1
|
Kim J. Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting. Bioengineering (Basel) 2023; 10:bioengineering10040457. [PMID: 37106644 PMCID: PMC10135811 DOI: 10.3390/bioengineering10040457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Three-dimensional (3D) bioprinting with suitable bioinks has become a critical tool for fabricating 3D biomimetic complex structures mimicking physiological functions. While enormous efforts have been devoted to developing functional bioinks for 3D bioprinting, widely accepted bioinks have not yet been developed because they have to fulfill stringent requirements such as biocompatibility and printability simultaneously. To further advance our knowledge of the biocompatibility of bioinks, this review presents the evolving concept of the biocompatibility of bioinks and standardization efforts for biocompatibility characterization. This work also briefly reviews recent methodological advances in image analyses to characterize the biocompatibility of bioinks with regard to cell viability and cell-material interactions within 3D constructs. Finally, this review highlights a number of updated contemporary characterization technologies and future perspectives to further advance our understanding of the biocompatibility of functional bioinks for successful 3D bioprinting.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
2
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
3
|
Duan X, Li N, Chen X, Zhu N. Characterization of Tissue Scaffolds Using Synchrotron Radiation Microcomputed Tomography Imaging. Tissue Eng Part C Methods 2021; 27:573-588. [PMID: 34670397 DOI: 10.1089/ten.tec.2021.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinguishing from other traditional imaging, synchrotron radiation microcomputed tomography (SR-μCT) imaging allows for the visualization of three-dimensional objects of interest in a nondestructive and/or in situ way with better spatial resolution, deep penetration, relatively fast speed, and/or high contrast. SR-μCT has been illustrated promising for visualizing and characterizing tissue scaffolds for repairing or replacing damaged tissue or organs in tissue engineering (TE), which is of particular advance for longitudinal monitoring and tracking the success of scaffolds once implanted in animal models and/or human patients. This article presents a comprehensive review on recent studies of characterization of scaffolds based on SR-μCT and takes scaffold architectural properties, mechanical properties, degradation, swelling and wettability, and biological properties as five separate sections to introduce SR-μCT wide applications. We also discuss and highlight the unique opportunities of SR-μCT in various TE applications; conclude this article with the suggested future research directions, including the prospective applications of SR-μCT, along with its challenges and methods for improvement in the field of TE.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Canadian Light Source, Saskatoon, Canada
| |
Collapse
|
4
|
Corain L, Grisan E, Graïc JM, Carvajal-Schiaffino R, Cozzi B, Peruffo A. Multi-aspect testing and ranking inference to quantify dimorphism in the cytoarchitecture of cerebellum of male, female and intersex individuals: a model applied to bovine brains. Brain Struct Funct 2020; 225:2669-2688. [PMID: 32989472 PMCID: PMC7674367 DOI: 10.1007/s00429-020-02147-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
The dimorphism among male, female and freemartin intersex bovines, focusing on the vermal lobules VIII and IX, was analyzed using a novel data analytics approach to quantify morphometric differences in the cytoarchitecture of digitalized sections of the cerebellum. This methodology consists of multivariate and multi-aspect testing for cytoarchitecture-ranking, based on neuronal cell complexity among populations defined by factors, such as sex, age or pathology. In this context, we computed a set of shape descriptors of the neural cell morphology, categorized them into three domains named size, regularity and density, respectively. The output and results of our methodology are multivariate in nature, allowing an in-depth analysis of the cytoarchitectonic organization and morphology of cells. Interestingly, the Purkinje neurons and the underlying granule cells revealed the same morphological pattern: female possessed larger, denser and more irregular neurons than males. In the Freemartin, Purkinje neurons showed an intermediate setting between males and females, while the granule cells were the largest, most regular and dense. This methodology could be a powerful instrument to carry out morphometric analysis providing robust bases for objective tissue screening, especially in the field of neurodegenerative pathologies.
Collapse
Affiliation(s)
- L Corain
- Department of Management and Engineering, University of Padova, 36100, Vicenza, VI, Italy
| | - E Grisan
- Department of Information Engineering, University of Padova, 35131, Padua, PD, Italy
- School of Engineering, London South Bank University, London, SE1 0AA, UK
| | - J-M Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - R Carvajal-Schiaffino
- Department of Mathematics and Computer Science, University of Santiago de Chile, Santiago, Chile
| | - B Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - A Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
5
|
Bradley RS, Robinson IK, Yusuf M. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Robert S. Bradley
- Henry Moseley X-ray Imaging Facility; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ian K. Robinson
- London Centre for Nanotechnology; University College London; Gower Street London WC1E 6BT UK
- Rutherford Appleton Laboratory; Didcot OX11 0FA UK
| | - Mohammed Yusuf
- London Centre for Nanotechnology; University College London; Gower Street London WC1E 6BT UK
- Rutherford Appleton Laboratory; Didcot OX11 0FA UK
| |
Collapse
|
6
|
Niehaus WL, Howlin RP, Johnston DA, Bull DJ, Jones GL, Calton E, Mavrogordato MN, Clarke SC, Thurner PJ, Faust SN, Stoodley P. Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitro. MICROBIOLOGY-SGM 2016; 162:1629-1640. [PMID: 27384949 DOI: 10.1099/mic.0.000334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.
Collapse
Affiliation(s)
- Wilmari L Niehaus
- National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment (FEE), University of Southampton, UK.,Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Biomedical Research Centre and NIHR Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert P Howlin
- Southampton NIHR Biomedical Research Centre and NIHR Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Centre for Biological Sciences, Faculty of Natural and Environmental Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - David A Johnston
- Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Biomedical Imaging Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Daniel J Bull
- Engineering Materials Research Group, FEE, University of Southampton, UK
| | - Gareth L Jones
- Centre for Hybrid Biodevices, Electronics and Computer Science, University of Southampton, UK
| | - Elizabeth Calton
- Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Stuart C Clarke
- Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Biomedical Research Centre and NIHR Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Philipp J Thurner
- Bioengineering Science Research Group, FEE, University of Southampton, UK.,Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Saul N Faust
- Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Biomedical Research Centre and NIHR Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Stoodley
- National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment (FEE), University of Southampton, UK.,Center for Microbial Interface Biology (CMIB), Departments of Microbial Infection and Immunity, and Orthopaedics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
8
|
Berenzi A, Steimberg N, Boniotti J, Mazzoleni G. MRT letter: 3D culture of isolated cells: a fast and efficient method for optimizing their histochemical and immunocytochemical analyses. Microsc Res Tech 2015; 78:249-54. [PMID: 25639567 DOI: 10.1002/jemt.22470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/10/2015] [Indexed: 11/10/2022]
Abstract
The rapid development of three-dimensional (3D) culture systems and engineered cell-based tissue models gave rise to an increasing need of new techniques, allowing the microscopic observation of cell behavior/morphology in tissue-like structures, as clearly signalled by several authors during the last decennium. With samples consisting of small aggregates of isolated cells grown in suspension, it is often difficult to produce an optimal embedded preparation that can be further successfully processed for classical histochemical investigations. In this work, we describe a new, easy to use, efficient method that enables to embed an enriched "preparation" of isolated cells/small 3D cell aggregates, without any cell stress or damage. As for after tissue-embedding procedures, the cellular blocks can be further suitably processed for efficient histochemical as well as immunohistochemical analyses, rendering more informative-and attractive-studies onto 3D cell-based culture of neo-tissues.
Collapse
Affiliation(s)
- Angiola Berenzi
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, School of Medicine, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
9
|
Olubamiji AD, Izadifar Z, Chen DX. Synchrotron Imaging Techniques for Bone and Cartilage Tissue Engineering: Potential, Current Trends, and Future Directions. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:503-22. [DOI: 10.1089/ten.teb.2013.0493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Zohreh Izadifar
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Daniel Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
10
|
Yu H, Lim KP, Xiong S, Tan LP, Shim W. Functional morphometric analysis in cellular behaviors: shape and size matter. Adv Healthc Mater 2013; 2:1188-97. [PMID: 23713066 DOI: 10.1002/adhm.201300053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 12/20/2022]
Abstract
Cellular morphogenesis in response to biophysical and topographical cues provides insights into cytoskeletal status, biointerface communications, and phenotypic adaptations in an incessant signaling feedback that governs cellular fate. Morphometric characterization is an important element in the study of the dynamic cellular behaviors, in their interactive response to environmental influence exerted by culture system. They collectively serve to reflect cellular proliferation, migration, and differentiation, which may serve as prognostic indices for clinical and pathological diagnosis. Various parameters are proposed to categorize morphological adaptations in relation to cellular function. In this review, the underlying principles, assumptions, and limitations of morphological characterizations are discussed. The significance, challenges, and implications of quantitative morphometric characterization of cell shapes and sizes in determining cellular functions are discussed.
Collapse
Affiliation(s)
- Haiyang Yu
- Research and Development Unit, National Heart Centre, 9 Hospital Drive, School of Nursing, #05-01, Block C, 169612, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | |
Collapse
|
11
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
12
|
Park CC, Georgescu W, Polyzos A, Pham C, Ahmed KM, Zhang H, Costes SV. Rapid and automated multidimensional fluorescence microscopy profiling of 3D human breast cultures. Integr Biol (Camb) 2013; 5:681-91. [PMID: 23407655 DOI: 10.1039/c3ib20275e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three-dimensional (3D) tissue culture provides a physiologically relevant microenvironment for distinguishing malignant from non-malignant breast cell phenotypes. 3D culture assays can also be used to test novel cancer therapies and predict a differential response to radiation between normal and malignant cells in vivo. However, biological measurements in such complex models are difficult to quantify and current approaches do not allow for in-depth multifaceted assessment of individual colonies or unique sub-populations within the entire culture. This is in part due to the limitations of imaging at a range of depths in 3D culture resulting from optical aberrations and intensity attenuation. Here, we address these limitations by combining sample smearing techniques with high-throughput 2D imaging algorithms to accurately and rapidly quantify imaging features acquired from 3D cultures. Multiple high resolution imaging features especially designed to characterize 3D cultures show that non-malignant human breast cells surviving large doses of ionizing radiation acquire a "swelled acinar" phenotype with fewer and larger nuclei, loss of cell connectivity and diffused basement membrane. When integrating these imaging features into hierarchical clustering classification, we could also identify subpopulations of phenotypes from individual human tumor colonies treated with ionizing radiation or/and integrin inhibitors. Such tools have therefore the potential to further characterize cell culture populations after cancer treatment and identify novel phenotypes of resistance.
Collapse
Affiliation(s)
- Catherine C Park
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kraehenbuehl TP, Stauber M, Ehrbar M, Weber F, Hall H, Müller R. Effects of μCT radiation on tissue engineered bone-like constructs. ACTA ACUST UNITED AC 2012; 55:245-50. [PMID: 20569050 DOI: 10.1515/bmt.2010.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-resolution, non-destructive imaging with micro-computed tomography (μCT) enables in situ monitoring of tissue engineered bone constructs. However, it remains controversial, if the locally imposed X-ray dose affects bone development and thus could influence the results. Here, we developed a model system for μCT monitoring of tissue engineered bone-like constructs. We examined the in vitro effects of high-resolution μCT imaging on the cellular level by using pre-osteoblastic MC3T3-E1 cells embedded into three-dimensional collagen type I matrices. We found no significantly reduced cell survival 2 h after irradiation with a dose of 1.9 Gy. However, 24 h post-irradiation, cell survival was significantly decreased by 15% compared to non-irradiated samples. The highest dose of 7.6 Gy decreased survival of the pre-osteoblastic MC3T3-E1 cells by around 40% at 2 days post-irradiation. No significant increase of alkaline phosphatase (ALP) activity at 2 days post-irradiation was found with a dose of 1.9 Gy. However, ALP activity was significantly decreased after 7 days. Using our model system, the results indicate that μCT imaging with doses as low as 1.9 Gy, which is required to obtain a reasonable image quality, can induce irreparable damages on the cellular level.
Collapse
|
14
|
Thimm BW, Hofmann S, Schneider P, Carretta R, Müller R. Imaging of Cellular Spread on a Three-Dimensional Scaffold by Means of a Novel Cell-Labeling Technique for High-Resolution Computed Tomography. Tissue Eng Part C Methods 2012; 18:167-75. [DOI: 10.1089/ten.tec.2011.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benjamin W. Thimm
- Department for Mechanical and Process Engineering, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Sandra Hofmann
- Department for Mechanical and Process Engineering, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Philipp Schneider
- Department for Mechanical and Process Engineering, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Roberto Carretta
- Department for Mechanical and Process Engineering, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Ralph Müller
- Department for Mechanical and Process Engineering, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Recent advances in morphological cell image analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:101536. [PMID: 22272215 PMCID: PMC3261466 DOI: 10.1155/2012/101536] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Abstract
This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.
Collapse
|
16
|
Appel A, Anastasio MA, Brey EM. Potential for imaging engineered tissues with X-ray phase contrast. TISSUE ENGINEERING. PART B, REVIEWS 2011; 17:321-30. [PMID: 21682604 PMCID: PMC3179620 DOI: 10.1089/ten.teb.2011.0230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/15/2011] [Indexed: 11/12/2022]
Abstract
As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering.
Collapse
Affiliation(s)
- Alyssa Appel
- Department of Biomedical Engineering and Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Service, Hines Veterans Administration Hospital, Hines, Illinois
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Eric M. Brey
- Department of Biomedical Engineering and Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Service, Hines Veterans Administration Hospital, Hines, Illinois
| |
Collapse
|
17
|
Abstract
This paper reviews the possibilities offered by X-ray micro-CT in bone tissue engineering. This technique provides a fast, nondestructive, and 3D quantification of bone scaffolds, bone ingrowth, and microvascularization. Synchrotron radiation absorption and phase micro-CT offer additional advantages to image newly formed bone in bioceramic scaffolds and pre-bone matrix.
Collapse
Affiliation(s)
- F Peyrin
- INSERM U1044, CREATIS; CNRS UMR 5220; INSA-Lyon, Villeurbanne, F-69621 Villeurbanne Cedex, France.
| |
Collapse
|
18
|
Cuijpers VMJI, Walboomers XF, Jansen JA. Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note. Tissue Eng Part C Methods 2011; 17:663-8. [PMID: 21375392 DOI: 10.1089/ten.tec.2010.0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In tissue engineering research, various three-dimensional (3D) techniques are available to study cell morphology, biomaterials, and their relations. To overcome disadvantages of frequently used imaging techniques, in the current study stereoimaging scanning electron microscopy (SEM) is proposed. First, the 3D SEM application was validated using a series of standardized microspheres. Thereafter, MC-3T3 cell morphology was visualized and cell parameters as cell height were quantified on titanium and calcium-phosphate materials using 3D reconstruction software. Besides 3D visualization of the cells, quantitative assessment showed significant substrate dependency of cell spreading in time. Such quantification of cell spreading kinetics can be used for optimization of tissue engineering scaffold surface properties. However, further standardization of SEM image acquisition and 3D SEM software settings are still essential for 3D cell analysis.
Collapse
|
19
|
Abstract
In nerve tissue engineering, scaffolds act as carriers for cells and biochemical factors and as constructs providing appropriate mechanical conditions. During nerve regeneration, new tissue grows into the scaffolds, which degrade gradually. To optimize this process, researchers must study and analyze various morphological and structural features of the scaffolds, the ingrowth of nerve tissue, and scaffold degradation. Therefore, visualization of the scaffolds as well as the generated nerve tissue is essential, yet challenging Visualization techniques currently used in nerve tissue engineering include electron microscopy, confocal laser scanning microscopy (CLSM), and micro-computed tomography (micro-CT or μCT). Synchrotron-based micro-CT (SRμCT) is an emerging and promising technique, drawing considerable recent attention. Here, we review typical applications of these visualization techniques in nerve tissue engineering. The promise, feasibility, and challenges of SRμCT as a visualization technique applied to nerve tissue engineering are also discussed.
Collapse
|
20
|
Zehbe R, Haibel A, Riesemeier H, Gross U, Kirkpatrick CJ, Schubert H, Brochhausen C. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to individual cells. J R Soc Interface 2010; 7:49-59. [PMID: 19324670 PMCID: PMC2839371 DOI: 10.1098/rsif.2008.0539] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/23/2009] [Indexed: 11/23/2022] Open
Abstract
Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the specimen, allowing penetration of even large specimens. Based on the projection-slice theorem, angular projections can be used for tomographic imaging. This method is well developed in medical and materials science for structure sizes down to several micrometres and is considered as being non-destructive. Achieving a spatial and structural resolution that is sufficient for the imaging of cells inside biological tissues is difficult due to several experimental conditions. A major problem that cannot be resolved with conventional X-ray sources are the low differences in density and absorption contrast of cells and the surrounding tissue. Therefore, X-ray monochromatization coupled with a sufficiently high photon flux and coherent beam properties are key requirements and currently only possible with synchrotron-produced X-rays. In this study, we report on the three-dimensional morphological characterization of articular cartilage using synchrotron-generated X-rays demonstrating the spatial distribution of single cells inside the tissue and their quantification, while comparing our findings to conventional histological techniques.
Collapse
Affiliation(s)
- Rolf Zehbe
- Institute of Materials Science and Technologies, Technische Universität Berlin, Englische Strasse 20, 10587 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Schneider P, Voide R, Stampanoni M, Müller R. Post-processing technique for improved assessment of hard tissues in the submicrometer domain using local synchrotron radiation-based computed tomography / Nachbearbeitungstechnik für eine verbesserte Erfassung harten Gewebes im Submikrometerbereich mittels lokaler synchrotronstrahlungsbasierter Computertomographie. ACTA ACUST UNITED AC 2009; 54:48-54. [DOI: 10.1515/bmt.2009.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Thevenot P, Nair A, Dey J, Yang J, Tang L. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 2008; 14:319-331. [PMID: 19055358 PMCID: PMC2913783 DOI: 10.1089/ten.tec.2008.0221] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/28/2008] [Indexed: 12/22/2022] Open
Abstract
Effective cell seeding throughout the tissue scaffold often determines the success of tissue-engineering products, although most current methods focus on determining the total number, not the distribution, of the cells associated with tissue-engineering constructs. The purpose of this investigation was to establish a quick, convenient, and efficient method to quantify cell survival, distribution, and infiltration into degradable scaffolds using a combination of fluorescence cell staining and cryosectioning techniques. After cell seeding and culture for different periods of time, seeded scaffolds were stained with a live cell dye and then cryosectioned. Cryosectioned scaffolds were then recompiled into a three-dimensional (3D) image to visualize cell behavior after seeding. To test the effectiveness of this imaging method, four common seeding methods, including static surface seeding, cell injection, orbital shaker seeding, and centrifuge seeding, were investigated for their seeding efficacy. Using this new method, we were able to visualize the benefits and drawbacks of each seeding method with regard to the cell behavior in 3D within the scaffolds. This method is likely to provide useful information to assist the development of novel materials or cell-seeding methods for producing full-thickness tissue grafts.
Collapse
Affiliation(s)
- Paul Thevenot
- Bioengineering Department, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | | | |
Collapse
|
23
|
Verboven P, Kerckhofs G, Mebatsion HK, Ho QT, Temst K, Wevers M, Cloetens P, Nicolaï BM. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography. PLANT PHYSIOLOGY 2008; 147:518-27. [PMID: 18417636 PMCID: PMC2409043 DOI: 10.1104/pp.108.118935] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/13/2008] [Indexed: 05/19/2023]
Abstract
Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.
Collapse
Affiliation(s)
- Pieter Verboven
- Division BIOSYST-MeBioS , Katholieke Universiteit Leuven, BE-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu E, Treiser MD, Johnson PA, Patel P, Rege A, Kohn J, Moghe PV. Quantitative biorelevant profiling of material microstructure within 3D porous scaffolds via multiphoton fluorescence microscopy. J Biomed Mater Res B Appl Biomater 2007; 82:284-97. [PMID: 17238159 DOI: 10.1002/jbm.b.30732] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents a novel approach, based on fluorescence multiphoton microscopy (MPM), to image and quantitatively characterize the microstructure and cell-substrate interactions within microporous scaffold substrates fabricated from synthetic biodegradable polymers. Using fluorescently dyed scaffolds fabricated from poly(DTE carbonate)/poly(DTO carbonate) blends of varying porosity and complementary green fluorescent protein-engineered fibroblasts, we reconstructed the three-dimensional distribution of the microporous and macroporous regions in 3D scaffolds, as well as cellular morphological patterns. The porosity, pore size and distribution, strut size, pore interconnectivity, and orientation of both macroscale and microscale pores of 3D scaffolds were effectively quantified and validated using complementary imaging techniques. Compared to other scaffold characterizing techniques such as confocal imaging and scanning electron microscopy (SEM), MPM enables the acquisition of images from scaffold thicknesses greater than a hundred microns with high signal-to-noise ratio, reduced bulk photobleaching, and the elimination of the need for deconvolution. In our study, the morphology and cytoskeletal organization of cells within the scaffold interior could be tracked with high resolution within the limits of penetration of MPM. Thus, MPM affords a promising integrated platform for imaging cell-material interactions within the interior of polymeric biomaterials.
Collapse
Affiliation(s)
- Er Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Peyrin F, Mastrogiacomo M, Cancedda R, Martinetti R. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications. Biotechnol Bioeng 2007; 97:638-48. [PMID: 17089389 DOI: 10.1002/bit.21249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Different biomaterials have been proposed as scaffolds for the delivery of cells and/or biological molecules to repair or regenerate damaged or diseased bone tissues. Particular attention is being given to porous bioceramics that mimic trabecular bone chemistry and structure. Chemical composition, density, pore shape, pore size, and pore interconnection are elements that have to be considered to improve the efficiency of these biomaterials. Commonly, two-dimensional (2D) systems of analysis such as scanning electron microscope (SEM) are used for the characterization and comparison of the scaffolds. Unfortunately, these systems do not allow a complete investigation of the three-dimensional (3D) spatial structure of the scaffold. In this study, we have considered two different techniques, that is, SEM and 3D synchrotron radiation (SR) micro-CT to extract information on the geometry of two hydroxyapatite (HA) bioceramics with identical chemical composition but different micro-porosity, pore size distribution, and pore interconnection pathway. The two scaffolds were obtained with two different procedures: (a) sponge matrix embedding (scaffold FB), and (b) foaming (scaffold EP). Both scaffolds showed structures suitable for tissue-engineering applications, but scaffold EP appeared superior with regard to interconnection of pores, surface on which the new bone could be deposited, and percentage of volume available to bone deposition.
Collapse
|