1
|
Baidoo N, Sanger GJ, Belai A. Effect of old age on the subpopulations of enteric glial cells in human descending colon. Glia 2023; 71:305-316. [PMID: 36128665 PMCID: PMC10087700 DOI: 10.1002/glia.24272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Old age is associated with a higher incidence of lower bowel conditions such as constipation. Recent evidence suggest that colonic motility may be influenced by enteric glial cells (EGCs). Little is known about the effect of aging on the subpopulation of EGCs in the human colon. We assessed and compared the pattern of distribution of EGCs in adult and elderly human colon. Human descending colon were obtained from 23 cancer patients comprising of adults (23-63 years; 6 male, 7 female) and elderly (66-81 year; 6 male, 4 female). Specimens were serially-sectioned and immunolabeled with anti-Sox-10, anti-S100 and anti-GFAP for morphometric analysis. Standardized procedures were utilized to ensure unbiased counting and densitometric evaluation of EGCs. The number of Sox-10 immunoreactive (IR) EGCs were unaltered with age in both the myenteric plexus (MP) (respectively, in adult and elderly patients, 1939 ± 82 and 1760 ± 44/mm length; p > .05) and submucosal plexus; there were no apparent differences between adult males and females. The density of S100-IR EGCs declined among the elderly in the circular muscle and within the MP per ganglionic area. In the adult colon, there were more S100-IR EGCs distributed in the circular muscle per unit area than the Taenia coli. There was little or no GFAP-IR EGCs in both adult and elderly colon. We concluded that aging of the human descending colon does not result in a loss of Sox-10-IR EGCs in the MP and SMP but reduces S100-IR EGCs density within the musculature. This alteration in myenteric EGCs density with age may contribute to colonic dysfunction.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Abi Belai
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
2
|
Li QS, Morrison RL, Turecki G, Drevets WC. Meta-analysis of epigenome-wide association studies of major depressive disorder. Sci Rep 2022; 12:18361. [PMID: 36319817 PMCID: PMC9626569 DOI: 10.1038/s41598-022-22744-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Epigenetic mechanisms have been hypothesized to play a role in the etiology of major depressive disorder (MDD). In this study, we performed a meta-analysis between two case-control MDD cohorts to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in MDD. Using samples from two Cohorts (a total of 298 MDD cases and 63 controls with repeated samples, on average ~ 1.8 samples/subject), we performed an EWAS meta-analysis. Multiple cytosine-phosphate-guanine sites annotated to TNNT3 were associated with MDD reaching study-wide significance, including cg08337959 (p = 2.3 × 10-11). Among DMPs with association p values less than 0.0001, pathways from REACTOME such as Ras activation upon Ca2+ influx through the NMDA receptor (p = 0.0001, p-adjusted = 0.05) and long-term potentiation (p = 0.0002, p-adjusted = 0.05) were enriched in this study. A total of 127 DMRs with Sidak-corrected p value < 0.05 were identified from the meta-analysis, including DMRs annotated to TNNT3 (chr11: 1948933 to 1949130 [6 probes], Sidak corrected P value = 4.32 × 10-41), S100A13 (chr1: 153599479 to 153600972 [22 probes], Sidak corrected P value = 5.32 × 10-18), NRXN1 (chr2: 50201413 to 50201505 [4 probes], Sidak corrected P value = 1.19 × 10-11), IL17RA (chr22: 17564750 to 17565149, Sidak corrected P value = 9.31 × 10-8), and NPFFR2 (chr4: 72897565 to 72898212, Sidak corrected P value = 8.19 × 10-7). Using 2 Cohorts of depression case-control samples, we identified DMPs and DMRs associated with MDD. The molecular pathways implicated by these data include mechanisms involved in neuronal synaptic plasticity, calcium signaling, and inflammation, consistent with reports from previous genetic and protein biomarker studies indicating that these mechanisms are involved in the neurobiology of depression.
Collapse
Affiliation(s)
- Qingqin S. Li
- grid.497530.c0000 0004 0389 4927Neuroscience, Janssen Research and Development, LLC, Titusville, NJ USA ,grid.497530.c0000 0004 0389 4927JRD Data Science, Janssen Research and Development, LLC, Titusville, NJ USA
| | - Randall L. Morrison
- grid.497530.c0000 0004 0389 4927Neuroscience, Janssen Research and Development, LLC, Titusville, NJ USA ,Present Address: RLM Consulting LLC, 200 S Landmark Lane, Fort Washington, PA 19034 USA
| | - Gustavo Turecki
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Wayne C. Drevets
- Neuroscience, Janssen Research and Development, LLC, La Jolla, CA USA
| |
Collapse
|
3
|
Xu L, Sun H, Zhang Y, Guo Z, Xiao X, Zhou X, Hu K, Sun W, Wang B, Liu W. Proteomic analysis of human frontal and temporal cortex using iTRAQ-based 2D LC-MS/MS. Chin Neurosurg J 2021; 7:27. [PMID: 33952343 PMCID: PMC8101246 DOI: 10.1186/s41016-021-00241-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background The human brain is the most complex organ in the body, and it is important to have a better understanding of how the protein composition in the brain regions contributes to the pathogenesis of associated neurological disorders. Methods In this study, a comparative analysis of the frontal and temporal cortex proteomes was conducted by isobaric tags of relative and absolute quantification (iTRAQ) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS). Brain protein was taken from relatively normal tissue that could not be avoided of damage during emergent surgery of the TBI (traumatic brain injury) patients admitted in Beijing Tiantan Hospital from 2014 to 2017. Eight cases were included. Four frontal lobes and 4 temporal lobes proteome were analyzed and the proteins were quantitated. Gene Ontology (GO), Ingenuity Pathway Analysis (IPA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the biological function of identified proteins, unchanged proteins, and differentially expressed proteins (DEPs). Results A total number of 2127 protein groups were identified in the frontal and temporal lobe proteomes. A total of 1709 proteins could be quantitated in both the frontal and temporal cortex. Among 90 DEPs, 14 proteins were screened highly expressed in the temporal cortex, including MAPT, SNCG, ATP5IF1, GAP43, HSPE1, STMN1, NDUFS6, LDHB, SNCB, NDUFA7, MRPS36, EPDR1, CISD1, and RALA. In addition, compared to proteins expressed in the frontal cortex, 14 proteins including EDC4, NIT2, VWF, ASTN1, TGM2, SSB, CLU, HBA1, STOM, CRP, LRG1, SAA2, S100A4, and VTN were a low expression in the temporal cortex. The biological process enrichment showed that unchanged proteins between the frontal and temporal cortex mainly take part in regulated exocytosis, axon guidance, and vesicle-mediated transport. The KEGG pathway analysis showed that unchanged proteins between the frontal and temporal cortex mainly take part in oxidative phosphorylation, carbon metabolism, Huntington’s disease, and Parkinson’s disease. Conclusions The majority of proteins are unchanged between the frontal and temporal cortex, and unchanged proteins are closely related to its function. Among DEPs, MATP (tau) is upregulated in the temporal cortex, closely related to Alzheimer’s disease (AD), and is one of the targets for the treatment of AD. CLU is downregulated in the temporal cortex which functions as an extracellular chaperone that prevents aggregation of non-native proteins. It was suggested that the temporal lobe may not be the “functional dumb area” of the traditional view, but could be involved in important neural metabolic circuits. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-021-00241-5.
Collapse
Affiliation(s)
- Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, 100070, China
| | - Haidan Sun
- Core Facility of Instrument, School of Basic Medicine Chinese Academy of Medical Sciences, Institute of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, 100070, China
| | - Zhengguang Guo
- Core Facility of Instrument, School of Basic Medicine Chinese Academy of Medical Sciences, Institute of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Xiaoping Xiao
- Core Facility of Instrument, School of Basic Medicine Chinese Academy of Medical Sciences, Institute of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Kun Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Wei Sun
- Core Facility of Instrument, School of Basic Medicine Chinese Academy of Medical Sciences, Institute of Basic Medicine Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Weiming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, 100070, China.
| |
Collapse
|
4
|
S100A4 in the Physiology and Pathology of the Central and Peripheral Nervous System. Cells 2021; 10:cells10040798. [PMID: 33918416 PMCID: PMC8066633 DOI: 10.3390/cells10040798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
S100A4 is a member of the large family of S100 proteins, exerting a broad range of intracellular and extracellular functions that vary upon different cellular contexts. While S100A4 has long been implicated mainly in tumorigenesis and metastatization, mounting evidence shows that S100A4 is a key player in promoting pro-inflammatory phenotypes and organ pro-fibrotic pathways in the liver, kidney, lung, heart, tendons, and synovial tissues. Regarding the nervous system, there is still limited information concerning S100A4 presence and function. It was observed that S100A4 exerts physiological roles contributing to neurogenesis, cellular motility and chemotaxis, cell differentiation, and cell-to cell communication. Furthermore, S100A4 is likely to participate to numerous pathological processes of the nervous system by affecting the functions of astrocytes, microglia, infiltrating cells and neurons and thereby modulating inflammation and immune reactions, fibrosis as well as neuronal plasticity and survival. This review summarizes the current state of knowledge concerning the localization, deregulation, and possible functions of S100A4 in the physiology of the central and peripheral nervous system. Furthermore, we highlight S100A4 as a gene involved in the pathogenesis of neurological disorders such as brain tumors, neurodegenerative diseases, and acute injuries.
Collapse
|
5
|
Wheeler LC, Perkins A, Wong CE, Harms MJ. Learning peptide recognition rules for a low-specificity protein. Protein Sci 2020; 29:2259-2273. [PMID: 32979254 PMCID: PMC7586891 DOI: 10.1002/pro.3958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
Many proteins interact with short linear regions of target proteins. For some proteins, however, it is difficult to identify a well-defined sequence motif that defines its target peptides. To overcome this difficulty, we used supervised machine learning to train a model that treats each peptide as a collection of easily-calculated biochemical features rather than as an amino acid sequence. As a test case, we dissected the peptide-recognition rules for human S100A5 (hA5), a low-specificity calcium binding protein. We trained a Random Forest model against a recently released, high-throughput phage display dataset collected for hA5. The model identifies hydrophobicity and shape complementarity, rather than polar contacts, as the primary determinants of peptide binding specificity in hA5. We tested this hypothesis by solving a crystal structure of hA5 and through computational docking studies of diverse peptides onto hA5. These structural studies revealed that peptides exhibit multiple binding modes at the hA5 peptide interface-all of which have few polar contacts with hA5. Finally, we used our trained model to predict new, plausible binding targets in the human proteome. This revealed a fragment of the protein α-1-syntrophin that binds to hA5. Our work helps better understand the biochemistry and biology of hA5, as well as demonstrating how high-throughput experiments coupled with machine learning of biochemical features can reveal the determinants of binding specificity in low-specificity proteins.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Arden Perkins
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Caitlyn E. Wong
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Michael J. Harms
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| |
Collapse
|
6
|
Varderidou-Minasian S, Verheijen BM, Schätzle P, Hoogenraad CC, Pasterkamp RJ, Altelaar M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J Proteome Res 2020; 19:2391-2403. [PMID: 32357013 PMCID: PMC7281779 DOI: 10.1021/acs.jproteome.0c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Neuronal development is a complex
multistep process that shapes
neurons by progressing though several typical stages, including axon
outgrowth, dendrite formation, and synaptogenesis. Knowledge of the
mechanisms of neuronal development is mostly derived from the study
of animal models. Advances in stem cell technology now enable us to
generate neurons from human induced pluripotent stem cells (iPSCs).
Here we provide a mass spectrometry-based quantitative proteomic signature
of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic
neurons and iPSC-derived motor neurons, throughout neuronal differentiation.
Tandem mass tag 10-plex labeling was carried out to perform proteomic
profiling of cells at different time points. Our analysis reveals
significant expression changes (FDR < 0.001) of several key proteins
during the differentiation process, e.g., proteins involved in the
Wnt and Notch signaling pathways. Overall, our data provide a rich
resource of information on protein expression during human iPSC neuron
differentiation.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Imbalzano E, Mandraffino G, Casciaro M, Quartuccio S, Saitta A, Gangemi S. Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: a systematic review. Heart Fail Rev 2018; 21:463-73. [PMID: 26833319 DOI: 10.1007/s10741-016-9529-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
S100 proteins are a family of highly acidic calcium-binding proteins involved in calcium handling in many tissues and organs. Some of these proteins are highly expressed in cardiac tissue, and an impairment of some specific S100 proteins has been related to heart failure. To check this hypothesis, we decided to review the literature since 2008 until May 2015. According to the studies collected, recovering S100A1 levels may enhance contractile/relaxing performance in heart failure, reverse negative force-frequency relationship, improve contractile reserve, reverse diastolic dysfunction and protect against pro-arrhythmic reductions of sarcoplasmic reticulum calcium. The safety profile of gene therapy was also confirmed. Increased S100B protein levels were related to a worse outcome in chronic heart failure. S100A8/A9 complex plasma levels, as well as other inflammatory biomarkers, were significantly higher in chronic heart failure patients. S100A2 seems to increase both contractile and relaxation performance in animal cardiomyocytes. Otherwise, S100A6 cardiac expression seems to have no effects on contractility. S100A4 KO mice showed reduced cardiac interstitial fibrosis. Data collected encourage a potential prospective application in human. These proteins could be exploited as biomarkers in stadiation and prognosis of chronic heart failure, as well as therapeutic target to rescue failing heart. Registration details The study protocol has been registered in PROSPERO ( http://www.crd.york.ac.uk/PROSPERO/ ) under registration number CRD42015027932.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, Policlinic University of Messina, Via Consolare Valeria n.1, 98125, Messina, Italy.
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, Policlinic University of Messina, Via Consolare Valeria n.1, 98125, Messina, Italy
| | - Marco Casciaro
- School and Division of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | - Sebastiano Quartuccio
- Department of Clinical and Experimental Medicine, Policlinic University of Messina, Via Consolare Valeria n.1, 98125, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, Policlinic University of Messina, Via Consolare Valeria n.1, 98125, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, University of Messina, Messina, Italy.,Institute of Applied Sciences and Intelligent Systems (ISASI) - Messina Unit, Messina, Italy
| |
Collapse
|
8
|
Nine differentially expressed genes from a post mortem study and their association with suicidal status in a sample of suicide completers, attempters and controls. J Psychiatr Res 2017; 91:98-104. [PMID: 28327445 DOI: 10.1016/j.jpsychires.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
Abstract
Several lines of evidence indicate that suicidal behaviour is partly heritable, with multiple genes implicated in its aetiology. We focused on nine genes (S100A13, EFEMP1, PCDHB5, PDGFRB, CDCA7L, SCN2B, PTPRR, MLC1 and ZFP36) which we previously detected as differentially expressed in the cortex of suicide victims compared to controls. We investigated 84 variants within these genes in 495 suicidal subjects (299 completers and 196 attempters) and 1513 controls (109 post-mortem and 1404 healthy). We evaluated associations with: 1) suicidal phenotype; 2) possible endophenotypes for suicidal behaviour. Overall positive results did not survive the correction threshold. However, we found a nominally different distribution of EFEMP1 genotypes, alleles and haplotypes between suicidal subjects and controls, results that were partially replicated when we separately considered the subgroup of suicide completers and post-mortem controls. A weaker association emerged also for PTPRR. Both EFEMP1 and PTPRR genes were also related to possible endophenotypes for suicidal behaviour such as anger, depression-anxiety and fatigue. Because of the large number of analyses performed and the low significance values further replication are mandatory. Nevertheless, neurotrophic gene variants, in particular EFEMP1 and PTPRR, may have a role in the pathogenesis of suicidal behaviour.
Collapse
|
9
|
Kim I, Lee KO, Yun YJ, Jeong JY, Kim EH, Cheong H, Ryu KS, Kim NK, Suh JY. Biophysical characterization of Ca 2+-binding of S100A5 and Ca 2+-induced interaction with RAGE. Biochem Biophys Res Commun 2016; 483:332-338. [PMID: 28017722 DOI: 10.1016/j.bbrc.2016.12.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
S100A5 is a calcium-binding protein of S100 family, which represents a major ligand to the receptor for advanced glycation end product (RAGE), a pattern recognition receptor engaged in diverse pathological processes. Here we have characterized calcium binding of S100A5 and the complex formation between S100A5 and RAGE using calorimetry and NMR spectroscopy. S100A5 binds to calcium ions in a sequential manner with the equilibrium dissociation constants (KD) of 1.3 μM and 3.5 μM, which corresponds to the calcium-binding at the C-terminal and N-terminal EF-hands. Upon calcium binding, S100A5 interacts with the V domain of RAGE (RAGE-v) to form a heterotrimer (KD ∼5.9 μM) that is distinct among the S100 family proteins. Chemical shift perturbation data from NMR titration experiments indicates that S100A5 employs the periphery of the dimer interface to interact with RAGE-v. Distinct binding mode and stoichiometry of RAGE against different S100 family proteins could be important to modulate diverse RAGE signaling.
Collapse
Affiliation(s)
- Iktae Kim
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea.
| | - Ko On Lee
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea.
| | - Young-Joo Yun
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea
| | - Jea Yeon Jeong
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, 16 Yeongudanji-Ro, Ochang, Chungbuk 363-883, South Korea
| | - Haekap Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, 16 Yeongudanji-Ro, Ochang, Chungbuk 363-883, South Korea
| | - Kyoung-Seok Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, 16 Yeongudanji-Ro, Ochang, Chungbuk 363-883, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea.
| |
Collapse
|
10
|
Chu SF, Zhang Z, Zhang W, Zhang MJ, Gao Y, Han N, Zuo W, Huang HY, Chen NH. Upregulating the Expression of Survivin-HBXIP Complex Contributes to the Protective Role of IMM-H004 in Transient Global Cerebral Ischemia/Reperfusion. Mol Neurobiol 2016; 54:524-540. [DOI: 10.1007/s12035-015-9673-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022]
|
11
|
Kostović I, Sedmak G, Vukšić M, Judaš M. The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci Ther 2014; 21:74-82. [PMID: 25312583 DOI: 10.1111/cns.12333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/31/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
The human fetal cerebral cortex develops through a series of partially overlapping histogenetic events which occur in transient cellular compartments, such as the subplate zone. The subplate serves as waiting compartment for cortical afferent fibers, the major site of early synaptogenesis and neuronal differentiation and the hub of the transient fetal cortical circuitry. Thus, the subplate has an important but hitherto neglected role in the human fetal cortical connectome. The subplate is also an important compartment for radial and tangential migration of future cortical neurons. We review the diversity of subplate neuronal phenotypes and their involvement in cortical circuitry and discuss the complexity of late neuronal migration through the subplate as well as its potential relevance for pathogenesis of migration disorders and cortical dysplasia. While migratory neurons may become misplaced within the subplate, they can easily survive by being involved in early subplate circuitry; this can enhance their subsequent survival even if they have immature or abnormal physiological activity and misrouted connections and thus survive into adulthood. Thus, better understanding of subplate developmental history and various subsets of its neurons may help to elucidate certain types of neuronal disorders, including those accompanied by epilepsy.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | | | | |
Collapse
|
12
|
Yang P, Zhang J, Shi H, Zhang J, Xu X, Xiao X, Liu Y. Developmental profile of neurogenesis in prenatal human hippocampus: an immunohistochemical study. Int J Dev Neurosci 2014; 38:1-9. [PMID: 24999120 DOI: 10.1016/j.ijdevneu.2014.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022] Open
Abstract
Hippocampus has attracted the attention of the neuroscientists for its involvement in a wide spectrum of higher-order brain functions and pathological conditions, especially its persistent neurogenesis in subgranular zone (SGZ). The development of hippocampus was intensively investigated on animals such as rodents. However, in prenatal human hippocampus, little information on the distribution of neural stem/progenitor cells, newly generated neurons and mature neurons is available and the timetable of a series of neurogenesis event is even more obscure. So in the present study, we aim at immunohistochemically providing more information on neurogenesis in prenatal human hippocampus from 9 weeks to 32 weeks of gestation. We found that the ki67-positive cells were always detected in hippocampus from 9 weeks to 32 weeks, with a peak at 9 weeks in cornu ammonis (CA) or 14 weeks in dentate gyrus (DG). At 9 weeks the nestin-expressing cells were distributed throughout the hippocampus, with concentrated immunoreactivity in intermediate zone (IZ), marginal zone (MZ), fimbria, and relatively sparse immunoreactivity in the ventricular zone (VZ) and hippocampal plate (HP). With development, the optical density (OD) and the number of nestin-positive cells decreased gradually. At 32 weeks, there were relatively more nestin-positive cells in DG than that in CA. About DCX-positive cells, they displayed a similar distribution as nestin-positive cells (immunoreactivity concentrated in IZ, MZ, fimbria and HP) and a dramatic decrease of OD or cell number density from 9 weeks on. NeuN-positive cells, with small nuclei, were firstly found in MZ and subplate of hippocampus at 9 weeks. After 14 weeks, many NeuN-positive cells extended from subplate into HP and the density of NeuN-positive cells peaked at 22 weeks. That the immunoreactivity for NeuN was the strongest and the nuclei were the biggest at 32 weeks suggests that the neurons reach maturity gradually. Therefore this study provides an important timetable of neurogenesis in prenatal human hippocampus for the clinicians in neuroscience or pediatrics.
Collapse
Affiliation(s)
- Pengbo Yang
- Institute of Neurobiology, Department of Human Anatomy and Histoembryology, Xi'an Jiaotong University College of Medicine, Xi'an, China.
| | - Junfeng Zhang
- Department of Human Anatomy, Xi'an Medical University, Xi'an, China.
| | - Hangyu Shi
- Department of Neurosurgery, The Children's Hospital of Xi'an City, Xi'an, China.
| | - Jianshui Zhang
- Institute of Neurobiology, Department of Human Anatomy and Histoembryology, Xi'an Jiaotong University College of Medicine, Xi'an, China.
| | - Xi Xu
- Department of Human Anatomy, Xi'an Medical University, Xi'an, China.
| | - Xinli Xiao
- Institute of Neurobiology, Department of Human Anatomy and Histoembryology, Xi'an Jiaotong University College of Medicine, Xi'an, China.
| | - Yong Liu
- Institute of Neurobiology, Department of Human Anatomy and Histoembryology, Xi'an Jiaotong University College of Medicine, Xi'an, China.
| |
Collapse
|
13
|
Wang W, Asp ML, Guerrero-Serna G, Metzger JM. Differential effects of S100 proteins A2 and A6 on cardiac Ca(2+) cycling and contractile performance. J Mol Cell Cardiol 2014; 72:117-25. [PMID: 24631772 DOI: 10.1016/j.yjmcc.2014.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/07/2014] [Accepted: 03/02/2014] [Indexed: 11/16/2022]
Abstract
Defective intracellular calcium (Ca(2+)) handling is implicated in the pathogenesis of heart failure. Novel approaches targeting both cardiac Ca(2+) release and reuptake processes, such as S100A1, have the potential to rescue the function of failing cardiac myocytes. Here, we show that two members of the S100 Ca(2+) binding protein family, S100A2 and S100A6 that share high sequence homology, differentially influence cardiac Ca(2+) handling and contractility. Cardiac gene expression of S100A2 significantly enhanced both contractile and relaxation performance of rodent and canine cardiac myocytes, mimicking the functional effects of its cardiac homologue, S100A1. To interrogate mechanism, Ca(2+) spark frequency, a measure of the gating of the ryanodine receptor Ca(2+) release channel, was found to be significantly increased by S100A2. Therapeutic testing showed that S100A2 rescued the contractile defects of failing cardiac myocytes. In contrast, cardiac expression of S100A6 had no significant effects on contractility or Ca(2+) handling. These data reveal novel differential effects of S100 proteins on cardiac myocyte performance that may be useful in application to diseased cardiac muscle.
Collapse
Affiliation(s)
- Wang Wang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Michelle L Asp
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Guadalupe Guerrero-Serna
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
van Dieck J, Brandt T, Teufel DP, Veprintsev DB, Joerger AC, Fersht AR. Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73. Oncogene 2010; 29:2024-35. [PMID: 20140014 DOI: 10.1038/onc.2009.490] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
S100 proteins modulate p53 activity by interacting with its tetramerization (p53TET, residues 325-355) and transactivation (residues 1-57) domains. In this study, we characterized biophysically the binding of S100A1, S100A2, S100A4, S100A6 and S100B to homologous domains of p63 and p73 in vitro by fluorescence anisotropy, analytical ultracentrifugation and analytical gel filtration. We found that S100A1, S100A2, S100A4, S100A6 and S100B proteins bound different p63 and p73 tetramerization domain variants and naturally occurring isoforms with varying affinities in a calcium-dependent manner. Additional interactions were observed with peptides derived from the p63 and p73 N-terminal transactivation domains. Importantly, S100 proteins bound p63 and p73 with different affinities in their different oligomeric states, similarly to the differential modes of binding to p53. On the basis of our data, we hypothesize that S100 proteins regulate the oligomerization state of all three p53 family members and their isoforms, with a potential physiological relevance in developmental and disease-related processes. The regulation of the p53 family by S100 is complicated and depends on the target preference of each individual S100 protein, the concentration of the proteins and calcium, as well as the splicing variation of p63 or p73. Our results outlining the complexity of the interaction should be considered when studying the functional effects of S100 proteins in their biological context.
Collapse
Affiliation(s)
- J van Dieck
- MRC Centre for Protein Engineering, Hills Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
15
|
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:993-1007. [PMID: 19121341 DOI: 10.1016/j.bbamcr.2008.11.016] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The Receptor for Advanced Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin family. RAGE interacts with structurally different ligands probably through the oligomerization of the receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology. Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays. Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein-RAGE interaction with regard to their cellular functions.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Fl 33431, USA
| | | | | | | |
Collapse
|
16
|
Cheung KK, Mok SC, Rezaie P, Chan WY. Dynamic expression of Dab2 in the mouse embryonic central nervous system. BMC DEVELOPMENTAL BIOLOGY 2008; 8:76. [PMID: 18680569 PMCID: PMC2527319 DOI: 10.1186/1471-213x-8-76] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 08/04/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dab2, one of two mammalian orthologs of Drosophila Disabled, has been shown to be involved in cell positioning and formation of visceral endoderm during mouse embryogenesis, but its role in neuronal development is not yet fully understood. In this report, we have examined the localization of the Dab2 protein in the mouse embryonic central nervous system (CNS) at different developmental stages. RESULTS Dab2 protein was transiently expressed in rhombomeres 5 and 6 of the developing hindbrain between E8.5 and E11.5, and in the floor plate of the neural tube from E9.5 to E12.5, following which it was no longer detectable within these regions. Dab2 protein was also identified within circumventricular organs including the choroid plexus, subcommissural organ and pineal gland during their early development. While Dab2 was still strongly expressed in the adult choroid plexus, immunoreactivity within the subcommissural organ and pineal gland was lost after birth. In addition, Dab2 was transiently expressed within a subpopulation of Iba1-positive mononuclear phagocytes (including presumed microglial progenitors) within the neural tube from E10.0 and was lost by E14.5. Dab2 was separately localized to Iba1 positive cells from E9.5 and subsequently to F4/80 positive cells (mature macrophage/myeloid-derived dendritic cells) positioned outside the neural tube from E12.5 onwards, implicating Dab2 expression in early cells of the mononuclear phagocyte lineage. Dab2 did not co-localize with the pan-neuronal marker PGP9.5 at any developmental stage, suggesting that Dab2 positive cells in the developing CNS are unlikely to be differentiating neurons. CONCLUSION This is the first study to demonstrate the dynamic spatiotemporal expression of Dab2 protein within the CNS during development.
Collapse
Affiliation(s)
- Kwok-Kuen Cheung
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, PR China.
| | | | | | | |
Collapse
|
17
|
Matsunaga H, Ueda H. Synergistic Ca2+ and Cu2+ requirements of the FGF1–S100A13 interaction measured by quartz crystal microbalance: An initial step in amlexanox-reversible non-classical release of FGF1. Neurochem Int 2008; 52:1076-85. [DOI: 10.1016/j.neuint.2007.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/27/2007] [Accepted: 11/09/2007] [Indexed: 11/26/2022]
|
18
|
Thalmeier A, Dickmann M, Giegling I, Schneider B, M Hartmann A, Maurer K, Schnabel A, Kauert G, Möller HJ, Rujescu D. Gene expression profiling of post-mortem orbitofrontal cortex in violent suicide victims. Int J Neuropsychopharmacol 2008; 11:217-28. [PMID: 17608962 DOI: 10.1017/s1461145707007894] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The neurobiological basis of suicidal behaviour is multifactorial and complex. Several lines of evidence indicate that environmental factors as well as multiple genes and interactions of both are implicated in its aetiology. The aim of this study was to establish the transcriptomic expression profile of post-mortem brain tissue of suicide victims in order to identify new candidate genes and biological patterns for suicidal behaviour. Post-mortem orbitofrontal cortex tissue was derived from 11 suicide victims and 10 non-psychiatric controls carefully selected from a brain bank of over 150 brains, and the expression of more than 23000 messenger RNAs was assessed in this case-control study. Validation experiments were carried out using quantitative RT-PCR as an independent method. A classification of the differentially expressed genes according to their biological function and statistical analyses of the data were performed in order to identify biological pathways that are over-represented in the suicide group. In total, 124 transcripts demonstrated significant changes (fold changes > or = 1.3, p value < or = 0.01), with 59 showing under-, and 65 over-expression in the suicide group. The results could be validated for nine particularly interesting transcripts (CDCA7L, CDH12, EFEMP1, MLC1, PCDHB5, PTPRR, S100A13, SCN2B, and ZFP36). The pathway analysis showed that the Gene Ontology categories 'central nervous system development', 'homophilic cell adhesion', 'regulation of cell proliferation' and 'transmission of nerve impulse' were significantly enriched. The differentially expressed genes and significant biological processes might be involved in the pathophysiology of suicide and warrant further attention.
Collapse
Affiliation(s)
- Andreas Thalmeier
- Department of Psychiatry, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gruden MA, Davidova TB, Malisauskas M, Sewell RDE, Voskresenskaya NI, Wilhelm K, Elistratova EI, Sherstnev VV, Morozova-Roche LA. Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: Autoantibodies to Aβ(25–35) oligomers, S100b and neurotransmitters. J Neuroimmunol 2007; 186:181-92. [PMID: 17477976 DOI: 10.1016/j.jneuroim.2007.03.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/10/2007] [Accepted: 03/23/2007] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) autoimmunity is a focus for dementia prevention. Generated autoantibodies against major etiopathogenic molecular targets as neuroimmune markers of dementia were measured by ELISA in patient sera. Biphasic antibody levels to Abeta((25-35)) oligomers, S100b and DA were detected during distinctly diagnosed dementia stages. Abeta((25-35)) oligomer autoimmune responses reflected mild to moderate AD dementia, while those to S100b, DA and the S100b concentrations, matched moderate to severe dementia progression. 5-HT antibodies increased during mild dementia and plateaued thereafter. This autoimmunity pattern may be used as a differential biomarker profile in designing AD therapeutic strategies involving early vaccination.
Collapse
Affiliation(s)
- Marina A Gruden
- P. K. Anokhin Institute of Normal Physiology, RAMS, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li M, Zhang PF, Pan XW, Chang WR. Crystal structure study on human S100A13 at 2.0 A resolution. Biochem Biophys Res Commun 2007; 356:616-21. [PMID: 17374362 DOI: 10.1016/j.bbrc.2007.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
The S100 protein family is the largest group of calcium-binding protein families, which consists of at least 25 members. S100A13, which is widely expressed in a variety of tissues, is a unique member of the S100 protein family. Previous reports showed that S100A13 might be involved in the stress-induced release of some signal peptide-less proteins (such as FGF-1 and IL-1alpha) and also associated with inflammatory functions. It was also reported that S100A13 is a new angiogenesis marker. Here we report the crystal structure of the Ca(2+)-bound form of S100A13 at 2.0 A resolution. S100A13 is a homodimer with four EF-hand motifs in an asymmetric unit, displaying a folding pattern similar to other S100 members. However, S100A13 has the unique structural feature with all alpha-helices being amphiphilic, which was not found in other members of S100s. We propose that this characteristic structure of S100A13 might be related to its ability to mediate the release of FGF-1 and IL-1alpha.
Collapse
Affiliation(s)
- Mei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | |
Collapse
|
21
|
Abstract
The S100 proteins are exclusively expressed in vertebrates and are the largest subgroup within the superfamily of EF-hand Ca2(+)-binding proteins Generally, S100 proteins are organized as tight homodimers (some as heterodimers). Each subunit is composed of a C-terminal, 'canonical' EF-hand, common to all EF-hand proteins, and a N-terminal, 'pseudo' EF-hand, characteristic of S100 proteins. Upon Ca2(+)-binding, the C-terminal EF-hand undergoes a large conformational change resulting in the exposure of a hydrophobic surface responsible for target binding A unique feature of this protein family is that some members are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via the Receptor for Advanced Glycation Endproducts, RAGE. Recently, larger assemblies of some S100 proteins (hexamers, tetramers, octamers) have been also observed and are suggested to be the active extracellular species required for receptor binding and activation through receptor multimerization Most S100 genes are located in a gene cluster on human chromosome 1q21, a region frequently rearranged in human cancer The functional diversification of S100 proteins is achieved by their specific cell- and tissue-expression patterns, structural variations, different metal ion binding properties (Ca2+, Zn2+ and Cu2+) as well as their ability to form homo-, hetero- and oligomeric assemblies Here, we review the most recent developments focussing on the biological functions of the S100 proteins and we discuss the presently available S100-specific mouse models and their possible use as human disease models In addition, the S100-RAGE interaction and the activation of various cellular pathways will be discussed. Finally, the close association of S100 proteins with cardiomyopathy, cancer, inflammation and brain diseases is summarized as well as their use in diagnosis and their potential as drug targets to improve therapies in the future.
Collapse
Affiliation(s)
- C W Heizmann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Switzerland.
| | | | | |
Collapse
|
22
|
Ackermann GE, Marenholz I, Wolfer DP, Chan WY, Schäfer B, Erne P, Heizmann CW. S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1307-19. [PMID: 17045663 DOI: 10.1016/j.bbamcr.2006.08.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 08/23/2006] [Accepted: 08/30/2006] [Indexed: 11/30/2022]
Abstract
S100 proteins comprise a family of Ca(2+) binding proteins of at least 21 members. They are distinctly expressed in a variety of cell types and tissues and are thought to play unique roles, although they share a high degree of sequence homology and expression overlap. S100A1 is prominently expressed in the heart, where it takes part in Ca(2+)-cycling. Its role in the central nervous system (CNS) is largely unknown. We have generated S100A1-deficient mice by gene trap mutagenesis to study the involvement of S100A1 in the cytoarchitecture of the brain, in learning and memory, and in avoidance-approach behavior. S100A1 knock out (KO) mice develop well and their brains present with normal morphology. In wild type (Wt) mice, S100A1 protein was found in the hippocampus, cerebral cortex and amygdala, and partially co-localized with the astrocyte marker glial fibrillary acidic protein (GFAP) in the stratum radiatum of the hippocampus. Astrocytes and neurons of S100A1KO mice did not differ from those of Wt mice regarding shape, distribution and density. In the water maze, S100A1KO mice performed equally well as Wt, implying that S100A1 is not involved in spatial learning and memory. In avoidance-approach tests, predominantly male S100A1KO mice showed reduced anxiety-like responses and enhanced explorative activities. We conclude that S100A1 plays a role in modulating innate fear and exploration of novel stimuli.
Collapse
Affiliation(s)
- Gabriele E Ackermann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zürich, Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Sturchler E, Cox JA, Durussel I, Weibel M, Heizmann CW. S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem 2006; 281:38905-17. [PMID: 17030513 DOI: 10.1074/jbc.m605798200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100A16 protein is a new and unique member of the EF-hand Ca(2+)-binding proteins. S100 proteins are cell- and tissue-specific and are involved in many intra- and extracellular processes through interacting with specific target proteins. In the central nervous system S100 proteins are implicated in cell proliferation, differentiation, migration, and apoptosis as well as in cognition. S100 proteins became of major interest because of their close association with brain pathologies, for example depression or Alzheimer's disease. Here we report for the first time the purification and biochemical characterization of human and mouse recombinant S100A16 proteins. Flow dialysis revealed that both homodimeric S100A16 proteins bind two Ca(2+) ions with the C-terminal EF-hand of each subunit, the human protein exhibiting a 2-fold higher affinity. Trp fluorescence variations indicate conformational changes in the orthologous proteins upon Ca(2+) binding, whereas formation of a hydrophobic patch, implicated in target protein recognition, only occurs in the human S100A16 protein. In situ hybridization analysis and immunohistochemistry revealed a widespread distribution in the mouse brain. Furthermore, S100A16 expression was found to be astrocyte-specific. Finally, we investigated S100A16 intracellular localization in human glioblastoma cells. The protein was found to accumulate within nucleoli and to translocate to the cytoplasm in response to Ca(2+) stimulation.
Collapse
Affiliation(s)
- Emmanuel Sturchler
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Sivaraja V, Kumar TKS, Rajalingam D, Graziani I, Prudovsky I, Yu C. Copper binding affinity of S100A13, a key component of the FGF-1 nonclassical copper-dependent release complex. Biophys J 2006; 91:1832-43. [PMID: 16766622 PMCID: PMC1544301 DOI: 10.1529/biophysj.105.079988] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S100A13 is a member of the S100 protein family that is involved in the copper-dependent nonclassical secretion of signal peptideless proteins fibroblast growth factor 1 and interleukin 1 lpha. In this study, we investigate the effects of interplay of Cu2+ and Ca2+ on the structure of S100A13 using a variety of biophysical techniques, including multi-dimensional NMR spectroscopy. Results of the isothermal titration calorimetry experiments show that S100A13 can bind independently to both Ca2+ and Cu2+ with almost equal affinity (Kd in the micromolar range). Terbium binding and isothermal titration calorimetry data reveal that two atoms of Cu2+/Ca2+ bind per subunit of S100A13. Results of the thermal denaturation experiments monitored by far-ultraviolet circular dichroism, limited trypsin digestion, and hydrogen-deuterium exchange (using 1H-15N heteronuclear single quantum coherence spectra) reveal that Ca2+ and Cu2+ have opposite effects on the stability of S100A13. Binding of Ca2+ stabilizes the protein, but the stability of the protein is observed to decrease upon binding to Cu2+. 1H-15N chemical shift perturbation experiments indicate that S100A13 can bind simultaneously to both Ca2+ and Cu2+ and the binding of the metal ions is not mutually exclusive. The results of this study suggest that the Cu2+-binding affinity of S100A13 is important for the formation of the FGF-1 homodimer and the subsequent secretion of the signal peptideless growth factor through the nonclassical release pathway.
Collapse
Affiliation(s)
- Vaithiyalingam Sivaraja
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | | | |
Collapse
|
25
|
Englund C, Folkerth RD, Born D, Lacy JM, Hevner RF. Aberrant neuronal-glial differentiation in Taylor-type focal cortical dysplasia (type IIA/B). Acta Neuropathol 2005; 109:519-33. [PMID: 15877232 DOI: 10.1007/s00401-005-1005-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 11/26/2022]
Abstract
Focal cortical dysplasia (FCD) type IIA/B (Taylor type) is a malformation of cortical development characterized by laminar disorganization and dysplastic neurons. FCD IIA and FCD IIB denote subtypes in which balloon cells are absent or present, respectively. The etiology of FCD IIA/B is unknown, but previous studies suggest that its pathogenesis may involve aberrant, mixed neuronal-glial differentiation. To investigate whether aberrant differentiation is a consistent phenotype in FCD IIA/B, we studied a panel of neuronal and glial marker antigens in a series of 15 FCD IIB cases, and 2 FCD IIA cases. Double-labeling immunofluorescence and confocal imaging revealed that different combinations of neuronal and glial antigens were co-expressed by individual cells in all cases of FCD IIA/B, but not in control cases of epilepsy due to other causes. Co-expression of neuronal and glial markers was most common in balloon cells, but was also observed in dysplastic neurons. The relative expression of neuronal and glial antigens varied over a broad range. Microtubule-associated protein 1B, an immature neuronal marker, was more frequently co-expressed with glial antigens than were mature neuronal markers, such as neuronal nuclear antigen. Our results indicate that aberrant neuronal-glial differentiation is a consistent and robust phenotype in FCD IIA/B, and support the hypothesis that developmental defects of neuronal and glial fate specification play an important role in its pathogenesis.
Collapse
Affiliation(s)
- Chris Englund
- Department of Pathology, Box 359791, Harborview Medical Center, University of Washington School of Medicine, 325 Ninth Ave., Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
26
|
Pedersen MV, Køhler LB, Grigorian M, Novitskaya V, Bock E, Lukanidin E, Berezin V. The Mts1/S100A4 protein is a neuroprotectant. J Neurosci Res 2004; 77:777-86. [PMID: 15334597 DOI: 10.1002/jnr.20221] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mts1 (S100A4) is a calcium-binding protein of the EF-hand type, belonging to the S100 family of proteins. The mts1/S100A4 gene was originally isolated from tumor cell lines, and the protein is believed to play an important role in tumor progression. More recently, oligomeric, but not dimeric, forms of Mts1 have been shown to have a neuritogenic effect when added extracellularly to hippocampal neurons. Here we show increased neurite outgrowth in two other cell types, dopaminergic and cerebellar neurons, in response to treatment with Mts1 oligomers. Moreover, we demonstrate that Mts1 acts as a neuroprotectant in primary cerebellar, dopaminergic, and hippocampal neurons induced to undergo cell death. Interestingly, the survival of the cerebellar and hippocampal neurons increased as a result of treatment with Mts1 not only in oligomeric form but also--although to a lesser extent--in dimeric form. The inhibition of death in cerebellar neurons by Mts1 was accompanied by an inhibition of DNA fragmentation, but Mts1 did not affect the activity of caspases-3 and -6. In hippocampal neurons, cell death induced by the amyloid-beta peptide (Abeta(25-35)) was characterized by an increase in caspase-3 and -6 activity, but no DNA fragmentation was observed. As in cerebellar neurons, the induced increase in caspase activity in hippocampal neurons was not affected by Mts1.
Collapse
Affiliation(s)
- Martin V Pedersen
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Panum Institute 6.2, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Sandelin M, Zabihi S, Liu L, Wicher G, Kozlova EN. Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. J Comp Neurol 2004; 473:233-43. [PMID: 15101091 DOI: 10.1002/cne.20115] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100A4 (Mts1) is a member of a family of calcium-binding proteins of the EF-hand type, which are widely expressed in the nervous system, where they appear to be involved in the regulation of neuron survival, plasticity, and response to injury or disease. S100A4 has previously been demonstrated in astrocytes of the white matter and rostral migratory stream of the adult rat. After injury, S100A4 is markedly up-regulated in affected central nervous white matter areas as well as in the periventricular area and rostral migratory stream. Here, we show that S100A4 is expressed in a subpopulation of dorsal root, trigeminal, geniculate, and nodose ganglion cells; in a subpopulation of postganglionic sympathetic and parasympathetic neurons; in chromaffin cells of the adrenal medulla; and in satellite and Schwann cells. In dorsal root ganglia, S100A4-positive cells appear to constitute a subpopulation of small ganglion neurons, a few of which coexpressed calcitonin gene-related peptide (CGRP) and Griffonia simplicifolia agglutinin (GSA) isolectin B4 (B4). S100A4 protein appears to be transported from dorsal root ganglia to the spinal cord, where it is deposited in the tract of Lissauer. After peripheral nerve or dorsal root injury, a few S100A4-positive cells coexpress CGRP, GSA, or galanin. Peripheral nerve or dorsal root injury induces a marked up-regulation of S100A4 expression in satellite cells in the ganglion and in Schwann cells at the injury site and in the distal stump. This pattern of distribution partially overlaps that of the previously studied S100B and S100A6 proteins, indicating a possible functional cooperation between these proteins. The presence of S100A4 in sensory neurons, including their processes in the central nervous system, suggests that S100A4 is involved in propagation of sensory impulses in specific fiber types.
Collapse
Affiliation(s)
- Martin Sandelin
- Department of Neuroscience, Uppsala University Biomedical Center, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Hsieh HL, Schäfer BW, Weigle B, Heizmann CW. S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochem Biophys Res Commun 2004; 316:949-59. [PMID: 15033494 DOI: 10.1016/j.bbrc.2004.02.135] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Indexed: 10/26/2022]
Abstract
The extracellular functions of S100 proteins have attracted more attention in recent years. S100 proteins are a group of calcium-binding proteins which exhibit cell- and tissue-specific expression, and different expression levels of members from this family have been observed in various pathological conditions. The reported extracellular functions of S100 proteins include the ability to enhance neurite outgrowth, involvement in inflammation, and motility of tumour cells. In our previous study, we reported translocation of S100A13 in response to the elevated intracellular calcium levels induced by angiotensin II. In order to investigate potential effects of extracellular S100A13, recombinant S100A13 was used here to stimulate human endothelial cells. Addition of extracellular S100A13 to the cells resulted in both endogenous protein translocation and protein uptake from the extracellular space. To test specificity of this effect, addition of various other S100 proteins was also performed. Interestingly, translocation of specific S100 proteins was only observed when the cells were stimulated with the same extracellular S100 protein. Since the receptor for advanced glycation end products (RAGE) is a putative cell surface receptor for S100 proteins and is involved in various signal transduction pathways, we next investigated the interaction between the receptor and extracellular S100 proteins. We show here that NF-kappaB which is a downstream regulator in RAGE-mediated transduction pathways can be activated by addition of extracellular S100 proteins, and translocation of S100 proteins was inhibited by soluble RAGE. These experiments suggest a common cell surface receptor for S100 proteins on endothelial cells even though intracellular translocation induced by extracellular S100 proteins is specific.
Collapse
Affiliation(s)
- Hsiao-Ling Hsieh
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Steinwiesstr. 75, CH-8032 Zurich, Switzerland
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Claus W Heizmann
- Division of Clinical Chemistry & Biochemistry, Department of Pediatrics, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| |
Collapse
|