1
|
Rahbar Saadat Y, Abbasi A, Hejazian SS, Hekmatshoar Y, Ardalan M, Farnood F, Zununi Vahed S. Combating chronic kidney disease-associated cachexia: A literature review of recent therapeutic approaches. BMC Nephrol 2025; 26:133. [PMID: 40069669 PMCID: PMC11895341 DOI: 10.1186/s12882-025-04057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
In 2008, the Society on Sarcopenia, Cachexia, and Wasting Disorders introduced a generic definition for all types of cachexia: "a complex metabolic syndrome associated with the underlying illness characterized by a loss of muscle, with or without fat loss". It is well-known that the presence of inflammatory burden in end-stage renal disease (ESRD) patients may lead to the evolution of cachexia. Since the etiology of cachexia in chronic kidney disease (CKD) is multifactorial, thus the successful treatment must involve several concomitant measures (nutritional interventions, appetite stimulants, and anti-inflammatory pharmacologic agents) to provide integrated effective therapeutic modalities to combat causative factors and alleviate the outcomes of patients. Given the high mortality rate associated with cachexia, developing new therapeutic modalities are prerequisite for ameliorating patients with CKD worldwide. The present review aims to discuss some therapeutic strategies and provide an update on advances in nutritional approaches to counteract cachexia.
Collapse
Affiliation(s)
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hekmatshoar
- Medical Biology Department, School of Medicine, Altinbas University, Istanbul, Türkiye
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
2
|
Fonseca ID, Fabbri LE, Moraes L, Coelho DB, Dos Santos FC, Rosse I. Pleiotropic effects on Sarcopenia subphenotypes point to potential molecular markers for the disease. Arch Gerontol Geriatr 2024; 127:105553. [PMID: 38970884 DOI: 10.1016/j.archger.2024.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/10/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Sarcopenia is a progressive age-related muscle disease characterized by low muscle strength, quantity and quality, and low physical performance. The clinical overlap between these subphenotypes (reduction in muscle strength, quantity and quality, and physical performance) was evidenced, but the genetic overlap is still poorly investigated. Herein, we investigated whether there is a genetic overlap amongst sarcopenia subphenotypes in the search for more effective molecular markers for this disease. For that, a Bioinformatics approach was used to identify and characterize pleiotropic effects at the genome, loci and gene levels using Genome-wide association study results. As a result, a high genetic correlation was identified between gait speed and muscle strength (rG=0.5358, p=3.39 × 10-8). Using a Pleiotropy-informed conditional and conjunctional false discovery rate method we identified two pleiotropic loci for muscle strength and gait speed, one of them was nearby the gene PHACTR1. Moreover, 11 pleiotropic loci and 25 genes were identified for muscle mass and muscle strength. Lastly, using a gene-based GWAS approach three candidate genes were identified in the overlap of the three Sarcopenia subphenotypes: FTO, RPS10 and CALCR. The current study provides evidence of genetic overlap and pleiotropy among sarcopenia subphenotypes and highlights novel candidate genes and molecular markers associated with the risk of sarcopenia.
Collapse
Affiliation(s)
- Isabela D Fonseca
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil; Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro Ouro Preto, MG Brazil
| | - Luiz Eduardo Fabbri
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Lauro Moraes
- Laboratório Multiusuário de Bioinformática, Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil
| | - Daniel B Coelho
- Laboratório de Fisiologia do Exercício da Escola de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil
| | - Fernanda C Dos Santos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON Canada
| | - Izinara Rosse
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil; Laboratório Multiusuário de Bioinformática, Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil; Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro Ouro Preto, MG Brazil.
| |
Collapse
|
3
|
Lord SO, Dawson PW, Chunthorng-Orn J, Ng J, Baehr LM, Hughes DC, Sridhar P, Knowles T, Bodine SC, Lai YC. Uncovering the mechanisms of MuRF1-induced ubiquitylation and revealing similarities with MuRF2 and MuRF3. Biochem Biophys Rep 2024; 37:101636. [PMID: 38283190 PMCID: PMC10818185 DOI: 10.1016/j.bbrep.2023.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
MuRF1 (Muscle-specific RING finger protein 1; gene name TRIM63) is a ubiquitin E3 ligase, associated with the progression of muscle atrophy. As a RING (Really Interesting New Gene) type E3 ligase, its unique activity of ubiquitylation is driven by a specific interaction with a UBE2 (ubiquitin conjugating enzyme). Our understanding of MuRF1 function remains unclear as candidate UBE2s have not been fully elucidated. In the present study, we screened human ubiquitin dependent UBE2s in vitro and found that MuRF1 engages in ubiquitylation with UBE2D, UBE2E, UBE2N/V families and UBE2W. MuRF1 can cause mono-ubiquitylation, K48- and K63-linked polyubiquitin chains in a UBE2 dependent manner. Moreover, we identified a two-step UBE2 dependent mechanism whereby MuRF1 is monoubiquitylated by UBE2W which acts as an anchor for UBE2N/V to generate polyubiquitin chains. With the in vitro ubiquitylation assay, we also found that MuRF2 and MuRF3 not only share the same UBE2 partners as MuRF1 but can also directly ubiquitylate the same substrates: Titin (A168-A170), Desmin, and MYLPF (Myosin Light Chain, Phosphorylatable, Fast Skeletal Muscle; also called Myosin Light Regulatory Chain 2). In summary, our work presents new insights into the mechanisms that underpin MuRF1 activity and reveals overlap in MuRF-induced ubiquitylation which could explain their partial redundancy in vivo.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Peter W.J. Dawson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | | | - Jimi Ng
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Timothy Knowles
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Nishikawa H, Kim SK, Asai A. Body Composition in Chronic Liver Disease. Int J Mol Sci 2024; 25:964. [PMID: 38256036 PMCID: PMC10815828 DOI: 10.3390/ijms25020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Body composition has recently been attracting people's attention, not only from a cosmetic standpoint but also from the perspective of health and longevity. The body is classified into three components: fat, bone, and lean soft tissue, and it is common to see an increase in body fat and a decrease in total body muscle mass with aging. Aging-related loss of muscle mass and muscle function is referred to as primary sarcopenia, while sarcopenia caused by disease-specific conditions is referred to as secondary sarcopenia. On the other hand, the liver-muscle axis has been attracting attention in recent years, and it has become clear that the liver and the skeletal muscles interact with each other. In particular, patients with cirrhosis are prone to secondary sarcopenia due to protein-energy malnutrition, which is a characteristic pathophysiology of the disease, suggesting the importance of the organ-organ network. In this review, we would like to outline the latest findings in this field, with a focus on body composition in liver diseases such as liver cirrhosis, fatty liver disease, alcoholic liver disease, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-8501, Hyogo, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| |
Collapse
|
5
|
Zhu X, Hao J, Zhang H, Chi M, Wang Y, Huang J, Xu R, Xincai Z, Xin B, Sun X, Zhang J, Zhou S, Cheng D, Yuan T, Ding J, Zheng S, Guo C, Yang Q. Oncometabolite D-2-hydroxyglutarate-dependent metabolic reprogramming induces skeletal muscle atrophy during cancer cachexia. Commun Biol 2023; 6:977. [PMID: 37741882 PMCID: PMC10518016 DOI: 10.1038/s42003-023-05366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Cancer cachexia is characterized by weight loss and skeletal muscle wasting. Based on the up-regulation of catabolism and down-regulation of anabolism, here we showed genetic mutation-mediated metabolic reprogramming in the progression of cancer cachexia by screening for metabolites and investigating their direct effect on muscle atrophy. Treatment with 93 μM D-2-hydroxyglutarate (D2HG) resulted in reduced myotube width and increased expression of E3 ubiquitin ligases. Isocitrate Dehydrogenase 1 (IDH1) mutant patients had higher D2HG than non-mutant patients. In the in vivo murine cancer cachexia model, mutant IDH1 in CT26 cancer cells accelerated cachexia progression and worsened overall survival. Transcriptomics and metabolomics revealed a distinct D2HG-induced metabolic imbalance. Treatment with the IDH1 inhibitor ivosidenib delayed the progression of cancer cachexia in murine GL261 glioma model and CT26 colorectal carcinoma models. These data demonstrate the contribution of IDH1 mutation mediated D2HG accumulation to the progression of cancer cachexia and highlight the individualized treatment of IDH1 mutation associated cancer cachexia.
Collapse
Affiliation(s)
- Xinting Zhu
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Juan Hao
- Department of Endocrinology, Shanghai Traditional Chinese Medicine, Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Hong Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaxian Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jinlu Huang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rong Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Xincai
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bo Xin
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jianping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shumin Zhou
- Institution of microsurgery on extremities, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Dongdong Cheng
- Department of Bone Oncology, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of MedicineShanghai Shanghai, Shanghai, P. R. China
| | - Ting Yuan
- Department of Bone Oncology, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of MedicineShanghai Shanghai, Shanghai, P. R. China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shuier Zheng
- Department of Oncology, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
6
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
7
|
Cao H, Zhang J, Sun Z, Wu J, Hao C, Wang W. Frailty in kidney transplant candidates and recipients: pathogenesis and intervention strategies. Chin Med J (Engl) 2023; 136:1026-1036. [PMID: 37052144 PMCID: PMC10228484 DOI: 10.1097/cm9.0000000000002312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 04/14/2023] Open
Abstract
ABSTRACT With the rapid aging of the global population posing a serious problem, frailty, a non-specific state that reflects physiological senescence rather than aging in time, has become more widely addressed by researchers in various medical fields. A high prevalence of frailty is found among kidney transplant (KT) candidates and recipients. Therefore, their frailty has become a research hotspot in the field of transplantation. However, current studies mainly focus on the cross-sectional survey of the incidence of frailty among KT candidates and recipients and the relationship between frailty and transplantation. Research on the pathogenesis and intervention is scattered, and relevant review literature is scarce. Exploring the pathogenesis of frailty in KT candidates and recipients and determining effective intervention measures may reduce waiting list mortality and improve the long-term quality of life of KT recipients. Therefore, this review explains the pathogenesis and intervention measures for frailty in KT candidates and recipients to provide a reference for the formulation of effective intervention strategies.
Collapse
Affiliation(s)
- Huawei Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiandong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changzhen Hao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
8
|
Koppe L, Mak RH. Is There a Need to "Modernize" and "Simplify" the Diagnostic Criteria of Protein-Energy Wasting? Semin Nephrol 2023; 43:151403. [PMID: 37541069 DOI: 10.1016/j.semnephrol.2023.151403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Protein energy wasting(PEW) is a term that most nephrologists used to define nutritional disorders in patients with acute kidney injury and chronic kidney disease. Although this nomenclature is well implemented in the field of nephrology, the use of other terms such as cachexia or malnutritionin the majority of chronic diseases can induce confusion regarding the definition and interpretation of these terms. There is ample evidence in the literature that the pathways involved in cachexia/malnutrition and PEW are common. However, in kidney diseases, there are pathophysiological conditions such as accumulation of uremic toxins, and the use of dialysis, which may induce a phenotypic specificity justifying the original term PEW. In light of the latest epidemiologic studies, the criteria for PEW used in 2008 probably need to be updated. The objective of this review is to summarize the main mechanisms involved in cachexia/malnutrition and PEW. We discuss the need to modernize and simplify the current definition and diagnostic criteria of PEW. We consider the interest of proposing a specific nomenclature of PEW for children and elderly patients with kidney diseases.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; University Lyon, Cardiovasculaire, Métabolisme, Diabète et Nutrition Laboratory, Institut National des Sciences Appliquées-Lyon, Institut National de la Santé et de la Recherche Médicale U1060, l'Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California San Diego, La Jolla, California
| |
Collapse
|
9
|
Wang K, Liu Q, Tang M, Qi G, Qiu C, Huang Y, Yu W, Wang W, Sun H, Ni X, Shen Y, Fang X. Chronic kidney disease-induced muscle atrophy: Molecular mechanisms and promising therapies. Biochem Pharmacol 2023; 208:115407. [PMID: 36596414 DOI: 10.1016/j.bcp.2022.115407] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Qingyuan Liu
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Mingyu Tang
- Xinglin College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xuejun Ni
- Department of Ultrasound Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xingxing Fang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
10
|
Sinam IS, Chanda D, Thoudam T, Kim MJ, Kim BG, Kang HJ, Lee JY, Baek SH, Kim SY, Shim BJ, Ryu D, Jeon JH, Lee IK. Pyruvate dehydrogenase kinase 4 promotes ubiquitin-proteasome system-dependent muscle atrophy. J Cachexia Sarcopenia Muscle 2022; 13:3122-3136. [PMID: 36259412 PMCID: PMC9745560 DOI: 10.1002/jcsm.13100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle atrophy, leading to muscular dysfunction and weakness, is an adverse outcome of sustained period of glucocorticoids usage. However, the molecular mechanism underlying this detrimental condition is currently unclear. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in skeletal muscle and has been implicated in the pathogenesis of several diseases. The current study was designed to investigated and delineate the role of PDK4 in the context of muscle atrophy, which could be identified as a potential therapeutic avenue to protect against dexamethasone-induced muscle wasting. METHODS The dexamethasone-induced muscle atrophy in C2C12 myotubes was evaluated at the molecular level by expression of key genes and proteins involved in myogenesis, using immunoblotting and qPCR analyses. Muscle dysfunction was studied in vivo in wild-type and PDK4 knockout mice treated with dexamethasone (25 mg/kg body weight, i.p., 10 days). Body weight, grip strength, muscle weight and muscle histology were assessed. The expression of myogenesis markers were analysed using qPCR, immunoblotting and immunoprecipitation. The study was extended to in vitro human skeletal muscle atrophy analysis. RESULTS Knockdown of PDK4 was found to prevent glucocorticoid-induced muscle atrophy and dysfunction in C2C12 myotubes, which was indicated by induction of myogenin (0.3271 ± 0.102 vs 2.163 ± 0.192, ****P < 0.0001) and myosin heavy chain (0.3901 ± 0.047 vs. 0.7222 ± 0.082, **P < 0.01) protein levels and reduction of muscle atrophy F-box (10.77 ± 2.674 vs. 1.518 ± 0.172, **P < 0.01) expression. In dexamethasone-induced muscle atrophy model, mice with genetic ablation of PDK4 revealed increased muscle strength (162.1 ± 22.75 vs. 200.1 ± 37.09 g, ***P < 0.001) and muscle fibres (54.20 ± 11.85% vs. 84.07 ± 28.41%, ****P < 0.0001). To explore the mechanism, we performed coimmunoprecipitation and liquid chromatography-mass spectrometry analysis and found that myogenin is novel substrate of PDK4. PDK4 phosphorylates myogenin at S43/T57 amino acid residues, which facilitates the recruitment of muscle atrophy F-box to myogenin and leads to its subsequent ubiquitination and degradation. Finally, overexpression of non-phosphorylatable myogenin mutant using intramuscular injection prevented dexamethasone-induced muscle atrophy and preserved muscle fibres. CONCLUSIONS We have demonstrated that PDK4 mediates dexamethasone-induced skeletal muscle atrophy. Mechanistically, PDK4 phosphorylates and degrades myogenin via recruitment of E3 ubiquitin ligase, muscle atrophy F-box. Rescue of muscle regeneration by genetic ablation of PDK4 or overexpression of non-phosphorylatable myogenin mutant indicates PDK4 as an amenable therapeutic target in muscle atrophy.
Collapse
Affiliation(s)
- Ibotombi Singh Sinam
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyeon-Ji Kang
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Yi Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hoon Baek
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin-Yoon Kim
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Bum Jin Shim
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea.,Lead Contact
| |
Collapse
|
11
|
Stalmach A, Boehm I, Fernandes M, Rutter A, Skipworth RJE, Husi H. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions. Molecules 2022; 27:5514. [PMID: 36080280 PMCID: PMC9457532 DOI: 10.3390/molecules27175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.
Collapse
Affiliation(s)
- Angelique Stalmach
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Ines Boehm
- Edinburgh Cancer Research UK Tissue Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Alison Rutter
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Holger Husi
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
12
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
13
|
Stott Bond NL, Dréau D, Marriott I, Bennett JM, Turner MJ, Arthur ST, Marino JS. Low-Dose Metformin as a Monotherapy Does Not Reduce Non-Small-Cell Lung Cancer Tumor Burden in Mice. Biomedicines 2021; 9:biomedicines9111685. [PMID: 34829914 PMCID: PMC8615566 DOI: 10.3390/biomedicines9111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) makes up 80-85% of lung cancer diagnoses. Lung cancer patients undergo surgical procedures, chemotherapy, and/or radiation. Chemotherapy and radiation can induce deleterious systemic side effects, particularly within skeletal muscle. To determine whether metformin reduces NSCLC tumor burden while maintaining skeletal muscle health, C57BL/6J mice were injected with Lewis lung cancer (LL/2), containing a bioluminescent reporter for in vivo tracking, into the left lung. Control and metformin (250 mg/kg) groups received treatments twice weekly. Skeletal muscle was analyzed for changes in genes and proteins related to inflammation, muscle mass, and metabolism. The LL/2 model effectively mimics lung cancer growth and tumor burden. The in vivo data indicate that metformin as administered was not associated with significant improvement in tumor burden in this immunocompetent NSCLC model. Additionally, metformin was not associated with significant changes in key tumor cell division and inflammation markers, or improved skeletal muscle health. Metformin treatment, while exhibiting anti-neoplastic characteristics in many cancers, appears not to be an appropriate monotherapy for NSCLC tumor growth in vivo. Future studies should pursue co-treatment modalities, with metformin as a potentially supportive drug rather than a monotherapy to mitigate cancer progression.
Collapse
Affiliation(s)
- Nicole L. Stott Bond
- Distance Education, Technology and Integration, University of North Georgia, Dahlonega, GA 30597, USA;
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (D.D.); (I.M.)
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (D.D.); (I.M.)
| | - Jeanette M. Bennett
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| | - Michael J. Turner
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
- Correspondence:
| |
Collapse
|
14
|
Souweine JS, Gouzi F, Badia É, Pomies P, Garrigue V, Morena M, Hayot M, Mercier J, Ayoub B, Quintrec ML, Raynaud F, Cristol JP. Skeletal Muscle Phenotype in Patients Undergoing Long-Term Hemodialysis Awaiting Kidney Transplantation. Clin J Am Soc Nephrol 2021; 16:1676-1685. [PMID: 34750160 PMCID: PMC8729424 DOI: 10.2215/cjn.02390221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Age and comorbidity-related sarcopenia represent a main cause of muscle dysfunction in patients on long-term hemodialysis. However, recent findings suggest muscle abnormalities that are not associated with sarcopenia. The aim of this study was to isolate functional and cellular muscle abnormalities independently of other major confounding factors, including malnutrition, age, comorbidity, or sedentary lifestyle, which are common in patients on maintenance hemodialysis. To overcome these confounding factors, alterations in skeletal muscle were analyzed in highly selected patients on long-term hemodialysis undergoing kidney transplantation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In total, 22 patients on long-term hemodialysis scheduled for kidney transplantation with few comorbidities, but with a long-term uremic milieu exposure, and 22 age, sex, and physical activity level frequency-matched control participants were recruited. We compared biochemical, functional, and molecular characteristics of the skeletal muscle using maximal voluntary force and endurance of the quadriceps, 6-minute walking test, and muscle biopsy of vastus lateralis. For statistical analysis, mean comparison and multiple regression tests were used. RESULTS In patients on long-term hemodialysis, muscle endurance was lower, whereas maximal voluntary force was not significantly different. We observed a transition from type I (oxidative) to type II (glycolytic) muscle fibers, and an alteration of mitochondrial structure (swelling) without changes in DNA content, genome replication (peroxisome proliferator activator receptor γ coactivator-1α and mitochondrial transcription factor A), regulation of fusion (mitofusin and optic atrophy 1), or fission (dynamin-related protein 1). Notably, there were autophagosome structures containing glycogen along with mitochondrial debris, with a higher expression of light chain 3 (LC3) protein, indicating phagophore formation. This was associated with a greater conversion of LC3-I to LC3-II and the expression of Gabaralp1 and Bnip3l genes involved in mitophagy. CONCLUSIONS In this highly selected long-term hemodialysis population, a low oxidative phenotype could be defined by a poor endurance, a fiber-type switch, and an alteration of mitochondria structure, without evidence of sarcopenia. This phenotype could be related to uremia through the activation of autophagy/mitophagy. CLINICAL TRIAL REGISTRATION NUMBERS NCT02794142 and NCT02040363.
Collapse
Affiliation(s)
- Jean-Sébastien Souweine
- Department of Biochemistry, University Hospital of Montpellier and Department of Biochemistry and Hormonology, Montpellier, France,PhyMedExp, University of Montpellier, INSERM, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, Montpellier, France,Department of Physiology, University Hospital of Montpellier, Montpellier, France
| | - Éric Badia
- Department of Biochemistry, University Hospital of Montpellier and Department of Biochemistry and Hormonology, Montpellier, France,PhyMedExp, University of Montpellier, INSERM, Montpellier, France
| | - Pascal Pomies
- Department of Physiology, University Hospital of Montpellier, Montpellier, France
| | - Valérie Garrigue
- Department of Nephrology, University Hospital of Montpellier, Montpellier, France
| | - Marion Morena
- Department of Biochemistry, University Hospital of Montpellier and Department of Biochemistry and Hormonology, Montpellier, France,PhyMedExp, University of Montpellier, INSERM, Montpellier, France
| | - Maurice Hayot
- PhyMedExp, University of Montpellier, INSERM, Montpellier, France,Department of Physiology, University Hospital of Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM, Montpellier, France,Department of Physiology, University Hospital of Montpellier, Montpellier, France
| | - Bronia Ayoub
- PhyMedExp, University of Montpellier, INSERM, Montpellier, France,Department of Physiology, University Hospital of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Department of Nephrology, University Hospital of Montpellier, Montpellier, France
| | - Fabrice Raynaud
- Department of Biochemistry, University Hospital of Montpellier and Department of Biochemistry and Hormonology, Montpellier, France,PhyMedExp, University of Montpellier, INSERM, Montpellier, France
| | - Jean-Paul Cristol
- Department of Biochemistry, University Hospital of Montpellier and Department of Biochemistry and Hormonology, Montpellier, France,PhyMedExp, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
15
|
Souweine JS, Pasquier G, Kuster N, Rodriguez A, Patrier L, Morena M, Badia E, Raynaud F, Chalabi L, Raynal N, Ohresser I, Hayot M, Mercier J, Quintrec ML, Gouzi F, Cristol JP. Dynapaenia and sarcopaenia in chronic haemodialysis patients: do muscle weakness and atrophy similarly influence poor outcome? Nephrol Dial Transplant 2021; 36:1908-1918. [PMID: 33306128 DOI: 10.1093/ndt/gfaa353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sarcopaenia, defined as a decline in both muscle mass and function, has been recognized as a major determinant of poor outcome in haemodialysis (HD) patients. It is generally assumed that sarcopaenia is driven by muscle atrophy related to protein-energy wasting. However, dynapaenia, defined as weakness without atrophy, has been characterized by a different disease phenotype from sarcopaenia. The aim of this study was to compare the characteristics and prognosis of sarcopaenic and dynapaenic patients among a prospective cohort of chronic HD (CHD) patients. METHODS Two hundred and thirty-two CHD patients were enrolled from January to July 2016 and then followed prospectively until December 2018. At inclusion, weakness and atrophy were, respectively, evaluated by maximal voluntary force (MVF) and creatinine index (CI). Sarcopaenia was defined as the association of weakness and atrophy (MVF and CI below the median) while dynapaenia was defined as weakness not related to atrophy (MVF below the median, and CI above the median). RESULTS From a total of 187 prevalent CHD patients [65% of men, age 65.3 (49.7-82.0) years], 44 died during the follow-up period of 23.7 (12.4-34.9) months. Sarcopaenia and dynapaenia were observed in 33.7 and 16% of the patients, respectively. Compared with patients with sarcopaenia, patients with dynapaenia were younger and with a lower Charlson score. In contrast, mortality rate was similar in both groups (38 and 27%, respectively). After adjustment for age, sex, lean tissue index, serum albumin, high-sensitivity C-reactive protein (hs-CRP), haemoglobin (Hb), normalized protein catabolic rate (nPCR), dialysis vintage and Charlson score, only patients with dynapaenia were at increased risk of death [hazard ratio (HR) = 2.99, confidence interval 1.18-7.61; P = 0.02]. CONCLUSIONS Screening for muscle functionality is highly warranted to identify patients with muscle functional impairment without muscle atrophy. In contrast to sarcopaenia, dynapaenia should appear as a phenotype induced by uraemic milieu, characterized by young patients with low Charlson score and poor prognosis outcome independently of serum albumin, hs-CRP, Hb, nPCR and dialysis vintage.
Collapse
Affiliation(s)
- Jean-Sébastien Souweine
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Grégoire Pasquier
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Nils Kuster
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | - Marion Morena
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Eric Badia
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | | | - Maurice Hayot
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Department of Nephrology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
16
|
Nishikawa H, Goto M, Fukunishi S, Asai A, Nishiguchi S, Higuchi K. Cancer Cachexia: Its Mechanism and Clinical Significance. Int J Mol Sci 2021; 22:8491. [PMID: 34445197 PMCID: PMC8395185 DOI: 10.3390/ijms22168491] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
The term "cachexia" is derived from the Greek words kakos (bad) and hexis (habit). Cachexia is a malnutrition associated with chronic diseases such as cancer, chronic heart failure, chronic renal failure, and autoimmune diseases, and is characterized by decreased skeletal muscle mass. Cancer cachexia is quite common in patients with advanced cancer. Weight loss is also a characteristic symptom of cancer cachexia, along with decreased skeletal muscle mass. As nutritional supplementation alone cannot improve cachexia, cytokines and tumor-derived substances have been attracting attention as its relevant factors. Cancer cachexia can be also associated with reduced chemotherapeutic effects, increased side effects and treatment interruptions, and even poorer survival. In 2011, a consensus definition of cachexia has been proposed, and the number of relevant research reports has increased significantly. However, the pathogenesis of cachexia is not fully understood, and there are currently few regulatory-approved standard treatments for cachexia. The main reason for this is that multiple etiologies are involved in the development of cachexia. In this review, we will outline the current status of cachexia, the mechanisms of which have been elucidated in recent years, especially from the perspective of advanced cancer.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
- The Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | - Masahiro Goto
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
| | - Shinya Fukunishi
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
- The Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | - Akira Asai
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
| | | | - Kazuhide Higuchi
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
| |
Collapse
|
17
|
Fujita H, Horie M, Shimizu K, Nagamori E. Microarray profiling of gene expression in C2C12 myotubes trained by electric pulse stimulation. J Biosci Bioeng 2021; 132:417-422. [PMID: 34348874 DOI: 10.1016/j.jbiosc.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Electric pulse-stimulated C2C12 myotubes are gaining interest in the field of muscle physiology and biotechnology because electric pulse stimulation (EPS) enhances sarcomere structure development and active tension generation capability. Recently, we found that termination of EPS results in the rapid loss of active tension generation accompanied by disassembly of the sarcomere structure, which may represent an in vitro muscle atrophy model. To elucidate the molecular mechanism underlying this rapid loss of active tension generation and sarcomere structure disassembly after termination of EPS, we performed transcriptomic analysis using microarray. After termination of EPS, 74 genes were upregulated and 120 genes were downregulated after 30 min; however, atrophy-related genes were not found among these genes. To further assess the effect of EPS on gene expression, we re-applied EPS after its termination for 8 h and searched for genes whose expression was reversed. Four genes were upregulated by termination of EPS and downregulated by the re-application of EPS, whereas two genes were downregulated by termination of EPS and upregulated by the re-application of EPS. Although none of these genes were atrophy- or hypertrophy-related, the results presented in this study will contribute to the understanding of gene expression changes that mediate rapid loss of active tension generation and sarcomere structure disassembly following termination of EPS in C2C12 myotubes.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Eiji Nagamori
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
18
|
Fonseca GWPD, von Haehling S. An overview of anamorelin as a treatment option for cancer-associated anorexia and cachexia. Expert Opin Pharmacother 2021; 22:889-895. [PMID: 33491505 DOI: 10.1080/14656566.2021.1873954] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Cancer cachexia is a complex multifaceted syndrome involving functional impairment, changes in body composition, and nutritional disorders. The treatment of cancer cachexia can be based on these three domains of the syndrome. Phase II and III trials of anamorelin, a ghrelin mimetic agent, have been shown to increase body weight in patients with cancer cachexia, mainly by increasing muscle and fat mass. Anamorelin has been shown to improve anorexia scores. AREAS COVERED This review aims to outline the effect of anamorelin on body composition and functional parameters as well as to discuss the clinical importance of these alterations in patients with cancer cachexia. EXPERT OPINION To date, there is no treatment approved to enhance body composition and functional parameters in patients with cancer cachexia. Anamorelin, the most advanced therapy to treat cachexia, has not yielded convincing results in all aspects of the syndrome. In particular, no effect has been noted on physical function and long-term survival. Along with these essential improvements for future interventions with anamorelin, subsequent studies must address other etiologies of cancer, rather than non-small cell lung cancer, and add complementary therapies, such as exercise training and nutritional interventions, in an attempt to overcome cancer cachexia.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto Da Fonseca
- Cardiac Rehabilitation and Exercise Physiology, Heart Institute (Incor), University of São Paulo Medical School, Av. Dr. Enéas Carvalho De Aguiar, São Paulo, Brazil
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center (UMG), Göttingen, Germany;s German Centre for Cardiovascular Research (DZHK) Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
20
|
Hu R, Wang MQ, Liu LY, You HY, Wu XH, Liu YY, Wang YJ, Lu L, Xiao W, Wei LB. Calycosin inhibited autophagy and oxidative stress in chronic kidney disease skeletal muscle atrophy by regulating AMPK/SKP2/CARM1 signalling pathway. J Cell Mol Med 2020; 24:11084-11099. [PMID: 32910538 PMCID: PMC7576237 DOI: 10.1111/jcmm.15514] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and autophagy are the primary molecular mechanisms involved in muscle atrophy. Calycosin, a major component of Radix astragali, exerts anti‐inflammatory, anti‐oxidative stress and anti‐autophagy effects. We investigated the effects and mechanisms of calycosin on skeletal muscle atrophy in vivo and in vitro. 5/6 nephrectomy (5/6 Nx) rats were used as a model of CKD. We evaluated bodyweight and levels of serum creatinine (SCr), blood urea nitrogen (BUN) and serum albumin (Alb). H&E staining, cell apoptosis, oxidative stress biomarkers, autophagosome and LC3A/B levels were performed and evaluated in skeletal muscle of CKD rat. Calycosin treatment improved bodyweight and renal function, alleviated muscle atrophy (decreased the levels of MuRF1 and MAFbx), increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH‐Px) activity and reduced malondialdehyde (MDA) levels in skeletal muscle of CKD rats. Importantly, calycosin reduced autophagosome formation, down‐regulated the expression of LC3A/B and ATG7 through inhibition of AMPK and FOXO3a, and increased SKP2, which resulted in decreased expression of CARM1, H3R17me2a. Similar results were observed in C2C12 cells treated with TNF‐α and calycosin. Our findings showed that calycosin inhibited oxidative stress and autophagy in CKD induced skeletal muscle atrophy and in TNF‐α‐induced C2C12 myotube atrophy, partially by regulating the AMPK/SKP2/CARM1 signalling pathway.
Collapse
Affiliation(s)
- Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ming-Qing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ling-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hai-Yan You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Hui Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yang-Yang Liu
- Zhongshan Huangpu People's Hospital, Zhongshan, China
| | - Yan-Jing Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lian-Bo Wei
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
21
|
Aniort J, Freist M, Piraud A, Philipponnet C, Hadj Abdelkader M, Garrouste C, Gentes E, Pereira B, Heng AE. Circulating 20S proteasome for assessing protein energy wasting syndrome in hemodialysis patients. PLoS One 2020; 15:e0236948. [PMID: 32735636 PMCID: PMC7394422 DOI: 10.1371/journal.pone.0236948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/16/2020] [Indexed: 12/02/2022] Open
Abstract
Protein energy wasting (PEW) including muscle atrophy is a common complication in chronic hemodialysis patients. The ubiquitin proteasome system (UPS) is the main proteolytic system causing muscle atrophy in chronic kidney disease and proteasome 20S is the catalytic component of the UPS. Circulating proteasome 20S (c20S proteasome) is present in the blood and its level is related to disease severity and prognosis in several disorders. We hypothesized that c20S proteasome could be related with muscle mass, other PEW criteria and their evolution in hemodialysis patients. Stable hemodialysis patients treated at our center for more than 3 months were followed over 2 years. C20S proteasome assay was performed at baseline. Biological and clinical data were collected, muscle mass was assessed by multi-frequency bio-impedancemetry, and nutritional scores were calculated at baseline, 1 year and 2 years. Hospitalizations and mortality data were collected over the 2 years. Forty-nine patients were included. At baseline, the c20S proteasome level was 0.40[0.26–0.55] μg/ml. Low muscle mass as defined by a lean tissue index (LTI) < 10th in accordance with the International Society of Renal Nutrition and Metabolism guidelines was observed in 36% and PEW in 62%. Increased c20S proteasome levels were related with LTI at baseline (R = 0.43, p = 0.004) and with its 2 year-variation (R = -0.56, p = 0.003). Two-year survival rate was not different between higher and lower c20S proteasome values (78.9 vs 78.4%, p = 0.98 log-rank test). C20S proteasome is not a good marker for assessing nutritional status in hemodialysis patients and predicting patient outcomes.
Collapse
Affiliation(s)
- Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
- INRA, UMR 1019, Human Nutrition Unit (UNH), St Genès Champanelle, France
- * E-mail:
| | - Marine Freist
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
- Nephrology and Dialysis Department, Emile Roux Hospital, Le Puy en Velay, France
| | - Aurélien Piraud
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Carole Philipponnet
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Mohamed Hadj Abdelkader
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Cyril Garrouste
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Elodie Gentes
- Clinical Nutrition Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital of Clermont-Ferrand, Biostatistics unit (DRCI), Clermont-Ferrand, France
| | - Anne-Elisabeth Heng
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
- INRA, UMR 1019, Human Nutrition Unit (UNH), St Genès Champanelle, France
| |
Collapse
|
22
|
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci 2020; 21:ijms21134759. [PMID: 32635462 PMCID: PMC7369702 DOI: 10.3390/ijms21134759] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.
Collapse
Affiliation(s)
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padua, Italy
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
- Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
23
|
Niida Y, Masuda M, Adachi Y, Yoshizawa A, Ohminami H, Mori Y, Ohnishi K, Yamanaka-Okumura H, Uchida T, Nikawa T, Yamamoto H, Miyazaki M, Taketani Y. Reduction of stearoyl-CoA desaturase (SCD) contributes muscle atrophy through the excess endoplasmic reticulum stress in chronic kidney disease. J Clin Biochem Nutr 2020; 67:179-187. [PMID: 33041516 PMCID: PMC7533850 DOI: 10.3164/jcbn.20-24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is associated with mortality and poor prognosis in patients with chronic kidney disease (CKD). However, underlying mechanism by which CKD causes muscle atrophy has not been completely understood. The quality of lipids (lipoquality), which is defined as the functional features of diverse lipid species, has recently been recognized as the pathology of various diseases. In this study, we investigated the roles of the stearoyl-CoA desaturase (SCD), which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, in skeletal muscle on muscle atrophy in CKD model animals. In comparison to control rats, CKD rats decreased the SCD activity and its gene expression in atrophic gastrocnemius muscle. Next, oleic acid blocked the reduction of the thickness of C2C12 myotubes and the increase of the endoplasmic reticulum stress induced by SCD inhibitor. Furthermore, endoplasmic reticulum stress inhibitor ameliorated CKD-induced muscle atrophy (the weakness of grip strength and the decrease of muscle fiber size of gastrocnemius muscle) in mice and the reduction of the thickness of C2C12 myotubes by SCD inhibitor. These results suggest that the repression of SCD activity causes muscle atrophy through excessive endoplasmic reticulum stress in CKD.
Collapse
Affiliation(s)
- Yuki Niida
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Aika Yoshizawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Fukui 915-8586, Japan.,Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
24
|
Hentilä J, Hulmi JJ, Laakkonen EK, Ahtiainen JP, Suominen H, Korhonen MT. Sprint and Strength Training Modulates Autophagy and Proteostasis in Aging Sprinters. Med Sci Sports Exerc 2020; 52:1948-1959. [PMID: 32205677 DOI: 10.1249/mss.0000000000002340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Exercise and aging may modulate muscle protein homeostasis and autophagy, but few studies examine highly trained middle-age or older individuals. This study elucidated the effects of a new long-term training stimulus on markers of muscle autophagy and unfolded protein response (UPR) and on sprint running performance in masters sprinters. METHODS Thirty-two male competitive sprinters (age 40-76 yr) were randomly divided into experimental (EX) and control (CTRL) groups. The EX training program was a combination of heavy and explosive strength and sprint exercises aimed at improving sprint performance. Fifteen and thirteen participants completed the 20-wk intervention period in EX and CTRL, respectively. The latter were told to continue their routine exercises. Key protein markers were analyzed by Western blotting from vastus lateralis (VL) muscle biopsies. The muscle thickness of VL was analyzed by ultrasonography and sprint performance by a 60-m running test. RESULTS EX induced improvement in 60-m sprint performance when compared with controls (time-group, P = 0.003) without changes in VL muscle thickness. Content of lipidated microtubule-associated protein 1A/1B-light chain 3 (LC3-II) increased in EX (P = 0.022), suggesting increased autophagosome content. In addition, an autophagosome clearance marker sequestosome 1 (p62) decreased in EX (P = 0.006). Markers of UPR selectively modulated with decreases (e.g., ATF4, P = 0.003) and increases (e.g., EIF2α, P = 0.019) observed in EX. CONCLUSIONS These findings suggest that a new intensive training stimulus that combines strength training with sprint training may increase muscle autophagosome content in a basal state without any evidence of impaired autophagosome clearance in masters sprinters. Simultaneously, the combined training may have a selective effect on the content of UPR signaling components.
Collapse
Affiliation(s)
- Jaakko Hentilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, FINLAND
| | | | - Eija K Laakkonen
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, FINLAND
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, FINLAND
| | - Harri Suominen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - Marko T Korhonen
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, FINLAND
| |
Collapse
|
25
|
Zhang Y, Wang J, Wang X, Gao T, Tian H, Zhou D, Zhang L, Li G, Wang X. The autophagic-lysosomal and ubiquitin proteasome systems are simultaneously activated in the skeletal muscle of gastric cancer patients with cachexia. Am J Clin Nutr 2020; 111:570-579. [PMID: 31968072 DOI: 10.1093/ajcn/nqz347] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer cachexia is characterized by weight loss, especially ongoing skeletal muscle loss, and is associated with poor patient outcomes. However, the molecular mechanism of skeletal muscle wasting is not fully understood. OBJECTIVES We aimed to investigate muscle fiber morphology and proteolysis system activity changes that may account for cancer cachexia and to relate these changes to patients' clinical phenotypes. METHODS We divided 39 patients with resectable gastric cancer into 4 groups based on the presence of cachexia (weight loss) and/or sarcopenia (low muscularity), including a noncachexia/nonsarcopenia group (N, n = 10), a cachexia/sarcopenia group (CS, n = 13), a cachexia/nonsarcopenia group (C, n = 9), and a noncachexia/sarcopenia group (S, n = 7). Rectus abdominis muscle biopsy specimens were obtained intraoperatively. Muscle fiber size, ultrastructural architecture, and the expression of autophagic-lysosomal system (ALS) and ubiquitin proteasome system (UPS) markers were assayed. RESULTS Mean ± SD muscle fiber cross-sectional areas were significantly decreased in the CS (460 ± 120 μm2) and S groups (480 ± 135 μm2) compared with the N (1615 ± 388 μm2, both P < 0.05) and C groups (1219 ± 302 μm2, both P < 0.05). In the C, S, and CS groups, the muscle exhibited tissue disorganization and autophagosome formation to different degrees. The levels of ALS and UPS markers were significantly increased in the CS, C, and S groups compared with the N group. Alterations in muscle fiber morphology and increased ALS and UPS activity were related to severe muscle loss, but not weight loss. CONCLUSIONS The ALS and UPS are simultaneously activated in cancer cachexia and may play coordinated roles in cachexia-induced muscle loss.
Collapse
Affiliation(s)
- Ying Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Department of Cardiothoracic Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jiwei Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Hao Tian
- Department of General Surgery, Jinling Hospital Affiliated to Southern Medical University, Nanjing, Jiangsu Province, China
| | - Da Zhou
- Department of General Surgery, Jinling Hospital Affiliated to Southern Medical University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Guoli Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinying Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
26
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
27
|
Aniort J, Stella A, Philipponnet C, Poyet A, Polge C, Claustre A, Combaret L, Béchet D, Attaix D, Boisgard S, Filaire M, Rosset E, Burlet-Schiltz O, Heng AE, Taillandier D. Muscle wasting in patients with end-stage renal disease or early-stage lung cancer: common mechanisms at work. J Cachexia Sarcopenia Muscle 2019; 10:323-337. [PMID: 30697967 PMCID: PMC6463476 DOI: 10.1002/jcsm.12376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Loss of muscle mass worsens many diseases such as cancer and renal failure, contributes to the frailty syndrome, and is associated with an increased risk of death. Studies conducted on animal models have revealed the preponderant role of muscle proteolysis and in particular the activation of the ubiquitin proteasome system (UPS). Studies conducted in humans remain scarce, especially within renal deficiency. Whether a shared atrophying programme exists independently of the nature of the disease remains to be established. The aim of this work was to identify common modifications at the transcriptomic level or the proteomic level in atrophying skeletal muscles from cancer and renal failure patients. METHODS Muscle biopsies were performed during scheduled interventions in early-stage (no treatment and no detectable muscle loss) lung cancer (LC), chronic haemodialysis (HD), or healthy (CT) patients (n = 7 per group; 86% male; 69.6 ± 11.4, 67.9 ± 8.6, and 70.2 ± 7.9 years P > 0.9 for the CT, LC, and HD groups, respectively). Gene expression of members of the UPS, autophagy, and apoptotic systems was measured by quantitative real-time PCR. A global analysis of the soluble muscle proteome was conducted by shotgun proteomics for investigating the processes altered. RESULTS We found an increased expression of several UPS and autophagy-related enzymes in both LC and HD patients. The E3 ligases MuRF1 (+56 to 78%, P < 0.01), MAFbx (+68 to 84%, P = 0.02), Hdm2 (+37 to 59%, P = 0.02), and MUSA1/Fbxo30 (+47 to 106%, P = 0.01) and the autophagy-related genes CTPL (+33 to 47%, P = 0.03) and SQSTM1 (+47 to 137%, P < 0.01) were overexpressed. Mass spectrometry identified >1700 proteins, and principal component analysis revealed three differential proteomes that matched to the three groups of patients. Orthogonal partial least square discriminant analysis created a model, which distinguished the muscles of diseased patients (LC or HD) from those of CT subjects. Proteins that most contributed to the model were selected. Functional analysis revealed up to 238 proteins belonging to nine metabolic processes (inflammatory response, proteolysis, cytoskeleton organization, glucose metabolism, muscle contraction, oxidant detoxification, energy metabolism, fatty acid metabolism, and extracellular matrix) involved in and/or altered by the atrophying programme in both LC and HD patients. This was confirmed by a co-expression network analysis. CONCLUSIONS We were able to identify highly similar modifications of several metabolic pathways in patients exhibiting diseases with different aetiologies (early-stage LC vs. long-term renal failure). This strongly suggests that a common atrophying programme exists independently of the disease in human.
Collapse
Affiliation(s)
- Julien Aniort
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, France
| | - Carole Philipponnet
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Anais Poyet
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology Department, Hospital of Roanne, Roanne, France
| | - Cécile Polge
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Agnès Claustre
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Lydie Combaret
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Daniel Béchet
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Didier Attaix
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Stéphane Boisgard
- Orthopedic Surgery Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Filaire
- Thoracic Surgery Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Eugénio Rosset
- Vascular Surgery Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, France
| | - Anne-Elisabeth Heng
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Daniel Taillandier
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| |
Collapse
|