1
|
Dajani O, Philips I, Størkson E, Balstad T, Brown L, Bye A, Dolan R, Greil C, Hjermstad M, Jakobsen G, Kaasa S, McDonald J, Ottestad I, Sayers J, Simpson M, Sousa M, Vagnildhaug O, Yule M, Laird B, Skipworth R, Solheim T, Stares M, Arends J. Oncological and Survival Endpoints in Cancer Cachexia Clinical Trials: Systematic Review 6 of the Cachexia Endpoints Series. J Cachexia Sarcopenia Muscle 2025; 16:e13756. [PMID: 40065459 PMCID: PMC11893360 DOI: 10.1002/jcsm.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND In patients receiving anti-cancer treatment, cachexia results in poorer oncological outcomes. However, there is limited understanding and no systematic review of oncological endpoints in cancer cachexia (CC) trials. This review examines oncological endpoints in CC clinical trials. METHODS An electronic literature search of MEDLINE, Embase and Cochrane databases (1990-2023) was performed. Eligibility criteria comprised participants ≥ 18 years old; controlled design; ≥ 40 participants; and a cachexia intervention for > 14 days. Trials reporting at least one oncological endpoint were selected for analysis. Data extraction was performed using Covidence and followed PRISMA guidelines and the review was registered (PROSPERO CRD42022276710). RESULTS Fifty-seven trials were eligible, totalling 9743 patients (median: 107, IQR: 173). Twenty-six (46%) trials focussed on a single tumour site: eight in lung, six in pancreatic, six in head and neck and six in GI cancers. Forty-two (74%) studies included patients with Stage III/IV disease, and 41 (70%) included patients receiving palliative anti-cancer treatment. Ten studies (18%) involved patients on curative treatment. Twenty-eight (49%) studies used pharmacological interventions, 29 (50%) used oral nutrition, and two (4%) used enteral or parenteral nutrition. Reported oncological endpoints included overall survival (OS, n = 46 trials), progression-free survival (PFS, n = 7), duration of response (DR, n = 1), response rate (RR, n = 9), completion of treatment (TC, n = 11) and toxicity/adverse events (AE, n = 42). Median OS differed widely from 60 to 3468 days. Of the 46 studies, only three reported a significant positive effect on survival. Seven trials showed a difference in AE, four in TC, one in PFS and one in RR. Reported significances were unreliable due to missing adjustments for extensive multiple testing. Only three of the six trials using OS as the primary endpoint reported pre-trial sample size calculations, but only one recruited the planned number of patients. CONCLUSION In CC trials, oncological endpoints were mostly secondary and only few significant findings have been reported. Due to heterogeneity in oncological settings, nutritional and metabolic status and interventions, firm conclusions about CC treatment are not possible. OS and AE are relevant endpoints, but future trials targeting clinically meaningful hazard ratios will required more homogeneous patient cohorts, adequate pre-trial power analyses and adherence to statistical testing standards.
Collapse
Affiliation(s)
- Olav Dajani
- Regional Advisory Unit for Palliative Care, Dept. of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), Dept. of Oncology, Oslo University Hospital, and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Iain Philips
- Edinburgh Cancer Research Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ester Kristine Størkson
- Regional Advisory Unit for Palliative Care, Dept. of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), Dept. of Oncology, Oslo University Hospital, and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Trude R. Balstad
- Department of Clinical Medicine, Clinical Nutrition Research GroupUiT The Arctic University of NorwayTromsøNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Leo R. Brown
- Royal Infirmary of EdinburghClinical Surgery University of EdinburghEdinburghUK
| | - Asta Bye
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Ross Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Christine Greil
- Department of Medicine I, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Marianne Hjermstad
- Regional Advisory Unit for Palliative Care, Dept. of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), Dept. of Oncology, Oslo University Hospital, and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Gunnhild Jakobsen
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | - Stein Kaasa
- Regional Advisory Unit for Palliative Care, Dept. of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), Dept. of Oncology, Oslo University Hospital, and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - James McDonald
- Edinburgh Cancer Research Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer MedicineOslo University HospitalOsloNorway
| | - Judith Sayers
- Edinburgh Cancer Research Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Palliative CareSt Columba's Hospice CareEdinburghUK
| | - Melanie Simpson
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care Through Clinical Research and Translation (IMPACCT)University of Technology SydneySydneyAustralia
| | - Ola Magne Vagnildhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Cancer ClinicSt Olav's Hospital ‐ Trondheim University HospitalTrondheimNorway
| | - Michael S. Yule
- Edinburgh Cancer Research Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Palliative CareSt Columba's Hospice CareEdinburghUK
| | - Barry J. A. Laird
- Edinburgh Cancer Research Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Palliative CareSt Columba's Hospice CareEdinburghUK
| | | | - Tora S. Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Cancer ClinicSt Olav's Hospital ‐ Trondheim University HospitalTrondheimNorway
| | - Mark Stares
- Edinburgh Cancer Research Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jann Arends
- Department of Medicine I, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | |
Collapse
|
2
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Guo Y, Han S, Yu W, Xu Y, Ying Y, Xu H, Feng H, Wang X, Wu W, Wang D, Liu L, Han X, Lou W. Deciphering molecular crosstalk mechanisms between skeletal muscle atrophy and KRAS-mutant pancreatic cancer: a literature review. Hepatobiliary Surg Nutr 2025; 14:78-95. [PMID: 39925900 PMCID: PMC11806137 DOI: 10.21037/hbsn-24-282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/30/2024] [Indexed: 02/11/2025]
Abstract
Background and Objective Cachexia-induced skeletal muscle atrophy is a critical manifestation in Kirsten rat sarcoma viral oncogene homologue (KRAS)-mutant pancreatic cancer (PC) patients, predominantly characterized by a shift in metabolic equilibrium towards catabolism that accelerates protein degradation in myofibers and leads to muscle atrophy. This metabolic reprogramming not only supports tumor growth but also precipitates energy depletion in skeletal muscle tissues. Exploring these mechanisms reveals potential therapeutic targets in the metabolic and proteolytic pathways associated with KRAS-mutant PC. Methods A comprehensive search for literature was conducted in PubMed, Web of Science, Google Scholar and other search engines up to May 21st, 2024. Studies on PC models and patients were included. Key Content and Findings The crosstalk between KRAS-mutant PC and skeletal muscle atrophy can be categorized into four principal domains: (I) KRAS-driven metabolic reprogramming in cancer cells leads to the depletion of muscle energy reserves, thereby influencing the reallocation of myofiber energy towards fueling cancer cell; (II) KRAS-mutant cancer cells rely on nutrient-scavenging pathways, resulting in altered cytokine profiles, increased ubiquitin mRNA expression and autophagy-lysosome pathway, which facilitate myotube degradation and inhibit muscle regeneration, thereby disrupting muscular homeostasis and causing a one-way nutrient flux; (III) tumor-induced oxidative stress inflicts damage on myotubes, highlighting the detrimental effects of reactive oxygen species on muscle structure; (IV) KRAS-mutant cancer cells remodulate immune cell dynamics within the tumor environment, thereby reshaping host immunity. Together, these findings illuminate the intricate interplay between KRAS-mutant PC and skeletal muscle atrophy, mapping the pathophysiological framework that is crucial for understanding sarcopenia and related disorders. Conclusions This comprehensive analysis advances our understanding of the complex etiology of cancer cachexia and stimulates the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yuquan Guo
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyang Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weisheng Yu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaolin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu’an Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dansong Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, The Shanghai Geriatrics Medical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
You Y, Wang Y, Zhang G, Li Y. The Molecular Mechanisms and Treatment of Cancer-Related Cachexia. J Nutr Sci Vitaminol (Tokyo) 2025; 71:1-15. [PMID: 40024744 DOI: 10.3177/jnsv.71.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by persistent skeletal muscle loss, with or without fat loss, which cannot be completely reversed by traditional nutritional support and leads to impaired organ function. Cachexia seriously reduces the quality of life of (QOL) patients, affects the therapeutic effect against cancers, increases the incidence of complications, and is an important cause of death for patients with advanced cancers. To date, no effective medical intervention has completely reversed cachexia, and no medication has been agreed upon. Here, we describe recent advances in the diagnosis, molecular mechanism and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Yongfei You
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Department of Medical Oncology, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, The First Hospital of Nanchang
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
5
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Li L, Ling ZQ. Mechanisms of cancer cachexia and targeted therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189208. [PMID: 39542382 DOI: 10.1016/j.bbcan.2024.189208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Tumor cachexia is a multifactorial syndrome characterized by systemic dysfunction, including anorexia and severe weight loss that is resistant to standard nutritional interventions. It is estimated that approximately 20 % of cancer patients succumb to cachexia in the later stages of their disease. Thus, understanding its pathogenesis is vital for improving therapeutic outcomes. Recent research has focused on the imbalance between energy intake and expenditure in cachexia. Clinically, cachexia presents with anorexia, adipose tissue atrophy, and skeletal muscle wasting, each driven by distinct mechanisms. Anorexia arises primarily from tumor-secreted factors and cancer-induced hormonal disruptions that impair hypothalamic regulation of appetite. Adipose tissue atrophy is largely attributed to enhanced lipolysis, driven by increased activity of enzymes such as adipose triglyceride lipase and hormone-sensitive lipase, coupled with decreased lipoprotein lipase activity. The browning of white adipose tissue, facilitated by uncoupling protein 1, further accelerates fat breakdown by increasing energy expenditure. Skeletal muscle atrophy, a hallmark of cachexia, results from dysregulated protein turnover via the ubiquitin-proteasome and autophagy-lysosomal pathways, as well as mitochondrial dysfunction. Additionally, chemotherapy can exacerbate cachexia. This review examines the molecular mechanisms underlying cancer cachexia and discusses current therapeutic strategies, aiming to inform future research and improve treatment approaches.
Collapse
Affiliation(s)
- Long Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No. 109 Xueyuan West Road, Wenzhou 325027, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
7
|
Dominguez AA, Perz MT, Xu Y, Cedillo LG, Huang OD, McIntyre CA, Vudatha V, Trevino JG, Liu J, Wang P. Unveiling the Promise: Navigating Clinical Trials 1978-2024 for PDAC. Cancers (Basel) 2024; 16:3564. [PMID: 39518005 PMCID: PMC11544830 DOI: 10.3390/cancers16213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Despite many decades of research, pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult cancers to diagnose and treat effectively. Although there have been improvements in the 5-year overall survival rate, it is still very low at 12.5%. The limited efficacy of current therapies, even when PDAC is detected early, underscores the aggressive nature of the disease and the urgent need for more effective treatments. Clinical management of PDAC still relies heavily on a limited repertoire of therapeutic interventions, highlighting a significant gap between research efforts and available treatments. Over 4300 clinical trials have been or are currently investigating different treatment modalities and diagnostic strategies for PDAC, including targeted therapies, immunotherapies, and precision medicine approaches. These trials aim to develop more effective treatments and improve early detection methods through advanced imaging techniques and blood-based biomarkers. This review seeks to categorize and analyze PDAC-related clinical trials across various dimensions to understand why so few chemotherapeutic options are available to patients despite the numerous trials being conducted. This review aims to provide a comprehensive and nuanced understanding of the landscape of PDAC-related clinical trials, with the overarching goal of identifying opportunities to accelerate progress in drug development and improve patient outcomes in the fight against this devastating disease.
Collapse
Affiliation(s)
- Angel A. Dominguez
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Matthew T. Perz
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Yi Xu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Leonor G. Cedillo
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Orry D. Huang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Caitlin A. McIntyre
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jun Liu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Pei Wang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| |
Collapse
|
8
|
Dunne RF, Crawford J, Smoyer KE, McRae TD, Rossulek MI, Revkin JH, Tarasenko LC, Bonomi PD. The mortality burden of cachexia or weight loss in patients with colorectal or pancreatic cancer: A systematic literature review. J Cachexia Sarcopenia Muscle 2024; 15:1628-1640. [PMID: 39095951 PMCID: PMC11446707 DOI: 10.1002/jcsm.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer-associated cachexia is a multifactorial wasting disorder characterized by anorexia, unintentional weight loss (skeletal muscle mass with or without loss of fat mass), progressive functional impairment, and poor prognosis. This systematic literature review (SLR) examined the relationship between cachexia and survival in patients with colorectal or pancreatic cancer in recent literature. The SLR was conducted following PRISMA guidelines. Embase® and PubMed were searched to identify articles published in English between 1 January 2016 and 10 October 2021 reporting survival in adults with cancer and cachexia or at risk of cachexia, defined by international consensus (IC) diagnostic criteria or a broader definition of any weight loss. Included publications were studies in ≥100 patients with colorectal or pancreatic cancer. Thirteen publications in patients with colorectal cancer and 13 with pancreatic cancer met eligibility criteria. Included studies were observational and primarily from Europe and the United States. Eleven studies (42%) reported cachexia using IC criteria and 15 (58%) reported any weight loss. An association between survival and cachexia or weight loss was assessed across studies using multivariate (n = 23) or univariate (n = 3) analyses and within each study across multiple weight loss categories. Cachexia/weight loss was associated with a statistically significantly poorer survival in at least one weight loss category in 16 of 23 studies that used multivariate analyses and in 1 of 3 studies (33%) that used univariate analyses. Of the 17 studies demonstrating a significant association, 9 were in patients with colorectal cancer and 8 were in patients with pancreatic cancer. Cachexia or weight loss was associated with significantly poorer survival in patients with colorectal or pancreatic cancer in nearly two-thirds of the studies. The classification of weight loss varied across and within studies (multiple categories were evaluated) and may have contributed to variability. Nonetheless, awareness of cachexia and routine assessment of weight change in clinical practice in patients with colorectal or pancreatic cancer could help inform prognosis and influence early disease management strategies.
Collapse
Affiliation(s)
- Richard F. Dunne
- Department of Medicine and Wilmot Cancer Institute, Division of Hematology/OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Jeffrey Crawford
- Duke Cancer InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
| | | | - Thomas D. McRae
- Department of Internal Medicine, Pfizer Research and DevelopmentPfizer IncNew YorkNew YorkUSA
| | - Michelle I. Rossulek
- Internal Medicine Research Unit, Pfizer Research and DevelopmentPfizer IncCambridgeMassachusettsUSA
| | - James H. Revkin
- Internal Medicine Research Unit, Pfizer Research and DevelopmentPfizer IncCambridgeMassachusettsUSA
| | | | - Philip D. Bonomi
- Department of Internal Medicine, Division of Hematology, Oncology and Cell TherapyRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
9
|
Seufferlein T, Mayerle J, Boeck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie Exokrines Pankreaskarzinom – Version 3.1. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e874-e995. [PMID: 39389103 DOI: 10.1055/a-2338-3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
| | | | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Gastroenterologie und Endokrinologie Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik und Poliklinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Medizinische Klinik und Poliklinik II Onkologie und Hämatologie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
10
|
Xie Q, Ma G, Song Y. Therapeutic Strategy and Clinical Path of Facioscapulohumeral Muscular Dystrophy: Review of the Current Literature. APPLIED SCIENCES 2024; 14:8222. [DOI: 10.3390/app14188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper muscles, gradually accumulating in the lower limb muscles. The severity of patients is quite different, and most patients end up using wheelchairs and losing their self-care ability. At present, the exploration of treatment strategies for FSHD has shifted from relieving symptoms to gene therapy, which brings hope to the future of patients, but the current gene therapy is only in the clinical trial stage. Here, we conducted a comprehensive search of the relevant literature using the keywords FSHD, DUX4, and gene therapy methods including ASOs, CRISPR, and RNAi in the PubMed and Web of Science databases. We discussed the current advancements in treatment strategies for FSHD, as well as ongoing preclinical and clinical trials related to FSHD. Additionally, we evaluated the advantages and limitations of various gene therapy approaches targeting DUX4 aimed at correcting the underlying genetic defect.
Collapse
Affiliation(s)
- Qi Xie
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Guangmei Ma
- Department of Physical Education Teaching and Research, Xinjiang University, Wulumuqi 830046, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
11
|
Brown LR, Sousa MS, Yule MS, Baracos VE, McMillan DC, Arends J, Balstad TR, Bye A, Dajani O, Dolan RD, Fallon MT, Greil C, Hjermstad MJ, Jakobsen G, Maddocks M, McDonald J, Ottestad IO, Phillips I, Sayers J, Simpson MR, Vagnildhaug OM, Solheim TS, Laird BJ, Skipworth RJ. Body weight and composition endpoints in cancer cachexia clinical trials: Systematic Review 4 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2024; 15:816-852. [PMID: 38738581 PMCID: PMC11154800 DOI: 10.1002/jcsm.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 05/14/2024] Open
Abstract
Significant variation exists in the outcomes used in cancer cachexia trials, including measures of body composition, which are often selected as primary or secondary endpoints. To date, there has been no review of the most commonly selected measures or their potential sensitivity to detect changes resulting from the interventions being examined. The aim of this systematic review is to assess the frequency and diversity of body composition measures that have been used in cancer cachexia trials. MEDLINE, Embase and Cochrane Library databases were systematically searched between January 1990 and June 2021. Eligible trials examined adults (≥18 years) who had received an intervention aiming to treat or attenuate the effects of cancer cachexia for >14 days. Trials were also of a prospective controlled design and included body weight or at least one anthropometric, bioelectrical or radiological endpoint pertaining to body composition, irrespective of the modality of intervention (e.g., pharmacological, nutritional, physical exercise and behavioural) or comparator. Trials with a sample size of <40 patients were excluded. Data extraction used Covidence software, and reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. This review was prospectively registered (PROSPERO: CRD42022276710). A total of 84 clinical trials, comprising 13 016 patients, were eligible for inclusion. Non-small-cell lung cancer and pancreatic cancer were studied most frequently. The majority of trial interventions were pharmacological (52%) or nutritional (34%) in nature. The most frequently reported endpoints were assessments of body weight (68 trials, n = 11 561) followed by bioimpedance analysis (BIA)-based estimates (23 trials, n = 3140). Sixteen trials (n = 3052) included dual-energy X-ray absorptiometry (DEXA)-based endpoints, and computed tomography (CT) body composition was included in eight trials (n = 841). Discrepancies were evident when comparing the efficacy of interventions using BIA-based estimates of lean tissue mass against radiological assessment modalities. Body weight, BIA and DEXA-based endpoints have been most frequently used in cancer cachexia trials. Although the optimal endpoints cannot be determined from this review, body weight, alongside measurements from radiological body composition analysis, would seem appropriate. The choice of radiological modality is likely to be dependent on the trial setting, population and intervention in question. CT and magnetic resonance imaging, which have the ability to accurately discriminate tissue types, are likely to be more sensitive and provide greater detail. Endpoints are of particular importance when aligned with the intervention's mechanism of action and/or intended patient benefit.
Collapse
Affiliation(s)
- Leo R. Brown
- Clinical SurgeryThe University of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care Through Clinical Research and Translation (IMPACCT)University of Technology SydneySydneyAustralia
| | - Michael S. Yule
- Clinical SurgeryThe University of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | | | - Donald C. McMillan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Jann Arends
- Department of Medicine I, Medical Centre—University of Freiburg Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Trude R. Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical Medicine, Clinical Nutrition Research GroupUiT The Arctic University of NorwayTromsøNorway
| | - Asta Bye
- Department of OncologyOslo University HospitalOsloNorway
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Olav Dajani
- Department of OncologyOslo University HospitalOsloNorway
| | - Ross D. Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Marie T. Fallon
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | - Christine Greil
- Department of Medicine I, Medical Centre—University of Freiburg Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Gunnhild Jakobsen
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Cancer ClinicSt. Olav's Hospital, Trondheim University HospitalTrondheimNorway
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and RehabilitationKing's College LondonLondonUK
| | - James McDonald
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | - Inger O. Ottestad
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer MedicineOslo University HospitalOsloNorway
| | - Iain Phillips
- Edinburgh Cancer CentreWestern General HospitalEdinburghUK
| | - Judith Sayers
- Clinical SurgeryThe University of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | - Melanie R. Simpson
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Ola M. Vagnildhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Tora S. Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Barry J.A. Laird
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | | | | |
Collapse
|
12
|
Umezawa K, Ikeda R, Sakamoto T, Enomoto Y, Nihashi Y, Shinji S, Shimosato T, Kagami H, Takaya T. Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation. BIOTECH 2024; 13:11. [PMID: 38804293 PMCID: PMC11130974 DOI: 10.3390/biotech13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.
Collapse
Affiliation(s)
- Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Japan;
| | - Yuya Enomoto
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Centoral 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan;
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| |
Collapse
|
13
|
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024; 13:252. [PMID: 38334644 PMCID: PMC10854699 DOI: 10.3390/cells13030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Cachexia is a condition characterized by substantial loss of body weight resulting from the depletion of skeletal muscle and adipose tissue. A considerable fraction of patients with advanced cancer, particularly those who have been diagnosed with pancreatic or gastric cancer, lung cancer, prostate cancer, colon cancer, breast cancer, or leukemias, are impacted by this condition. This syndrome manifests at all stages of cancer and is associated with an unfavorable prognosis. It heightens the susceptibility to surgical complications, chemotherapy toxicity, functional impairments, breathing difficulties, and fatigue. The early detection of patients with cancer cachexia has the potential to enhance both their quality of life and overall survival rates. Regarding this matter, blood biomarkers, although helpful, possess certain limitations and do not exhibit universal application. Additionally, the available treatment options for cachexia are currently limited, and there is a lack of comprehensive understanding of the underlying molecular pathways associated with this condition. Thus, this review aims to provide an overview of molecular mechanisms associated with cachexia and potential therapeutic targets for the development of effective treatments for this devastating condition.
Collapse
Affiliation(s)
- Mahdi Neshan
- Department of General Surgery, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915887857, Iran;
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Xu Han
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| |
Collapse
|
14
|
Englund DA, Jolliffe AM, Hanson GJ, Aversa Z, Zhang X, Jiang X, White TA, Zhang L, Monroe DG, Robbins PD, Niedernhofer LJ, Kamenecka TM, Khosla S, LeBrasseur NK. Senotherapeutic drug treatment ameliorates chemotherapy-induced cachexia. JCI Insight 2024; 9:e169512. [PMID: 38051584 PMCID: PMC10906225 DOI: 10.1172/jci.insight.169512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
Cachexia is a debilitating skeletal muscle wasting condition for which we currently lack effective treatments. In the context of cancer, certain chemotherapeutics cause DNA damage and cellular senescence. Senescent cells exhibit chronic activation of the transcription factor NF-κB, a known mediator of the proinflammatory senescence-associated secretory phenotype (SASP) and skeletal muscle atrophy. Thus, targeting NF-κB represents a logical therapeutic strategy to alleviate unintended consequences of genotoxic drugs. Herein, we show that treatment with the IKK/NF-κB inhibitor SR12343 during a course of chemotherapy reduces markers of cellular senescence and the SASP in liver, skeletal muscle, and circulation and, correspondingly, attenuates features of skeletal muscle pathology. Lastly, we demonstrate that SR12343 mitigates chemotherapy-induced reductions in body weight, lean mass, fat mass, and muscle strength. These findings support senescent cells as a promising druggable target to counteract the SASP and skeletal muscle wasting in the context of chemotherapy.
Collapse
Affiliation(s)
- Davis A. Englund
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa M. Jolliffe
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Gabriel J. Hanson
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Xinyi Jiang
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas A. White
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging, and
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, and
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Paul F. Glenn Center for the Biology of Aging at Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Patel I, Winer A. Assessing Frailty in Gastrointestinal Cancer: Two Diseases in One? Curr Oncol Rep 2024; 26:90-102. [PMID: 38180691 DOI: 10.1007/s11912-023-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
PURPOSEOF REVIEW This review examines the challenges of treating gastrointestinal cancer in the aging population, focusing on the importance of frailty assessment. Emphasized are the rise in gastrointestinal cancer incidence in older adults, advances in frailty assessments for patients with gastrointestinal cancer, the development of novel frailty markers, and a summary of recent trials. RECENT FINDINGS Increasing evidence suggests that the use of a Comprehensive Geriatric Assessment (CGA) to identify frail older adults and individualize cancer care leads to lower toxicity and improved quality of life outcomes. However, the adoption of a full CGA prior to chemotherapy initiation in older cancer patients remains low. Recently, new frailty screening tools have emerged, including assessments designed to specifically predict chemotherapy-related adverse events. Additionally, frailty biomarkers have been developed, such as blood tests like IL-6 and performance tracking through physical activity monitors. The relevance of nutrition and muscle mass is discussed. Highlights from recent trials suggest the feasibility of successfully identifying patients most at risk of serious adverse events. There have been promising developments in identifying novel frailty markers and methods to screen for frailty in the older adult population. Further prospective trials that focus on and address the needs of the geriatric population for early identification of frailty in cancer care, facilitating a more tailored treatment approach. Practicing oncologists should select a frailty assessment to implement into their routine practice and adjust treatment accordingly.
Collapse
Affiliation(s)
- Ishan Patel
- Inova Schar Cancer Institute, 8081 Innovation Park Drive, Falls Church, Falls Church, VA, 22031, USA.
| | - Arthur Winer
- Inova Schar Cancer Institute, 8081 Innovation Park Drive, Falls Church, Falls Church, VA, 22031, USA
| |
Collapse
|
16
|
Mina E, Wyart E, Sartori R, Angelino E, Zaggia I, Rausch V, Maldotti M, Pagani A, Hsu MY, Friziero A, Sperti C, Menga A, Graziani A, Hirsch E, Oliviero S, Sandri M, Conti L, Kautz L, Silvestri L, Porporato PE. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Cell Rep Med 2023; 4:101306. [PMID: 38052214 PMCID: PMC10772350 DOI: 10.1016/j.xcrm.2023.101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.
Collapse
Affiliation(s)
- Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ivan Zaggia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Valentina Rausch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Division of Cell Fate Dynamics and Therapeutics, Department of Biosystems Science, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Alberto Friziero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; General Surgery 1, Padova University Hospital, Padova, Italy
| | - Cosimo Sperti
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padova University Hospital, Padova, Italy
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Léon Kautz
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, University Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Laura Silvestri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy.
| |
Collapse
|
17
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
18
|
Zhang X, Zhao Y, Yan W. The role of extracellular vesicles in skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:2462-2472. [PMID: 37867162 PMCID: PMC10751420 DOI: 10.1002/jcsm.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Skeletal muscle wasting is a complicated metabolic syndrome accompanied by multiple diseases ranging from cancer to metabolic disorders and infectious conditions. The loss of muscle mass significantly impairs muscle function, resulting in poor quality of life and high mortality of associated diseases. The fundamental cellular and molecular mechanisms inducing muscle wasting have been well established, and those related pathways can be activated by a variety of extracellular signals, including inflammatory cytokines and catabolic stimuli. As an emerging messenger of cell-to-cell communications, extracellular vesicles (EVs) also get involved in the progression of muscle wasting by transferring bioactive cargoes including various proteins and non-coding RNAs to skeletal muscle. Like a double-edged sword, EVs play either a pro-wasting or anti-wasting role in the progression of muscle wasting, highly dependent on their parental cells as well as the specific type of cargo they encapsulate. This review aims to illustrate the current knowledge about the biological function of EVs cargoes in skeletal muscle wasting. Additionally, the potential therapeutic implications of EVs in the diagnosis and treatment of skeletal muscle wasting are also discussed. Simultaneously, several outstanding questions are included to shed light on future research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
19
|
Zhang FM, Wu HF, Shi HP, Yu Z, Zhuang CL. Sarcopenia and malignancies: epidemiology, clinical classification and implications. Ageing Res Rev 2023; 91:102057. [PMID: 37666432 DOI: 10.1016/j.arr.2023.102057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Sarcopenia is a progressive systemic skeletal muscle disorder characterized by a pathological decline in muscle strength, quantity, and quality, which frequently affects the elderly population. The majority of cancer patients are of advanced age. Patients may already have sarcopenia prior to cancer development, and those with cancer are prone to developing sarcopenia due to hypercatabolism, inflammation, reduced physical fitness, anorexia, adverse effects, and stress associated with anticancer therapy. Based on the timing, sarcopenia in patients with cancer can be categorized into three: pre-existing sarcopenia before the onset of cancer, sarcopenia related to cancer, and sarcopenia related to cancer treatment. Sarcopenia not only changes the body composition of patients with cancer but also increases the incidence of postoperative complications, reduces therapeutic efficacy, impairs quality of life, and results in shortened survival. Different therapeutic strategies are required to match the cancer status and physical condition of patients with different etiologies and stages of sarcopenia. Here, we present a comprehensive review of the epidemiology and diagnosis of sarcopenia in patients with cancer, elucidate the complex interactions between cancer and sarcopenia, and provide evidence-based strategies for sarcopenia management in these patients.
Collapse
Affiliation(s)
- Feng-Min Zhang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao-Fan Wu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University/ Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhen Yu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
20
|
McDonald J, Sayers J, Anker SD, Arends J, Balstad TR, Baracos V, Brown L, Bye A, Dajani O, Dolan R, Fallon MT, Fraser E, Griel C, Grzyb A, Hjermstad M, Jamal‐Hanjani M, Jakobsen G, Kaasa S, McMillan D, Maddocks M, Philips I, Ottestad IO, Reid KF, Sousa MS, Simpson MR, Vagnildhaug OM, Skipworth RJE, Solheim TS, Laird BJA. Physical function endpoints in cancer cachexia clinical trials: Systematic Review 1 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2023; 14:1932-1948. [PMID: 37671529 PMCID: PMC10570071 DOI: 10.1002/jcsm.13321] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
In cancer cachexia trials, measures of physical function are commonly used as endpoints. For drug trials to obtain regulatory approval, efficacy in physical function endpoints may be needed alongside other measures. However, it is not clear which physical function endpoints should be used. The aim of this systematic review was to assess the frequency and diversity of physical function endpoints in cancer cachexia trials. Following a comprehensive electronic literature search of MEDLINE, Embase and Cochrane (1990-2021), records were retrieved. Eligible trials met the following criteria: adults (≥18 years), controlled design, more than 40 participants, use of a cachexia intervention for more than 14 days and use of a physical function endpoint. Physical function measures were classified as an objective measure (hand grip strength [HGS], stair climb power [SCP], timed up and go [TUG] test, 6-min walking test [6MWT] and short physical performance battery [SPPB]), clinician assessment of function (Karnofsky Performance Status [KPS] or Eastern Cooperative Oncology Group-Performance Status [ECOG-PS]) or patient-reported outcomes (physical function subscale of the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaires [EORTC QLQ-C30 or C15]). Data extraction was performed using Covidence and followed PRISMA guidance (PROSPERO registration: CRD42022276710). A total of 5975 potential studies were examined and 71 were eligible. Pharmacological interventions were assessed in 38 trials (54%). Of these, 11 (29%, n = 1184) examined megestrol and 5 (13%, n = 1928) examined anamorelin; nutritional interventions were assessed in 21 trials (30%); and exercise-based interventions were assessed in 6 trials (8%). The remaining six trials (8%) assessed multimodal interventions. Among the objective measures of physical function (assessed as primary or secondary endpoints), HGS was most commonly examined (33 trials, n = 5081) and demonstrated a statistically significant finding in 12 (36%) trials (n = 2091). The 6MWT was assessed in 12 trials (n = 1074) and was statistically significant in 4 (33%) trials (n = 403), whereas SCP, TUG and SPPB were each assessed in 3 trials. KPS was more commonly assessed than the newer ECOG-PS (16 vs. 9 trials), and patient-reported EORTC QLQ-C30 physical function was reported in 25 trials. HGS is the most commonly used physical function endpoint in cancer cachexia clinical trials. However, heterogeneity in study design, populations, intervention and endpoint selection make it difficult to comment on the optimal endpoint and how to measure this. We offer several recommendations/considerations to improve the design of future clinical trials in cancer cachexia.
Collapse
Affiliation(s)
- James McDonald
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | - Judith Sayers
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
- Clinical SurgeryUniversity of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Stefan D. Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), and German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité UniversitätsmedizinBerlinGermany
- Institute of Heart DiseasesWroclaw Medical UniversityWroclawPoland
- German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité Universitätsmedizin BerlinBerlinGermany
| | - Jann Arends
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Trude Rakel Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU–Norwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical Medicine, Clinical Nutrition Research GroupUiT The Arctic University of NorwayTromsøNorway
| | - Vickie Baracos
- Division of Palliative Care Medicine, Department of OncologyUniversity of AlbertaEdmontonABCanada
| | - Leo Brown
- Clinical SurgeryUniversity of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Asta Bye
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Olav Dajani
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Ross Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Marie T. Fallon
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Eilidh Fraser
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Christine Griel
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Aleksandra Grzyb
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Marianne Hjermstad
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Mariam Jamal‐Hanjani
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
- Cancer Metastasis LaboratoryUniversity College London Cancer InstituteLondonUK
- Department of OncologyUniversity College London HospitalsLondonUK
| | - Gunnhild Jakobsen
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | - Stein Kaasa
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Donald McMillan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and RehabilitationKing's College LondonLondonUK
| | - Iain Philips
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Inger O. Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway and The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer MedicineHarvard Medical SchoolOslo University HospitalNorway
| | - Kieran F. Reid
- Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care through Clinical Research and Translation (IMPACCT)University of Technology SydneySydneyNSWAustralia
| | - Melanie R. Simpson
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | - Ola Magne Vagnildhaug
- Cancer ClinicSt Olavs Hospital – Trondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Tora S. Solheim
- Cancer ClinicSt Olavs Hospital – Trondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Barry J. A. Laird
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | | |
Collapse
|
21
|
Domaniku A, Bilgic SN, Kir S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol Sci 2023; 44:705-718. [PMID: 37596181 DOI: 10.1016/j.tips.2023.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Muscle wasting is a serious comorbidity associated with many disorders, including cancer, kidney disease, heart failure, and aging. Progressive loss of skeletal muscle mass negatively influences prognosis and survival, and is often accompanied by frailty and poor quality of life. Clinical trials testing therapeutics against muscle wasting have yielded limited success. Some therapies improved muscle mass in patients without appreciable differences in physical performance. This review article discusses emerging pathways that regulate muscle atrophy, including oncostatin M (OSM) and ectodysplasin A2 (EDA2) receptor (EDA2R) signaling, outcomes of recent clinical trials, and potential drug targets for future therapies.
Collapse
Affiliation(s)
- Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
22
|
Nishie K, Nishie T, Sato S, Hanaoka M. Update on the treatment of cancer cachexia. Drug Discov Today 2023; 28:103689. [PMID: 37385369 DOI: 10.1016/j.drudis.2023.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Cancer cachexia is a complex multifaceted syndrome involving functional impairment and changes in body composition that cannot be reversed by nutritional support. Cancer cachexia is characterized by decreased skeletal muscle mass, increased lipolysis, and decreased food intake. Cancer cachexia decreases chemotherapy tolerance as well as quality of life. However, because no fully effective interventions are available, cancer cachexia remains an unmet need in cancer treatment. In recent years, several discoveries and treatments for cancer cachexia have been studied, and guidelines have been published. We believe that the development of effective strategies for the diagnosis and treatment of cancer cachexia will lead to breakthroughs in cancer treatment.
Collapse
Affiliation(s)
- Kenichi Nishie
- Department of Respiratory Medicine, Iida Municipal Hospital, 438 Yawatamachi Iida Nagano, 395-0814, Japan; The First Department of Internal Medicine, Shinshu University School of Medicine, Japan.
| | - Tomomi Nishie
- The Faculty of Pharmaceutical Sciences, Ritsumeikan University, Japan
| | - Seiichi Sato
- Department of Pharmaceutics, Iida Municipal Hospital, Japan
| | - Masayuki Hanaoka
- The First Department of Internal Medicine, Shinshu University School of Medicine, Japan
| |
Collapse
|
23
|
Dasgupta A, Gibbard DF, Schmitt RE, Arneson-Wissink PC, Ducharme AM, Bruinsma ES, Hawse JR, Jatoi A, Doles JD. A TGF-β/KLF10 signaling axis regulates atrophy-associated genes to induce muscle wasting in pancreatic cancer. Proc Natl Acad Sci U S A 2023; 120:e2215095120. [PMID: 37585460 PMCID: PMC10462925 DOI: 10.1073/pnas.2215095120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/14/2023] [Indexed: 08/18/2023] Open
Abstract
Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-β), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-β. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-β/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.
Collapse
Affiliation(s)
- Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN46202
- Indiana Center for Musculoskeletal Health, Indianapolis, IN46202
- Tumor Microenvironment & Metastasis Program, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN46202
| | - Daniel F. Gibbard
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN55905
| | - Rebecca E. Schmitt
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN46202
- Indiana Center for Musculoskeletal Health, Indianapolis, IN46202
- Tumor Microenvironment & Metastasis Program, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN46202
| | - Paige C. Arneson-Wissink
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN55905
| | | | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN55905
| | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Jason D. Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN46202
- Indiana Center for Musculoskeletal Health, Indianapolis, IN46202
- Tumor Microenvironment & Metastasis Program, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN46202
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN55905
| |
Collapse
|
24
|
Thomasius F, Pesta D, Rittweger J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br J Clin Pharmacol 2023. [PMID: 37559171 DOI: 10.1111/bcp.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Despite 2 h of daily exercise training, muscle wasting and bone loss are still present after 6-month missions to the international space station. Some crew members lose bone much faster than others. In preparation for missions to the Moon and Mars, space agencies are therefore reviewing their countermeasure portfolios. Here, we discuss the potential of current pharmacological strategies. Bone loss in space is fuelled by bone resorption. Alendronate, an oral bisphosphonate, reduced bone losses in experimental bed rest and space. However, gastrointestinal side effects precluded its further utilization in space. Zoledronate (a potent bisphosphonate), denosumab (RANKL antagonist) and romosozumab (sclerostin antagonist) are all administered via injection. They effectively suppress bone resorption and are routinely prescribed against osteoporosis. Their serious adverse effects, namely, osteonecrosis of the jaw and atypical femur fractures occur very rarely when the usage is limited to 1 or 2 years. Hence, utilization of one of these compounds may outweigh the bone risks of space travelling, in particular in those with high bone resorption rates. Muscle wasting in space is likely due to hampered muscle protein synthesis. Even though this might theoretically be countered by the synthesis-boosting effects of anabolic steroids, the practical grounds for such recommendation are currently weak. Moreover, they reveal their full potential only when combined with an anabolic exercise stimulus, for example, via strength training. It therefore seems that a combination of exercise and pharmacological countermeasures should be considered for musculoskeletal health on the way to the Moon and Mars and back.
Collapse
Affiliation(s)
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
25
|
Lee SJ, Bhasin S, Klickstein L, Krishnan V, Rooks D. Challenges and Future Prospects of Targeting Myostatin/Activin A Signaling to Treat Diseases of Muscle Loss and Metabolic Dysfunction. J Gerontol A Biol Sci Med Sci 2023; 78:32-37. [PMID: 36738276 PMCID: PMC10272974 DOI: 10.1093/gerona/glad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past 25 years, considerable progress has been made in terms of elucidating the regulatory and signaling mechanisms underlying the control of skeletal muscle mass by myostatin and other secreted proteins belonging to the transforming growth factor-β superfamily. Preclinical studies demonstrating the potential benefits of targeting the activities of these ligands have fueled the development of numerous biologics capable of perturbing this signaling pathway and increasing muscle mass and function. These biologics have been tested in numerous clinical trials for a wide range of indications characterized by muscle loss and excess adiposity. Here, we review the results of these trials and discuss some of the challenges and future prospects for targeting this signaling pathway to treat muscle and metabolic diseases. Myostatin inhibitors may improve metabolic outcomes by increasing muscle mass, and metabolic disorders may be attractive potential indications for these molecules.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Daniel Rooks
- Translational Medicine, Novartis Institute for BioMedical Research, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, Heymsfield SB, Hui S, Jamal-Hanjani M, Lam JM, Lewis DY, McCandlish D, Mustian KM, O'Rahilly S, Perrimon N, White EP, Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023; 186:1824-1845. [PMID: 37116469 PMCID: PMC11059056 DOI: 10.1016/j.cell.2023.03.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Janelle S Ayres
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bette J Caan
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA
| | | | - Anthony P Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard F Dunne
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonas Grethlein
- Ruprecht Karl University of Heidelberg, Heidelberg 69117, Germany
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Sheng Hui
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Mariam Jamal-Hanjani
- Department of Medical Oncology, University College London Hospitals, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jie Min Lam
- Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - David Y Lewis
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK
| | - David McCandlish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Karen M Mustian
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen P White
- Rutgers Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
27
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 2023; 20:250-264. [PMID: 36806788 DOI: 10.1038/s41571-023-00734-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Cachexia is a devastating, multifactorial and often irreversible systemic syndrome characterized by substantial weight loss (mainly of skeletal muscle and adipose tissue) that occurs in around 50-80% of patients with cancer. Although this condition mainly affects skeletal muscle (which accounts for approximately 40% of total body weight), cachexia is a multi-organ syndrome that also involves white and brown adipose tissue, and organs including the bones, brain, liver, gut and heart. Notably, cachexia accounts for up to 20% of cancer-related deaths. Cancer-associated cachexia is invariably associated with systemic inflammation, anorexia and increased energy expenditure. Understanding these mechanisms is essential, and the progress achieved in this area over the past decade could help to develop new therapeutic approaches. In this Review, we examine the currently available evidence on the roles of both the tumour macroenvironment and microenvironment in cancer-associated cachexia, and provide an overview of the novel therapeutic strategies developed to manage this syndrome.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Increasing Skeletal Muscle Mass in Mice by Non-Invasive Intramuscular Delivery of Myostatin Inhibitory Peptide by Iontophoresis. Pharmaceuticals (Basel) 2023; 16:ph16030397. [PMID: 36986496 PMCID: PMC10058260 DOI: 10.3390/ph16030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sarcopenia is a major public health issue that affects older adults. Myostatin inhibitory-D-peptide-35 (MID-35) can increase skeletal muscle and is a candidate therapeutic agent, but a non-invasive and accessible technology for the intramuscular delivery of MID-35 is required. Recently, we succeeded in the intradermal delivery of various macromolecules, such as siRNA and antibodies, by iontophoresis (ItP), a non-invasive transdermal drug delivery technology that uses weak electricity. Thus, we expected that ItP could deliver MID-35 non-invasively from the skin surface to skeletal muscle. In the present study, ItP was performed with a fluorescently labeled peptide on mouse hind leg skin. Fluorescent signal was observed in both skin and skeletal muscle. This result suggested that the peptide was effectively delivered to skeletal muscle from skin surface by ItP. Then, the effect of MID-35/ItP on skeletal muscle mass was evaluated. The skeletal muscle mass increased 1.25 times with ItP of MID-35. In addition, the percentage of new and mature muscle fibers tended to increase, and ItP delivery of MID-35 showed a tendency to induce alterations in the levels of mRNA of genes downstream of myostatin. In conclusion, ItP of myostatin inhibitory peptide is a potentially useful strategy for treating sarcopenia.
Collapse
|
29
|
Okamoto H, Murano SA, Ikekawa K, Katsuyama M, Konno S, Taguchi A, Takayama K, Taniguchi A, Hayashi Y. Inactivation of myostatin by photooxygenation using functionalized d-peptides. RSC Med Chem 2023; 14:386-392. [PMID: 36846372 PMCID: PMC9945861 DOI: 10.1039/d2md00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Inhibition of myostatin is an attractive strategy for the treatment of muscular atrophic diseases such as muscular dystrophy. For the efficient inhibition of myostatin, functionalized peptides were developed by the conjugation of a 16-mer myostatin-binding d-peptide with a photooxygenation catalyst. These peptides induced myostatin-selective photooxygenation and inactivation under near-infrared irradiation, and were associated with little cytotoxicity or phototoxicity. The peptides are resistant to enzymatic digestion due to their d-peptide chains. These properties could contribute to the in vivo use of photooxygenation-based inactivation strategies targeting myostatin.
Collapse
Affiliation(s)
- Hideyuki Okamoto
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Shuko Amber Murano
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Kaoru Ikekawa
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Masahiro Katsuyama
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Sho Konno
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University 5 Misasaginakauchi-cho, Yamashina Kyoto 607-8414 Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
30
|
The Preventive Effect of Specific Collagen Peptides against Dexamethasone-Induced Muscle Atrophy in Mice. Molecules 2023; 28:molecules28041950. [PMID: 36838938 PMCID: PMC9960993 DOI: 10.3390/molecules28041950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Muscle atrophy, also known as muscle wasting, is the thinning of muscle mass due to muscle disuse, aging, or diseases such as cancer or neurological problems. Muscle atrophy is closely related to the quality of life and has high morbidity and mortality. However, therapeutic options for muscle atrophy are limited, so studies to develop therapeutic agents for muscle loss are always required. For this study, we investigated how orally administered specific collagen peptides (CP) affect muscle atrophy and elucidated its molecular mechanism using an in vivo model. We treated mice with dexamethasone (DEX) to induce a muscular atrophy phenotype and then administered CP (0.25 and 0.5 g/kg) for four weeks. In a microcomputed tomography analysis, CP (0.5 g/kg) intake significantly increased the volume of calf muscles in mice with DEX-induced muscle atrophy. In addition, the administration of CP (0.25 and 0.5 g/kg) restored the weight of the gluteus maximus and the fiber cross-sectional area (CSA) of the pectoralis major and calf muscles, which were reduced by DEX. CP significantly inhibited the mRNA expression of myostatin and the phosphorylation of Smad2, but it did not affect TGF-β, BDNF, or FNDC5 gene expression. In addition, AKT/mTOR, a central pathway for muscle protein synthesis and related to myostatin signaling, was enhanced in the groups that were administered CP. Finally, CP decreased serum albumin levels and increased TNF-α gene expression. Collectively, our in vivo results demonstrate that CP can alleviate muscle wasting through a multitude of mechanisms. Therefore, we propose CP as a supplement or treatment to prevent muscle atrophy.
Collapse
|
31
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
32
|
Dayyani F, Macarulla T, Johnson A, Wainberg ZA. Second-line treatment options for patients with metastatic pancreatic ductal adenocarcinoma: A systematic literature review. Cancer Treat Rev 2023; 113:102502. [PMID: 36641880 DOI: 10.1016/j.ctrv.2022.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The aim of this review was to characterize the second- and later-line (≥2L) treatment landscape for patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS This systematic literature review (PROSPERO: CRD42021279753) involved searches of MEDLINE® and Embase to identify results from prospective studies of ≥2L treatment options for metastatic pancreatic cancer published from 2016 to 2021. Publications were screened according to predetermined eligibility criteria; population-level data were extracted using standardized data fields. Publication quality was assessed according to Grading of Recommendations Assessment, Development and Evaluation (GRADE). The data were analyzed descriptively, grouped by drug class. RESULTS Sixty publications were identified, including 23 relating to comparative trials. GRADE assessment found that, of these 23 trials, 83% reported high or moderate-quality evidence. Of the publications relating to comparative trials, nine (three trials) reported favorable results: the pivotal phase 3 NAPOLI-1 trial for liposomal irinotecan; a phase 3 trial of non-liposomal irinotecan within the FOLFIRINOX regimen; and a phase 2 trial of eryaspase plus chemotherapy. CONCLUSIONS The level of unmet need for ≥2L treatment options for mPDAC remains high. Irinotecan-based regimens currently offer the greatest promise. Investigations into paradigm-changing agents and combination approaches continue.
Collapse
Affiliation(s)
| | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | |
Collapse
|
33
|
Bouredji Z, Argaw A, Frenette J. The inflammatory response, a mixed blessing for muscle homeostasis and plasticity. Front Physiol 2022; 13:1032450. [PMID: 36505042 PMCID: PMC9726740 DOI: 10.3389/fphys.2022.1032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle makes up almost half the body weight of heathy individuals and is involved in several vital functions, including breathing, thermogenesis, metabolism, and locomotion. Skeletal muscle exhibits enormous plasticity with its capacity to adapt to stimuli such as changes in mechanical loading, nutritional interventions, or environmental factors (oxidative stress, inflammation, and endocrine changes). Satellite cells and timely recruited inflammatory cells are key actors in muscle homeostasis, injury, and repair processes. Conversely, uncontrolled recruitment of inflammatory cells or chronic inflammatory processes leads to muscle atrophy, fibrosis and, ultimately, impairment of muscle function. Muscle atrophy and loss of function are reported to occur either in physiological situations such as aging, cast immobilization, and prolonged bed rest, as well as in many pathological situations, including cancers, muscular dystrophies, and several other chronic illnesses. In this review, we highlight recent discoveries with respect to the molecular mechanisms leading to muscle atrophy caused by modified mechanical loading, aging, and diseases. We also summarize current perspectives suggesting that the inflammatory process in muscle homeostasis and repair is a double-edged sword. Lastly, we review recent therapeutic approaches for treating muscle wasting disorders, with a focus on the RANK/RANKL/OPG pathway and its involvement in muscle inflammation, protection and regeneration processes.
Collapse
Affiliation(s)
- Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada,Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, Canada,*Correspondence: Jérôme Frenette,
| |
Collapse
|
34
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
35
|
Seufferlein T, Mayerle J, Böck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie zum exokrinen Pankreaskarzinom – Langversion 2.0 – Dezember 2021 – AWMF-Registernummer: 032/010OL. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e812-e909. [PMID: 36368658 DOI: 10.1055/a-1856-7346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Stefan Böck
- Medizinische Klinik und Poliklinik III, Universitätsklinikum München, Germany
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie Universitätsklinikum, Heidelberg, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Universitätsklinikum Hamburg-Eppendorf Medizinische Klinik und Poliklinik II Onkologie Hämatologie, Hamburg, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
36
|
Cancer Cachexia: Signaling and Transcriptional Regulation of Muscle Catabolic Genes. Cancers (Basel) 2022; 14:cancers14174258. [PMID: 36077789 PMCID: PMC9454911 DOI: 10.3390/cancers14174258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary An uncontrollable loss in the skeletal muscle of cancer patients which leads to a significant reduction in body weight is clinically referred to as cancer cachexia (CC). While factors derived from the tumor environment which trigger various signaling pathways have been identified, not much progress has been made clinically to effectively prevent muscle loss. Deeper insights into the transcriptional and epigenetic regulation of muscle catabolic genes may shed light on key regulators which can be targeted to develop new therapeutic avenues. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterized by a significant reduction in body weight that is predominantly caused by the loss of skeletal muscle and adipose tissue. Although the ill effects of cachexia are well known, the condition has been largely overlooked, in part due to its complex etiology, heterogeneity in mediators, and the involvement of diverse signaling pathways. For a long time, inflammatory factors have been the focus when developing therapeutics for the treatment of CC. Despite promising pre-clinical results, they have not yet advanced to the clinic. Developing new therapies requires a comprehensive understanding of how deregulated signaling leads to catabolic gene expression that underlies muscle wasting. Here, we review CC-associated signaling pathways and the transcriptional cascade triggered by inflammatory cytokines. Further, we highlight epigenetic factors involved in the transcription of catabolic genes in muscle wasting. We conclude with reflections on the directions that might pave the way for new therapeutic approaches to treat CC.
Collapse
|
37
|
Balsano R, Kruize Z, Lunardi M, Comandatore A, Barone M, Cavazzoni A, Re Cecconi AD, Morelli L, Wilmink H, Tiseo M, Garajovà I, van Zuylen L, Giovannetti E, Piccirillo R. Transforming Growth Factor-Beta Signaling in Cancer-Induced Cachexia: From Molecular Pathways to the Clinics. Cells 2022; 11:2671. [PMID: 36078078 PMCID: PMC9454487 DOI: 10.3390/cells11172671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a metabolic syndrome consisting of massive loss of muscle mass and function that has a severe impact on the quality of life and survival of cancer patients. Up to 20% of lung cancer patients and up to 80% of pancreatic cancer patients are diagnosed with cachexia, leading to death in 20% of them. The main drivers of cachexia are cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), macrophage inhibitory cytokine 1 (MIC-1/GDF15) and transforming growth factor-beta (TGF-β). Besides its double-edged role as a tumor suppressor and activator, TGF-β causes muscle loss through myostatin-based signaling, involved in the reduction in protein synthesis and enhanced protein degradation. Additionally, TGF-β induces inhibin and activin, causing weight loss and muscle depletion, while MIC-1/GDF15, a member of the TGF-β superfamily, leads to anorexia and so, indirectly, to muscle wasting, acting on the hypothalamus center. Against this background, the blockade of TGF-β is tested as a potential mechanism to revert cachexia, and antibodies against TGF-β reduced weight and muscle loss in murine models of pancreatic cancer. This article reviews the role of the TGF-β pathway and to a minor extent of other molecules including microRNA in cancer onset and progression with a special focus on their involvement in cachexia, to enlighten whether TGF-β and such other players could be potential targets for therapy.
Collapse
Affiliation(s)
- Rita Balsano
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy
| | - Zita Kruize
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martina Lunardi
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mara Barone
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea David Re Cecconi
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Hanneke Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Ingrid Garajovà
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy
| | - Lia van Zuylen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy
| | - Rosanna Piccirillo
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
38
|
Jin J, Du M, Wang J, Guo Y, Zhang J, Zuo H, Hou Y, Wang S, Lv W, Bai W, Wang J, Zhan X, Peng Y, Tong Q, Chai J, Xu Z, Zuo B. Conservative analysis of Synaptopodin-2 intron sense-overlapping lncRNA reveals its novel function in promoting muscle atrophy. J Cachexia Sarcopenia Muscle 2022; 13:2017-2030. [PMID: 35592920 PMCID: PMC9397560 DOI: 10.1002/jcsm.13012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dissection of the regulatory pathways that control skeletal muscle development and atrophy is important for the treatment of muscle wasting. Long noncoding RNA (lncRNA) play important roles in various stages of muscle development. We previously reported that Synaptopodin-2 (SYNPO2) intron sense-overlapping lncRNA (SYISL) regulates myogenesis through an interaction with enhancer of zeste homologue 2 (EZH2). However, it remains unclear whether SYISL homologues exist in humans and pigs, and whether the functions and mechanisms of these homologues are conserved among species. METHODS Bioinformatics, cell fractionation, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used for the identification and molecular characterization of SYISL homologues in humans and pigs. Effects on myogenesis and muscle atrophy were determined via loss-of-function or gain-of-function experiments using C2C12 myoblasts, myogenic progenitor cells, dexamethasone (DEX), and aging-induced muscle atrophy models. RNA pulldown, RNA immunoprecipitation, dual luciferase reporting, and co-transfection experiments were used to explore the mechanisms of SYISL interactions with proteins and miRNAs. RESULTS We identified SYISL homologues in humans (designated hSYISL) and pigs (designated pSYISL). Functional experiments demonstrated that hSYISL and pSYISL regulate myogenesis through interactions with EZH2. Interestingly, we showed that SYISL functions to regulate muscle atrophy and sarcopenia through comparative analysis. SYISL is significantly up-regulated after muscle atrophy (P < 0.01); it significantly promotes muscle atrophy in DEX-induced muscle atrophy models (P < 0.01). SYISL knockdown or knockout alleviates muscle atrophy and sarcopenia in DEX-induced and aged mice. The tibialis anterior (TA) muscle weight of 3-month-old wild-type (WT) mice decreased by 33.24% after DEX treatment (P < 0.001), while the muscle weight loss of 3-month-old SYISL knockout mice was only 18.20% after DEX treatment (P < 0.001). SYISL knockout in 18-month-old WT mice significantly increased the weights of quadriceps (Qu), gastrocnemius (Gas), and TA muscles by 10.45% (P < 0.05), 13.95% (P < 0.01), and 24.82% (P < 0.05), respectively. Mechanistically, SYISL increases the expression levels of the muscle atrophy genes forkhead box protein O3a (FoxO3a), muscle ring finger 1 (MuRF1), and muscle atrophy-related F-box (Atrogin-1) via sponging of miR-23a-3p/miR-103-3p/miR-205-5p and thus promotes muscle atrophy. Additionally, we verified that human SYISL overexpression in muscles of 18-month-old WT mice significantly decreased the weights of Gas, Qu, and TA muscles by 7.76% (P < 0.01), 12.26% (P < 0.05), and 13.44% (P < 0.01), respectively, and accelerates muscle atrophy through conserved mechanisms. CONCLUSIONS Our results identify SYISL as a conserved lncRNA that modulates myogenesis in mice, pigs, and humans. We also demonstrated its previously unknown ability to promote muscle atrophy.
Collapse
Affiliation(s)
- Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mengmeng Du
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yubo Guo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiali Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yunqing Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Bai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jin Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jin Chai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
39
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
40
|
Abati E, Manini A, Comi GP, Corti S. Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases. Cell Mol Life Sci 2022; 79:374. [PMID: 35727341 PMCID: PMC9213329 DOI: 10.1007/s00018-022-04408-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Myostatin is a negative regulator of skeletal muscle growth secreted by skeletal myocytes. In the past years, myostatin inhibition sparked interest among the scientific community for its potential to enhance muscle growth and to reduce, or even prevent, muscle atrophy. These characteristics make it a promising target for the treatment of muscle atrophy in motor neuron diseases, namely, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), which are rare neurological diseases, whereby the degeneration of motor neurons leads to progressive muscle loss and paralysis. These diseases carry a huge burden of morbidity and mortality but, despite this unfavorable scenario, several therapeutic advancements have been made in the past years. Indeed, a number of different curative therapies for SMA have been approved, leading to a revolution in the life expectancy and outcomes of SMA patients. Similarly, tofersen, an antisense oligonucleotide, is now undergoing clinical trial phase for use in ALS patients carrying the SOD1 mutation. However, these therapies are not able to completely halt or reverse progression of muscle damage. Recently, a trial evaluating apitegromab, a myostatin inhibitor, in SMA patients was started, following positive results from preclinical studies. In this context, myostatin inhibition could represent a useful strategy to tackle motor symptoms in these patients. The aim of this review is to describe the myostatin pathway and its role in motor neuron diseases, and to summarize and critically discuss preclinical and clinical studies of myostatin inhibitors in SMA and ALS. Then, we will highlight promises and pitfalls related to the use of myostatin inhibitors in the human setting, to aid the scientific community in the development of future clinical trials.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
41
|
Takayama K. Peptide Tool-Driven Functional Elucidation of Biomolecules Related to Endocrine System and Metabolism. Chem Pharm Bull (Tokyo) 2022; 70:413-419. [PMID: 35650039 DOI: 10.1248/cpb.c22-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enhancement of basic research based on biomolecule-derived peptides has the potential to elucidate their biological function and lead to the development of new drugs. In this review, two biomolecules, namely "neuromedin U (NMU)" and "myostatin," are discussed. NMU, a neuropeptide first isolated from the porcine spinal cord, non-selectively activates two types of receptors (NMUR1 and NMUR2) and displays a variety of physiological actions, including appetite suppression. The development of receptor-selective regulators helps elucidate each receptor's detailed biological roles. A structure-activity relationship (SAR) study was conducted to achieve this purpose using the amidated C-terminal core structure of NMU for receptor activation. Through obtaining receptor-selective hexapeptide agonists, molecular functions of the core structure were clarified. Myostatin is a negative regulator of skeletal muscle growth and has attracted attention as a target for treating atrophic muscle disorders. Although the protein inhibitors, such as antibodies and receptor-decoys have been developed, the inhibition by smaller molecules, including peptides, is less advanced. Focusing on the inactivation mechanism by prodomain proteins derived from myostatin-precursor, a first mid-sized α-helical myostatin-inhibitory peptide (23-mer) was identified from the mouse sequence. The detailed SAR study based on this peptide afforded the structural requirements for effective inhibition. The subsequent computer simulation proposed the docking mode at the activin type I receptor binding site of myostatin. The resulting development of potent inhibitors suggested the existence of a more appropriate binding mode linked to their β-sheet forming properties, suggesting that further investigations might be needed.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
42
|
Talbert EE, Guttridge DC. Emerging signaling mediators in the anorexia-cachexia syndrome of cancer. Trends Cancer 2022; 8:397-403. [PMID: 35190301 PMCID: PMC9035074 DOI: 10.1016/j.trecan.2022.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
The cachexia syndrome in cancer is characterized by weight loss resulting from the combination of anorexia and atrophy of adipose and skeletal muscle. For decades, inflammatory circulatory factors have been identified to regulate wasting, but inhibitors of these factors have not yielded the same clinical benefit as in animal models. Therefore, additional mediators of cachexia likely regulate this syndrome, and such factors might be more suitable for targeted intervention. We highlight several anorexia-cachexia signaling mediators, including activin A, myostatin, GDF15, and lipocalin-2. We discuss current evidence that these factors associate with cachexia in cancer patients, and summarize translational efforts including essential early-phase clinical trials. We conclude with thoughts on targeted and personalized approaches for future anti-cachexia treatments.
Collapse
Affiliation(s)
- Erin E Talbert
- Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University Iowa, Iowa City, IA 52242, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, and the Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
43
|
Papadopetraki A, Maridaki M, Zagouri F, Dimopoulos MA, Koutsilieris M, Philippou A. Physical Exercise Restrains Cancer Progression through Muscle-Derived Factors. Cancers (Basel) 2022; 14:cancers14081892. [PMID: 35454797 PMCID: PMC9024747 DOI: 10.3390/cancers14081892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The benefits of physical exercise against cancer onset and progression, as well as the adverse effects of physical inactivity have changed the way that we utilize exercise for cancer patients. Nevertheless, although guidelines of various scientific societies and organizations propose exercise as a complementary intervention during cancer therapies, the exact cellular and molecular mechanisms by which exercise acts against cancer have not yet been elucidated. In the present review, we analyze the factors which either are secreted from skeletal muscle or are regulated by exercise and can restrain cancer evolution. We also describe the exercise-induced factors that counteract severe side effects of cancer treatment, as well as the ways that muscle-derived factors are delivered to the target cells. Abstract A growing body of in vitro and in vivo studies suggests that physical activity offers important benefits against cancer, in terms of both prevention and treatment. However, the exact mechanisms implicated in the anticancer effects of exercise remain to be further elucidated. Muscle-secreted factors in response to contraction have been proposed to mediate the physical exercise-induced beneficial effects and be responsible for the inter-tissue communications. Specifically, myokines and microRNAs (miRNAs) constitute the most studied components of the skeletal muscle secretome that appear to affect the malignancy, either directly by possessing antioncogenic properties, or indirectly by mobilizing the antitumor immune responses. Moreover, some of these factors are capable of mitigating serious, disease-associated adverse effects that deteriorate patients’ quality of life and prognosis. The present review summarizes the myokines and miRNAs that may have potent anticancer properties and the expression of which is induced by physical exercise, while the mechanisms of secretion and intercellular transportation of these factors are also discussed.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece;
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (M.-A.D.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
- Correspondence: ; Tel./Fax: +30-210-7462690
| |
Collapse
|
44
|
Takayama K, Hitachi K, Okamoto H, Saitoh M, Odagiri M, Ohfusa R, Shimada T, Taguchi A, Taniguchi A, Tsuchida K, Hayashi Y. Development of Myostatin Inhibitory d-Peptides to Enhance the Potency, Increasing Skeletal Muscle Mass in Mice. ACS Med Chem Lett 2022; 13:492-498. [PMID: 35300091 PMCID: PMC8919388 DOI: 10.1021/acsmedchemlett.1c00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Myostatin is a key negative regulator of skeletal muscle growth, and myostatin inhibitors are attractive tools for the treatment of muscular atrophy. Previously, we reported a series of 14-29-mer peptide myostatin inhibitors, including a potent derivative, MIPE-1686, a 16-mer N-terminal-free l-peptide with three unnatural amino acids and a propensity to form β-sheets. However, the in vivo biological stability of MIPE-1686 is a concern for its development as a drug. In the present study, to develop a more stable myostatin inhibitory d-peptide (MID), we synthesized various retro-inverso versions of a 16-mer peptide. Among these, an arginine-containing derivative, MID-35, shows a potent and equivalent in vitro myostatin inhibitory activity equivalent to that of MIPE-1686 and considerable stability against biodegradation. The in vivo potency of MID-35 to increase the tibialis anterior muscle mass in mice is significantly enhanced over that of MIPE-1686, and MID-35 can serve as a new entity for the prolonged inactivation of myostatin in skeletal muscle.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideyuki Okamoto
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mariko Saitoh
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Miki Odagiri
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Rina Ohfusa
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Shimada
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
45
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Singh SK, Singh R. Cytokines and Chemokines in Cancer Cachexia and Its Long-Term Impact on COVID-19. Cells 2022; 11:cells11030579. [PMID: 35159388 PMCID: PMC8834385 DOI: 10.3390/cells11030579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cachexia remains a serious public health concern worldwide, particularly as cancer rates rise. Treatment is endangered, and survival is reduced, because this illness is commonly misdiagnosed and undertreated. Although weight loss is the most evident sign of cachexia, there are other early metabolic and inflammatory changes that occur before the most obvious symptoms appear. Cachexia-related inflammation is induced by a combination of factors, one of which is the release of inflammation-promoting chemicals by the tumor. Today, more scientists are beginning to believe that the development of SARS-CoV-2 (COVID-19) related cachexia is similar to cancer-related cachexia. It is worth noting that patients infected with COVID-19 have a significant inflammatory response and can develop cachexia. These correlations provide feasible reasons for the variance in the occurrence and severity of cachexia in human malignancies, therefore, specific therapeutic options for these individuals must be addressed based on disease types. In this review, we highlighted the role of key chemokines, cytokines, and clinical management in relation to cancer cachexia and its long-term impact on COVID-19 patients.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-6661; Fax: +1-404-752-1179
| |
Collapse
|
47
|
Brown LR, Laird BJA, Wigmore SJ, Skipworth RJE. Understanding Cancer Cachexia and Its Implications in Upper Gastrointestinal Cancers. Curr Treat Options Oncol 2022; 23:1732-1747. [PMID: 36269458 PMCID: PMC9768000 DOI: 10.1007/s11864-022-01028-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Considerable advances in the investigation and management of oesophagogastric cancer have occurred over the last few decades. While the historically dismal prognosis associated with these diseases has improved, outcomes remain very poor. Cancer cachexia is an often neglected, yet critical, factor for this patient group. There is a persuasive argument that a lack of assessment and treatment of cachexia has limited progress in oesophagogastric cancer care. In the curative setting, the stage of the host (based on factors such as body composition, function, and inflammatory status), alongside tumour stage, has the potential to influence treatment efficacy. Phenotypical features of cachexia may decrease the survival benefit of (peri-operative) chemoradiotherapy, immunotherapy, or surgical resection in patients with potentially curative malignancy. Most patients with oesophagogastric cancer unfortunately present with disease which is not amenable, or is unlikely to respond, to these treatments. In the palliative setting, host factors can similarly impair results from systemic anti-cancer therapies, cause adverse symptoms, and reduce quality of life. To optimise treatment pathways and enhance patient outcomes, we must utilise this information during clinical decision-making. As our understanding of the genesis of cancer cachexia improves and more therapeutic options, ranging from basic (e.g. exercise and nutrition) to targeted (e.g. anti-IL1 α and anti-GDF-15), become available, there can be grounds for optimism. Cachexia can change from a hitherto neglected condition to an integral part of the oesophagogastric cancer treatment pathway.
Collapse
Affiliation(s)
- Leo R. Brown
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland EH16 4SA UK
| | - Barry J. A. Laird
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, Scotland EH4 2XU UK ,St Columba’s Hospice, Edinburgh, Scotland EH5 3RW UK
| | - Stephen J. Wigmore
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland EH16 4SA UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland EH16 4SA UK
| |
Collapse
|
48
|
Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenter Enteral Nutr 2021; 45:16-25. [PMID: 34897740 DOI: 10.1002/jpen.2287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Cancer cachexia, or progressive weight loss, often despite adequate nutrition contributes greatly to cancer morbidity and mortality. Cachexia is metabolically distinct from starvation or protein malnutrition, although many patients with cancer and cachexia exhibit lowered appetite and food consumption. Tumors affect neural mechanisms that regulate appetite and energy expenditure, while promoting wasting of peripheral tissues via catabolism of cardiac and skeletal muscle, adipose, and bone. These multimodal actions of tumors on the host suggest a need for multimodal interventions. However, multiple recent consensus guidelines for management of cancer cachexia differ in treatment recommendations, highlighting the lack of effective, available therapies. Challenges to defining appropriate nutrition or other interventions for cancer cachexia include lack of consensus on definitions, low strength of evidence from clinical trials, and a scarcity of robust, rigorous, and mechanistic studies. However, efforts to diagnose, stage, and monitor cachexia are increasing along with clinical trial activity. Furthermore, preclinical models for cancer cachexia are growing more sophisticated, encompassing a greater number of tumor types in organ-appropriate contexts and for metastatic disease to model the clinical condition more accurately. It is expected that continued growth, investment, and coordination of research in this topic will ultimately yield robust biomarkers, clinically useful classification and staging algorithms, targetable pathways, pivotal clinical trials, and ultimately, cures. Here, we provide an overview of the clinical and scientific knowledge and its limitations around cancer cachexia.
Collapse
Affiliation(s)
- Omnia U Gaafer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A Zimmers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
49
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
50
|
Barrett D, Bilic S, Chyung Y, Cote SM, Iarrobino R, Kacena K, Kalra A, Long K, Nomikos G, Place A, Still JG, Vrishabhendra L. A Randomized Phase 1 Safety, Pharmacokinetic and Pharmacodynamic Study of the Novel Myostatin Inhibitor Apitegromab (SRK-015): A Potential Treatment for Spinal Muscular Atrophy. Adv Ther 2021; 38:3203-3222. [PMID: 33963971 PMCID: PMC8189951 DOI: 10.1007/s12325-021-01757-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Introduction Apitegromab (SRK-015) is an anti-promyostatin monoclonal antibody under development to improve motor function in patients with spinal muscular atrophy, a rare neuromuscular disease. This phase 1 double-blind, placebo-controlled study assessed safety, pharmacokinetic parameters, pharmacodynamics (serum latent myostatin), and immunogenicity of single and multiple ascending doses of apitegromab in healthy adult subjects. Methods Subjects were administered single intravenous ascending doses of apitegromab of 1, 3, 10, 20, 30 mg/kg or placebo, and multiple intravenous ascending doses of apitegromab of 10, 20, 30 mg/kg or placebo. Results Following single ascending doses, the pharmacokinetic parameters of apitegromab appeared to be similar across all dose groups, following a biphasic pattern of decline in the concentration–time curve. The mean apparent terminal t1/2 after single intravenous doses of apitegromab ranged from 24 to 31 days across dose groups. Dose-related increases were observed in Cmax following multiple ascending doses. Single and multiple apitegromab doses resulted in dose-dependent and sustained increases in serum latent myostatin, indicating robust target engagement. Apitegromab was safe and well tolerated, on the basis of the adverse event (AE) profile with no clinically meaningful changes in baseline vital signs, electrocardiograms, or clinical laboratory parameters and no anti-drug antibody formation. Conclusion These results support continued investigation of apitegromab for the treatment of patients with milder forms (type 2 and 3) of spinal muscular atrophy.
Collapse
|