient cell death and pregnancy related diseases may be mutually determined, ultimately resulting in adverse pregnancy outcomes. In this review, we systematically describe the characteristics and mechanisms underlying several types of cell death and their roles in pregnancy related diseases. Moreover, we discuss potential therapeutic strategies that target cell death signaling pathways for pregnancy related diseases, hoping that more meaningful treatments will be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Xiaowen Xie
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Jingyi Gao
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenwei Shang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Lu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Danping Wu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Yun Zhang
- Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China.
| | - Zhu Ru
- Anqing Medical College Clinical Research Center, Anqing Municipal Hospital, Anqing 246003, Anhui, China.
| | - Yan Zhang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China.
| |
Collapse
|
27
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
28
|
Chen D, Tang Q, Song W, He Y. Platelet-derived exosomes alleviate tendon stem/progenitor cell senescence and ferroptosis by regulating AMPK/Nrf2/GPX4 signaling and improve tendon-bone junction regeneration in rats. J Orthop Surg Res 2024; 19:382. [PMID: 38943181 PMCID: PMC11212425 DOI: 10.1186/s13018-024-04869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Tendon stem/progenitor cell (TSPC) senescence contributes to tendon degeneration and impaired tendon repair, resulting in age-related tendon disorders. Ferroptosis, a unique iron-dependent form of programmed cell death, might participate in the process of senescence. However, whether ferroptosis plays a role in TSPC senescence and tendon regeneration remains unclear. Recent studies reported that Platelet-derived exosomes (PL-Exos) might provide significant advantages in musculoskeletal regeneration and inflammation regulation. The effects and mechanism of PL-Exos on TSPC senescence and tendon regeneration are worthy of further study. METHODS Herein, we examined the role of ferroptosis in the pathogenesis of TSPC senescence. PL-Exos were isolated and determined by TEM, particle size analysis, western blot and mass spectrometry identification. We investigated the function and underlying mechanisms of PL-Exos in TSPC senescence and ferroptosis via western blot, real-time quantitative polymerase chain reaction, and immunofluorescence analysis in vitro. Tendon regeneration was evaluated by HE staining, Safranin-O staining, and biomechanical tests in a rotator cuff tear model in rats. RESULTS We discovered that ferroptosis was involved in senescent TSPCs. Furthermore, PL-Exos mitigated the aging phenotypes and ferroptosis of TSPCs induced by t-BHP and preserved their proliferation and tenogenic capacity. The in vivo animal results indicated that PL-Exos improved tendon-bone healing properties and mechanical strength. Mechanistically, PL-Exos activated AMPK phosphorylation and the downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, leading to the suppression of lipid peroxidation. AMPK inhibition or GPX4 inhibition blocked the protective effect of PL-Exos against t-BHP-induced ferroptosis and senescence. CONCLUSION In conclusion, ferroptosis might play a crucial role in TSPC aging. AMPK/Nrf2/GPX4 activation by PL-Exos was found to inhibit ferroptosis, consequently leading to the suppression of senescence in TSPCs. Our results provided new theoretical evidence for the potential application of PL-Exos to restrain tendon degeneration and promote tendon regeneration.
Collapse
Affiliation(s)
- Deheng Chen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qian Tang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Song
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Department of Orthopedics, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine & Health Sciences, 147 Jiankang Road, Shanghai, 201503, China.
| |
Collapse
|
29
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
30
|
Li YZ, Deng J, Zhang XD, Li DY, Su LX, Li S, Pan JM, Lu L, Ya JQ, Yang N, Zhou J, Yang LH. Naringenin enhances the efficacy of ferroptosis inducers by attenuating aerobic glycolysis by activating the AMPK-PGC1α signalling axis in liver cancer. Heliyon 2024; 10:e32288. [PMID: 38912485 PMCID: PMC11190665 DOI: 10.1016/j.heliyon.2024.e32288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Liver cancer is a heterogeneous disease characterized by poor responses to standard therapies and therefore unfavourable clinical outcomes. Understanding the characteristics of liver cancer and developing novel therapeutic strategies are imperative. Ferroptosis, a type of programmed cell death induced by lipid peroxidation, has emerged as a potential target for treatment. Naringenin, a natural compound that modulates lipid metabolism by targeting AMPK, shows promise in enhancing the efficacy of ferroptosis inducers. In this study, we utilized liver cancer cell lines and xenograft mice to explore the synergistic effects of naringenin in combination with ferroptosis inducers, examining both phenotypic outcomes and molecular mechanisms. Our study results indicate that the use of naringenin at non-toxic doses to hepatocytes can significantly enhance the anticancer effects of ferroptosis inducers (erastin, RSL3, and sorafenib). The combination index method confirmed a synergistic effect between naringenin and ferroptosis inducers. In comparison to naringenin or ferroptosis inducers alone, the combined therapy caused more robust lipid peroxidation and hence more severe ferroptotic damage to cancer cells. The inhibition of aerobic glycolysis mediated by the AMPK-PGC1α signalling axis is the key to naringenin's effect on reducing ferroptosis resistance in liver cancer, and the synergistic cytotoxic effect of naringenin and ferroptosis inducers on cancer cells was reversed after pretreatment with an AMPK inhibitor or a PGC1α inhibitor. Taken together, these findings suggest that naringenin could boost cancer cell sensitivity to ferroptosis inducers, which has potential clinical translational value.
Collapse
Affiliation(s)
- Yong-Zhuo Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Deng
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Yang Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Xi Su
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Min Pan
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Lan Lu
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Qi Ya
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Hui Yang
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Biological Molecular Medicine Research(Guangxi Medical University), Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
31
|
Xi S, Chen W, Ke Y. Advances in SIRT3 involvement in regulating autophagy-related mechanisms. Cell Div 2024; 19:20. [PMID: 38867228 PMCID: PMC11170824 DOI: 10.1186/s13008-024-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The silencing regulatory factor 2-like protein 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase located primarily in the mitochondria. This protein plays an important role in oxidative stress, energy metabolism, and autophagy in multicellular organisms. Autophagy (macroautophagy) is primarily a cytoprotective mechanism necessary for intracellular homeostasis and the synthesis, degradation, and recycling of cellular products. Autophagy can influence the progression of several neural, cardiac, hepatic, and renal diseases and can also contribute to the development of fibrosis, diabetes, and many types of cancer. Recent studies have shown that SIRT3 has an important role in regulating autophagy. Therefore in this study, we aimed to perform a literature review to summarize the role of SIRT3 in the regulation of cellular autophagy. The findings of this study could be used to identify new drug targets for SIRT3-related diseases. Methods: A comprehensive literature review of the mechanism involved behind SIRT3 and autophagy-related diseases was performed. Relevant literature published in Pubmed and Web of Science up to July 2023 was identified using the keywords "silencing regulatory factor 2-like protein 3", "SIRT3" and "autophagy".
Collapse
Affiliation(s)
- Shuangyun Xi
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Weijun Chen
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Ke
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
32
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
33
|
Chen L, Dai F, Huang Y, Chen J, Li Z, Liu H, Cheng Y. Mechanisms of YAP1-mediated trophoblast ferroptosis in recurrent pregnancy loss. J Assist Reprod Genet 2024; 41:1669-1685. [PMID: 38526774 PMCID: PMC11224240 DOI: 10.1007/s10815-024-03096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE The purpose of our study is to investigate the function of YAP1 in the trophoblast ferroptosis and maternal-fetal interface communication of RPL. METHODS We collected 25 villous tissues and detected the expression of YAP1. Cell counting kit-8 assay, scratch wound-healing assay, and Matrigel invasion assay were performed to observe the proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Subsequently, measured the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), SLC7A11, SOD2, and GPX4. Ultimately, the use of ferroptosis activator (erastin) and inhibitor (Ferrostatin-1, fer-1) further confirmed the regulation by YAP1. In addition, established an in vitro-induced cell model to study the effect of YAP1 on the decidualization process. Finally, animal models were implemented for further confirmation. RESULTS We found that YAP1 was downregulated in RPL patients. Overexpression of YAP1 could significantly enhance the proliferation, migration, and invasion of trophoblasts, and inhibit ferroptosis. Knocking down YAP1 exhibited the opposite effect. Rescue experiments have shown that YAP1 could upregulate the expression of SLC7A11 and GPX4, which are key molecules in the classic pathway of ferroptosis. In addition, the decidualization was impaired when hESCs were treated with conditioned medium of YAP1 knockdown trophoblasts. Moreover, we found that Yap1, Slc7a11, and Gpx4 were downregulated in the RPL mice, along with increased MDA and decreased GSH. CONCLUSION Downregulation of YAP1 induces ferroptosis, thereby damaging the trophoblast invasion processes, which also disturbs the communication at the maternal-fetal interface. Our study identified YAP1 as a potential key molecule in the pathogenesis of RPL.
Collapse
Affiliation(s)
- Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yanjie Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
34
|
Innis SM, Cabot RA. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Epigenetics Chromatin 2024; 17:16. [PMID: 38773546 PMCID: PMC11106951 DOI: 10.1186/s13072-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan A Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
35
|
Yang L, Liu S, He Y, Gan L, Ni Q, Dai A, Mu C, Liu Q, Chen H, Lu H, Sun R. Exosomes regulate SIRT3-related autophagy by delivering miR-421 to regulate macrophage polarization and participate in OSA-related NAFLD. J Transl Med 2024; 22:475. [PMID: 38764033 PMCID: PMC11103849 DOI: 10.1186/s12967-024-05283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
PURPOSE To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.
Collapse
Affiliation(s)
- Li Yang
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
| | - Shijie Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Yan He
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Lulu Gan
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qing Ni
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Anni Dai
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Changhuan Mu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qian Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongyan Chen
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongying Lu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Ruixue Sun
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| |
Collapse
|
36
|
Liu M, Wei X, Zheng Z, Xie E, Yu Q, Gao Y, Ma J, Yang L. AMPK activation eliminates senescent cells in diabetic wound by inducing NCOA4 mediated ferritinophagy. Mol Med 2024; 30:63. [PMID: 38760678 PMCID: PMC11100200 DOI: 10.1186/s10020-024-00825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Erlian Xie
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Qiuyi Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
37
|
Zhao L, Zhang X, Chen Z, Lai Y, Xu J, Zhou R, Ma P, Cai W, Zeng Y, Wu X, Ying H, Yu F. Cynarin alleviates acetaminophen-induced acute liver injury through the activation of Keap1/Nrf2-mediated lipid peroxidation defense via the AMPK/SIRT3 signaling pathway. Food Funct 2024; 15:4954-4969. [PMID: 38602356 DOI: 10.1039/d3fo05025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Overdose of Acetaminophen (APAP) is a major contributor to acute liver injury (ALI), a complex pathological process with limited effective treatments. Emerging evidence links lipid peroxidation to APAP-induced ALI. Cynarin (Cyn), a hydroxycinnamic acid derivative, exhibits liver protective effects, but whether it mitigates APAP-induced ALI is unclear. Our aim was to verify the protective impact of Cyn on APAP-induced ALI and elucidate the molecular mechanisms governing this process. Herein, the regulation of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) interaction was determined to be a novel mechanism underlying this protective impact of Cyn against APAP-induced ALI. Nrf2 deficiency increased the severity of APAP-induced ALI and lipid peroxidation and counteracted the protective effect of Cyn against this pathology. Additionally, Cyn promoted the dissociation of Nrf2 from Keap1, enhancing the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, thereby inhibiting lipid peroxidation. Molecular docking demonstrated that Cyn bound competitively to Keap1, and overexpression of Keap1 reversed Nrf2-activated anti-lipid peroxidation. Additionally, Cyn activated the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)3 signaling pathway, which exhibits a protective effect on APAP-induced ALI. These findings propose that Cyn alleviates APAP-induced ALI by enhancing the Keap1/Nrf2-mediated lipid peroxidation defense via activation of the AMPK/SIRT3 signaling pathway.
Collapse
Affiliation(s)
- Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Zhuofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yuning Lai
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ruoru Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Peipei Ma
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Weimin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
38
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
39
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Wang XX, Wang RJ, Ji HL, Liu XY, Zhang NY, Wang KM, Chen K, Liu PP, Meng N, Jiang CS. Design, synthesis, and evaluation of novel ferrostatin derivatives for the prevention of HG-induced VEC ferroptosis. RSC Med Chem 2024; 15:1198-1209. [PMID: 38665835 PMCID: PMC11042167 DOI: 10.1039/d4md00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Ferroptosis is a nonapoptotic, iron-catalyzed form of regulated cell death. It has been shown that high glucose (HG) could induce ferroptosis in vascular endothelial cells (VECs), consequently contributing to the development of various diseases. This study synthesized and evaluated a series of novel ferrostatin-1 (Fer-1) derivatives fused with a benzohydrazide moiety to prevent HG-induced VEC ferroptosis. Several promising compounds showed similar or improved inhibitory effects compared to positive control Fer-1. The most effective candidate 12 exhibited better protection against erastin-induced ferroptosis and high glucose-induced ferroptosis in VECs. Mechanistic studies revealed that compound 12 prevented mitochondrial damage, reduced intracellular ROS accumulation, upregulated the expression of GPX4, and decreased the amounts of ferrous ion, LPO and MDA in VECs. However, compound 12 still exhibited undesirable microsomal stability like Fer-1, suggesting the need for further optimization. Overall, the present findings highlight ferroptosis inhibitor 12 as a potential lead compound for treating ferroptosis-associated vascular diseases.
Collapse
Affiliation(s)
- Xin-Xin Wang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Run-Jie Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University Harbin 150040 China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Xiao-Yu Liu
- Evaluation Center of the New Drug, Shandong Academy of Pharmaceutical Sciences Jinan 250101 China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kai Chen
- Evaluation Center of the New Drug, Shandong Academy of Pharmaceutical Sciences Jinan 250101 China
| | - Ping-Ping Liu
- Department of Gynaecology and Obstetrics, 960th Hospital of PLA Jinan 250000 China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
41
|
Liao H, Wang Y, Zou L, Fan Y, Wang X, Tu X, Zhu Q, Wang J, Liu X, Dong C. Relationship of mTORC1 and ferroptosis in tumors. Discov Oncol 2024; 15:107. [PMID: 38583115 PMCID: PMC10999401 DOI: 10.1007/s12672-024-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Ferroptosis is a novel form of programmed death, dependent on iron ions and oxidative stress, with a predominant intracellular form of lipid peroxidation. In recent years, ferroptosis has gained more and more interest of people in the treatment mechanism of targeted tumors. mTOR, always overexpressed in the tumor, and controlling cell growth and metabolic activities, has an important role in both autophagy and ferroptosis. Interestingly, the selective types of autophay plays an important role in promoting ferroptosis, which is related to mTOR and some metabolic pathways (especially in iron and amino acids). In this paper, we list the main mechanisms linking ferroptosis with mTOR signaling pathway and further summarize the current compounds targeting ferroptosis in these ways. There are growing experimental evidences that targeting mTOR and ferroptosis may have effective impact in many tumors, and understanding the mechanisms linking mTOR to ferroptosis could provide a potential therapeutic approach for tumor treatment.
Collapse
Affiliation(s)
- Huilin Liao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Yanmei Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Xiancong Tu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Qiaobai Zhu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Jun Wang
- The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei, China, 443002
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002.
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002.
| | - Chuanjiang Dong
- Department of Urology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China, 523000.
| |
Collapse
|
42
|
Sun Z, Liu L, Liang H, Zhang L. Nicotinamide mononucleotide induces autophagy and ferroptosis via AMPK/mTOR pathway in hepatocellular carcinoma. Mol Carcinog 2024; 63:577-588. [PMID: 38197493 DOI: 10.1002/mc.23673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Herein, we investigated the role of nicotinamide mononucleotide (NMN) in HCC progression. HCC cells were treated with NMN (125, 250, and 500 μM), and then nicotinamide adenine dinucleotide (NAD+ ) and NADH levels in HCC cells were measured to calculate NAD+ /NADH ratio. Cell proliferation, apoptosis, autophagy and ferroptosis were determined. AMPK was knocked down to confirm the involvement of AMPK/mTOR signaling. Furthermore, tumor-inhibitory effect of NMN was investigated in xenograft models. Exposure to NMN dose-dependently increased NAD+ level and NAD+ /NADH ratio in HCC cells. After NMN treatment, cell proliferation was inhibited, whereas apoptosis was enhanced in both cell lines. Additionally, NMN dose-dependently enhanced autophagy/ferroptosis and activated AMPK/mTOR pathway in HCC cells. AMPK knockdown partially rescued the effects of NMN in vitro. Furthermore, NMN treatment restrained tumor growth in nude mice, activated autophagy/ferroptosis, and promoted apoptosis and necrosis in tumor tissues. The results indicate that NMN inhibits HCC progression by inducing autophagy and ferroptosis via AMPK/mTOR signaling. NMN may serve as a promising agent for HCC treatment.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Huang J, Chen J, Li J. Quercetin promotes ATG5-mediating autophagy-dependent ferroptosis in gastric cancer. J Mol Histol 2024; 55:211-225. [PMID: 38441713 DOI: 10.1007/s10735-024-10186-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Quercetin has been documented to possess a multitude of pharmacological effects, encompassing antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Nevertheless, the exact molecular mechanisms responsible for the anti-tumor properties of quercetin remain to be fully explicated. To this end, quercetin was administered to gastric cancer cells (in vitro) AGS and MKN45, as well as BALB/c mice (in vivo). The proliferation ability of cells was evaluated using cholecystokinin octapeptide (CCK-8) and colony formation assays. The evaluation of ferroptosis involved the measurement of iron, malondialdehyde (MDA), and lipid reactive oxygen species. Autophagy and apoptosis were evaluated using immunofluorescence staining, western blotting, and flow cytometry analysis. Our findings indicate that quercetin significantly inhibited cell viability and tumor volume compared to the control group. Additionally, quercetin was found to decrease glutathione (GSH), malondialdehyde, and reactive oxygen species (ROS) levels while suppressing beclin1 and LC3B levels in cancer cells. Remarkably, the utilization of siATG5 was found to reverse all the aforementioned effects of quercetin. Ultimately, the effects of quercetin on gastric cancer were validated. In summary, our findings provide evidence that quercetin facilitates autophagy-mediated ferroptosis in gastric cancer.
Collapse
Affiliation(s)
- Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Shuai Fu Community, Dong Cheng District, Beijing, 100730, China
| | - Jian Chen
- Department of Oncology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Shuai Fu Community, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
44
|
Biswas U, Roy R, Ghosh S, Chakrabarti G. The interplay between autophagy and apoptosis: its implication in lung cancer and therapeutics. Cancer Lett 2024; 585:216662. [PMID: 38309614 DOI: 10.1016/j.canlet.2024.216662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Maintaining cellular homeostasis relies on the interplay between apoptosis and autophagy, and disruption in either of these processes can contribute to the development of cancer. Autophagy can hinder the apoptotic process, and when autophagy is inhibited in such instances, it can enhance the rate of apoptosis. However, evidence suggests that excessive autophagy can also lead to apoptotic cell death. Also, excess autophagy can cause excessive digestion of cellular organelles, causing autophagic cell death. Targeting autophagy in non-small cell lung cancer (NSCLC), the most common form of lung cancer, can be very tricky due to the dual nature of autophagy. According to genetic analysis, various mutations in p53 and EGFR, G:C to A:T transversions seem responsible for the development of lung cancer in smokers and non-smokers. These events trigger cytoprotective autophagy or induce apoptotic cell death through different but interconnected signalling pathways. Lung cancer being the leading cause of death worldwide, calls for more attention to disease prognosis and new therapeutics in the market. However, molecules responsible for autophagy to apoptosis transition are yet to be studied elaborately. Also, the role of effector caspases during this shift needs to be elucidated in future. To comprehend how therapeutics operate through the modulation of autophagy and apoptosis and to target such pathways, it is crucial to emphasize these intricate connections. Many therapeutics discussed in this review targeting both apoptosis and autophagy have shown promising results in vitro and in vivo, however, few have crossed the hurdles of clinical trial. Nevertheless, the quest for safer and better efficacious agents is still alive, with the sole aim to develop novel cancer chemotherapeutic(s).
Collapse
Affiliation(s)
- Urmita Biswas
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Ranita Roy
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Swarnasree Ghosh
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India.
| |
Collapse
|
45
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
46
|
Lv X, Jiang J, An Y. Investigating the Potential Mechanisms of Ferroptosis and Autophagy in the Pathogenesis of Gestational Diabetes. Cell Biochem Biophys 2024; 82:279-290. [PMID: 38214812 DOI: 10.1007/s12013-023-01196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024]
Abstract
Ferroptosis and autophagy are two different cellular processes that have recently been highlighted for their potential roles in the pathogenesis and progression of gestational diabetes (GD). This research sought to uncover the crucial genes tied to ferroptosis and autophagy in GD, further investigating their mechanisms. Differentially expressed genes (DEGs) linked to ferroptosis and autophagy in GD were identified using publicly available data. Pathway enrichment, protein interactions, correlation with immune cell infiltration, and diagnostic value of DEGs were analyzed. HTR-8/SVneo cells were subjected to varying glucose levels to evaluate cell viability and the expression of markers related to ferroptosis and proteins associated with autophagy. Crucial DEGs were validated in vitro. A total of 12 DEGs associated with ferroptosis and autophagy in GD were identified, enriched in the PI3K-AKT signaling pathway. These genes exhibited significant correlations with monocyte infiltration, resting CD4 memory T cells, and follicular helper T cells. They exhibited high diagnostic value for GD (AUC: 0.77-0.97). High glucose treatment inhibited cell viability, induced ferroptosis, and activated autophagy in HTR-8/SVneo cells. Validation confirmed altered expression of SNCA, MTDH, HMGB1, TLR4, SOX2, SESN2, and HMOX1 after glucose treatments. In conclusion, ferroptosis and autophagy may play a role in GD development through key genes (e.g., TLR4, SOX2, SNCA, HMOX1, HMGB1). These genes could serve as promising biomarkers for GD diagnosis.
Collapse
Affiliation(s)
- Xiaomei Lv
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jing Jiang
- Department of Obstetrics, The Fourth people's hospital of Jinan, Jinan, 250031, China
| | - Yujun An
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
47
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
48
|
Li X, Zhang W, Xing Z, Hu S, Zhang G, Wang T, Wang T, Fan Q, Chen G, Cheng J, Jiang X, Cai R. Targeting SIRT3 sensitizes glioblastoma to ferroptosis by promoting mitophagy and inhibiting SLC7A11. Cell Death Dis 2024; 15:168. [PMID: 38395990 PMCID: PMC10891132 DOI: 10.1038/s41419-024-06558-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Glioblastoma (GBM) cells require large amounts of iron for tumor growth and progression, which makes these cells vulnerable to destruction via ferroptosis induction. Mitochondria are critical for iron metabolism and ferroptosis. Sirtuin-3 (SIRT3) is a deacetylase found in mitochondria that regulates mitochondrial quality and function. This study aimed to characterize SIRT3 expression and activity in GBM and investigate the potential therapeutic effects of targeting SIRT3 while also inducing ferroptosis in these cells. We first found that SIRT3 expression was higher in GBM tissues than in normal brain tissues and that SIRT3 protein expression was upregulated during RAS-selective lethal 3 (RSL3)-induced GBM cell ferroptosis. We then observed that inhibition of SIRT3 expression and activity in GBM cells sensitized GBM cells to RSL3-induced ferroptosis both in vitro and in vivo. Mechanistically, SIRT3 inhibition led to ferrous iron and ROS accumulation in the mitochondria, which triggered mitophagy. RNA-Sequencing analysis revealed that upon SIRT3 knockdown in GBM cells, the mitophagy pathway was upregulated and SLC7A11, a critical antagonist of ferroptosis via cellular import of cystine for glutathione (GSH) synthesis, was downregulated. Forced expression of SLC7A11 in GBM cells with SIRT3 knockdown restored cellular cystine uptake and consequently the cellular GSH level, thereby partially rescuing cell viability upon RSL3 treatment. Furthermore, in GBM cells, SIRT3 regulated SLC7A11 transcription through ATF4. Overall, our study results elucidated novel mechanisms underlying the ability of SIRT3 to protect GBM from ferroptosis and provided insight into a potential combinatorial approach of targeting SIRT3 and inducing ferroptosis for GBM treatment.
Collapse
Affiliation(s)
- Xiaohe Li
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenlong Zhang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengcao Xing
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuming Hu
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Geqiang Zhang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tiange Wang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianshi Wang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuju Fan
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
49
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
50
|
Hu B, Cao P, Wang JH, Feng W, Zhang Y, Yang H. Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway. Hum Exp Toxicol 2024; 43:9603271241266106. [PMID: 39291655 DOI: 10.1177/09603271241266106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
OBJECTIVE This study aimed to explore the expression and biological functions of SIRT3 in colorectal cancer cells (HCT-116), the impacts of sulforaphane on the ferroptosis of HCT-116 cells and the involvement of the SIRT3/AMPK/mTOR axis in those effects. METHODS SIRT3-overexpressing (OE) and SIRT3-knockout (KO) cell lines were treated with different concentrations of sulforaphane, RSL-3, and IKE. Cell viability, intracellular ROS, MDA, iron levels, as well as mRNA and protein expressions of target genes were measured. RESULTS SIRT3 expression in HCT-116 cells was increased by ferroptosis inducers and decreased by ferroptosis inhibitors. SIRT3 overexpression reduced cell viability and increased intracellular levels of ROS, MDA, and iron, whereas SIRT3 knockdown achieved the opposite effects. SIRT3 overexpression suppressed SLC7A11 expression and promoted the activation of AMPK/mTOR pathway. Restoration of SLC7A11 expression blocked the effects of SIRT3 on ferroptosis induction and cell viability inhibition. SIRT3 effects on cell viability and ferroptosis were antagonized by inhibitors of AMPK or mTOR. Moreover, sulforaphane triggered the ferroptosis of HCT-116 cells by activating the SIRT3/AMPK/mTOR axis. CONCLUSIONS SIRT3 triggered SLC7A11-mediated ferroptosis in HCT-116 cells, reducing cell viability by activating the AMPK/mTOR pathway, and sulforaphane targets it to inhibit colorectal cancer.
Collapse
Affiliation(s)
- Bo Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medcine, Xiangyang, China
| | - Ping Cao
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medcine, Xiangyang, China
| | - Jing-Hui Wang
- Department of Gastroenterology, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, China
| | - Wei Feng
- Department of Ultrasound, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, China
| | - Yang Zhang
- Department of Anaesthesia, Xiangyang No. 1 People's Hospital, Hubei University of Medcine, Xiangyang, China
| | - Hui Yang
- Department of Anaesthesia, Xiangyang No. 1 People's Hospital, Hubei University of Medcine, Xiangyang, China
| |
Collapse
|