1
|
Ramzan M, Parveen M, Naz G, Sharif HMA, Nazim M, Aslam S, Hussain A, Rahimi M, Alamer KH. Enhancing physio-biochemical characteristics in okra genotypes through seed priming with biogenic zinc oxide nanoparticles synthesized from halophytic plant extracts. Sci Rep 2024; 14:23753. [PMID: 39390085 PMCID: PMC11467185 DOI: 10.1038/s41598-024-74129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Poor seedling germination and growth can result in large financial losses for farmers, thus, there is an urgent need for sustainable agricultural techniques to enhance seed germination and early growth. As an outcome, sustainable agriculture-which emphasizes the smart and effective utilization of resources-has gained popularity worldwide. At numerous levels, the field of nanotechnology is capable of significant benefit in achieving sustainable agricultural practices. Zinc oxide nanoparticles (ZnO NPs) have been shown to have biostimulatory properties and serve as effective solutions for addressing environmental and biotic stressors. The purpose of this study, investigating Salvadora persica halophytic leaf extract -synthesized zinc oxide nanoparticles (S-ZnONPs) as nano-priming agents to ensure okra seeds germinated under stress-free conditions. From an application perspective, we examined the effect of seed priming with varying concentrations of S-ZnO NPs (0, 20 and 40 ppm) for 18 and 24 h of soaking. Results indicated that the germination rate of hybrid variety improved with 20 ppm at 18 h, increasing by 58.22%, while mean germination time reduced by 24.62%. An enhancement trend was observed in the shoot, root length, shoot and root fresh weight, shoot and root dry weight of hybrid variety at 20ppm with 18 h priming by 34.2, 84.3, 80.2, 47.4, 50.3, and 36.2%, respectively. However, chlorophyll pigments chl a, chl b, and carotenoids was significantly raised in desi variety by 42.4, 79.31, and 142.29% with 20 ppm at 18 h priming. Hydrogen per oxide decreased up to 87.8% with 40 ppm at 24 h in hybrid variety, while, in desi variety H2O2 was reduced 88.3% with 20 ppm at 24 h. Non enzymatic antioxidant activities such as ascorbic acid, was highly increased 130.6% in hybrid at 24 h priming with 20 ppm dose. Flavonoids raised in same variety by 166.1% with 20 ppm at 18 h. Proline content was increased by 144.5% with 40ppm at 18 h. Moreover, Antioxidant enzymes, superoxide dismutase, peroxidase and catalase were significantly increased in both varieties with both levels of S-ZnO NPs and priming time. This cost-effective and environmentally safe technique to produce nanoparticles of different halophytic plants can maximize resource utilization, supporting sustainable agriculture by minimizing adverse environmental effects without compromising efficiency.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Misbah Parveen
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Gul Naz
- Institute of Physics and Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Muhammad Nazim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, PR China.
| | - Sidra Aslam
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abida Hussain
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
2
|
García-Locascio E, Valenzuela EI, Cervantes-Avilés P. Impact of seed priming with Selenium nanoparticles on germination and seedlings growth of tomato. Sci Rep 2024; 14:6726. [PMID: 38509209 PMCID: PMC10954673 DOI: 10.1038/s41598-024-57049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.
Collapse
Affiliation(s)
- Ezequiel García-Locascio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Edgardo I Valenzuela
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México.
| |
Collapse
|
3
|
Ban Y, Tan J, Xiong Y, Mo X, Li W, Jia C, Ding Y, Xu Z. The responses and detoxification mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13773-13787. [PMID: 36149553 DOI: 10.1007/s11356-022-23099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
To understand the tolerance mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles (CuO-NPs) with different sizes (40 and 150 nm), we investigated the morphology, antioxidant response, Cu subcellular distribution, and the melanin gene expression in the mycelia of E. salmonis. E. salmonis was cultured in liquid and solid media under the stress of increasing CuO-NP concentrations (0, 50, 100, 150, and 250 mg/L). Results showed that (1) E. salmonis showed good CuO-NP tolerance, and the tolerance to CuO-NPs at 150 nm was stronger than that at 40 nm. A large number of agglomeration structures were observed on the mycelia surface with the exception of 50 mg/L CuO-NPs with a diameter of 150 nm. (2) CuO-NP stress significantly stimulated the production of antioxidant enzymes, particularly the CuO-NPs with small particle size (40 nm). (3) Cu uptaken by E. salmonis increased proportionally with the increase of CuO-NP concentration in the medium. More than 80% Cu was absorbed in cell wall of mycelia treated with a small particle size (40 nm). (4) FTIR analysis revealed that hydroxyl, amine, carboxyl, and phosphate groups were associated with CuO-NP binding regardless of particle size. (5) Fungal melanin content increased with the addition of CuO-NPs; the increase of melanin induced by CuO-NPs with small particle size (40 nm) was more significant. (6) The expression of 1,3,6,8-tetrahydroxynaphthalene reductase (Arp2) in the melanin synthesis pathway increased under the stress of CuO-NPs, and CuO-NPs with a small particle size (40 nm) caused a significant change in the expression level of Arp2 gene than those with a large particle size (150 nm). In conclusion, E. salmonis had a strong tolerance to CuO-NPs and mitigated the toxic effects of CuO-NPs through the antioxidant system, the expression of genes related to melanin synthesis, and the synthesis of melanin.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chenyue Jia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yiwen Ding
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Cervantes-Avilés P, Caretta CA, Brito EMS, Bertin P, Cuevas-Rodríguez G, Duran R. Changes in bacterial diversity of activated sludge exposed to titanium dioxide nanoparticles. Biodegradation 2021; 32:313-326. [PMID: 33811584 DOI: 10.1007/s10532-021-09939-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
The rapid growth of the use of nanomaterials in different modern industrial branches makes the study of the impact of nanoparticles on the human health and environment an urgent matter. For instance, it has been reported that titanium dioxide nanoparticles (TiO2 NPs) can be found in wastewater treatment plants. Previous studies have found contrasting effects of these nanoparticles over the activated sludge process, including negative effects on the oxygen uptake. The non-utilization of oxygen reflects that aerobic bacteria were inhibited or decayed. The aim of this work was to study how TiO2 NPs affect the bacterial diversity and metabolic processes on an activated sludge. First, respirometry assays of 8 h were carried out at different concentrations of TiO2 NPs (0.5-2.0 mg/mL) to measure the oxygen uptake by the activated sludge. The bacterial diversity of these assays was determined by sequencing the amplified V3-V4 region of the 16S rRNA gene using Illumina MiSeq. According to the respirometry assays, the aerobic processes were inhibited in a range from 18.5 ± 4.8% to 37.5 ± 2.0% for concentrations of 0.5-2.0 mg/mL TiO2 NPs. The oxygen uptake rate was affected mainly after 4.5 h for concentrations higher than 1.0 mg/mL of these nanoparticles. Results indicated that, in the presence of TiO2 NPs, the bacterial community of activated sludge was altered mainly in the genera related to nitrogen removal (nitrogen assimilation, nitrification and denitrification). The metabolic pathways prediction suggested that genes related to biofilm formation were more sensitive than genes directly related to nitrification-denitrification and N-assimilation processes. These results indicated that TiO2 NPs might modify the bacteria diversity in the activated sludge according to their concentration and time of exposition, which in turn impact in the performance of the wastewater treatment processes.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Departamento de Ingeniería Civil and Ambiental, DI-CGT, Universidad de Guanajuato, Av. Juárez 77, Col. Centro, 36000, Guanajuato, Gto, Mexico.,Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcayotl, vía Atlixcayotl 5718, 72453, Puebla, Pue, Mexico
| | - César Augusto Caretta
- Departamento de Astronomía, DCNE-CGT, Universidad de Guanajuato, Callejón de Jalisco S/N, Col. Valenciana, 36023, Guanajuato, Gto, Mexico
| | - Elcia Margareth Souza Brito
- Departamento de Ingeniería Civil and Ambiental, DI-CGT, Universidad de Guanajuato, Av. Juárez 77, Col. Centro, 36000, Guanajuato, Gto, Mexico.
| | - Pierre Bertin
- Institut de Biologie Intégrative de la Cellule, Université Paris Sud, Batiment 400, 91400, Orsay, France
| | - Germán Cuevas-Rodríguez
- Departamento de Ingeniería Civil and Ambiental, DI-CGT, Universidad de Guanajuato, Av. Juárez 77, Col. Centro, 36000, Guanajuato, Gto, Mexico
| | - Robert Duran
- Equipe Environment et Microbiologie, MELODY Group, IPREM UMR CNRS 5254, Université de pau et des pays de l'Adour, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
5
|
Dobretsov S, Sathe P, Bora T, Barry M, Myint MTZ, Abri MA. Toxicity of Different Zinc Oxide Nanomaterials at 3 Trophic Levels: Implications for Development of Low-Toxicity Antifouling Agents. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1343-1354. [PMID: 32274816 DOI: 10.1002/etc.4720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Because zinc oxide (ZnO) nanomaterials are used in antifouling and antibacterial solutions, understanding their toxic effects on different aquatic organisms is essential. In the present study, we evaluated the toxicity of ZnO nanoparticles of 10 to 30 nm (ZnONPI) and 80 to 200 nm (ZnONPII), ZnO nanorods (width 80 nm, height 1.7 µm) attached to the support substrate (glass, ZnONRG) and not attached (ZnONRS), as well as Zn2+ ions at concentrations ranging from 0.5 to 100 mg/L. Toxicity was evaluated using the microalga Dunaliella salina, the brine shrimp Artemia salina, and the marine bacterium Bacillus cereus. The highest toxicity was observed for ZnONPs (median lethal concentration [LC50] ~15 mg/L) and Zn2+ ions (LC50 ~13 mg/L), whereas the lowest toxicity found for ZnO nanorods (ZnONRG LC50 ~60 mg/L; ZnONRS LC50 ~42 mg/L). The presence of the support substrate in case of ZnO nanorods reduced the associated toxicity to aquatic organisms. Smaller ZnONPs resulted in the highest Zn2+ ion dissolution among tested nanostructures. Different aquatic organisms responded differently to ZnO nanomaterials, with D. salina and B. cereus being more sensitive than A. salina. Toxicity of nanostructures increased with an increase of the dose and the time of exposure. Supported ZnO nanorods can be used as a low-toxicity alternative for future antimicrobial and antifouling applications. Environ Toxicol Chem 2020;39:1343-1354. © 2020 SETAC.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Priyanka Sathe
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Center of Nanotechnology, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Tanujjal Bora
- Nanotechnology Industrial System Engineering, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani, Thailand
| | - Michael Barry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mohammed Al Abri
- Center of Nanotechnology, Sultan Qaboos University, Muscat, Sultanate of Oman
- Petroleum and Chemical Engineering Department, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
6
|
Ray SK, Dhakal D, Hur J, Lee SW. Visible light driven MoS 2/α-NiMoO 4 ultra-thin nanoneedle composite for efficient Staphylococcus aureus inactivation. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121553. [PMID: 31818659 DOI: 10.1016/j.jhazmat.2019.121553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 05/07/2023]
Abstract
MoS2/α-NiMoO4 ultra-thin nanoneedle composite was synthesized by microwave hydrothermal process in one step. The nanocomposite revealed the complete destruction of multidrug resistant Staphylococcus aureus (S. aureus) within 150 min under visible light irradiation. According to electron spin resonance measurement and radical trapping experiment, it has been established that O2¯ acts as a major active species for bacterial inactivation in visible light. The bacterial inactivation was further proved by membrane deformities in bacterial cell membrane, DNA fragmentation, and protein destruction. TEM- elemental mapping confirms the inactivation of S. aureus by reactive oxygen species (ROS) but not the toxicity of photocatalyst. Transient photocurrent responses, electrochemical impedance spectroscopy, and cyclic voltammetry measurements reveal the efficient separation of electron-hole pairs in the composite photocatalyst. The composite photocatalyst shows greater ROS production, higher degree of DNA fragmentation and protein degradation, detrimental effects on the morphology of the bacterial cell wall, outstanding transient photocurrent responses, reduction of interfacial charge transfer resistance, superb oxidation/reduction potential, strong visible light absorption, and adequate separation of photogenerated electron-hole pairs as compared to host photocatalyst. The photocatalytic inactivation mechanism was explained. So, this promising composite photocatalyst can be applied for inactivation of multidrug resistant bacteria in biological waste water.
Collapse
Affiliation(s)
- Schindra Kumar Ray
- Department of Environment and Energy, Sejong University, Seoul 143-747, Republic of Korea.
| | - Dipesh Dhakal
- Department of Life Science and Bio-chemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 143-747, Republic of Korea
| | - Soo Wohn Lee
- Department of Environmental and Bio-chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
7
|
Effects of Four Kinds of Oxide Nanoparticles on Proteins in Extracellular Polymeric Substances of Sludge. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1754134. [PMID: 32190651 PMCID: PMC7072109 DOI: 10.1155/2020/1754134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 11/18/2022]
Abstract
Proteins are the most important component in sludge extracellular polymeric substances (EPS) and play a crucial role in the formation of sludge flocs, adsorption performance of sludge, and flocculation ability of sludge. This research is aimed at exploring the changes in proteins in EPS extracted from concentrated sludge after various nanoparticle (NP) treatments. The results showed that the protein content in EPS decreased by 40% after nanoalumina (Al2O3 NPs) treatment but increased at varying degrees after nanoferric oxide (Fe3O4 NPs), nanozinc oxide (ZnO NPs), and nanotitanium dioxide (TiO2 NPs) treatments. The four kinds of nanoparticles not only affected the protein content in EPS but also influenced the types and structures of proteins. The results of three-dimensional fluorescence spectroscopy showed that the tyrosine-like protein content in soluble EPS (SEPS) decreased after treatments with four kinds of NPs. Infrared spectroscopy analysis revealed that the absorption intensity of amide I and amide II weakened after Al2O3 NP treatment, whereas that of amide I enhanced after Fe3O4 NP, ZnO NP, and TiO2 NP treatments. Further analysis of the secondary structure of proteins in the infrared range of 1700–1600 cm−1 demonstrated that the value of α-helix/(β-sheet+random coil) decreased from 0.513 to 0.383 in SEPS after TiO2 NP treatment. For the samples treated by Fe3O4 NPs, the percentage of α-helix significantly increased and that of β-sheet slightly decreased in proteins from SEPS and loosely bound EPS.
Collapse
|
8
|
Cervantes-Avilés P, Huang Y, Keller AA. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater. WATER RESEARCH 2019; 166:115072. [PMID: 31525511 DOI: 10.1016/j.watres.2019.115072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The concentration of silver nanoparticles (nano-Ag) in aqueous media influences the kinetics of ion release; hence, the transformation and stability of nano-Ag are also influenced. The stability, dissolution and further transformation of nano-Ag in aqueous media at predicted environmental concentrations (PECs) ≤ μg/L may differ from that reported at higher concentrations. Analytical techniques characterizing nanoparticles (NPs) at μg/L have advantages and limitations, including an inherent bias based on theoretical and analytical considerations, as well as the matrix effects. In this work, we applied nanoparticle tracking analysis (NTA), single particle ICP-MS (sp-ICP-MS), and localized surface plasmon resonance (LSPR) analysis to study the stability and dissolution of nano-Ag with different nominal sizes (20, 40, 80 and 100 nm) at PECs in synthetic wastewater (SWW). The influence of the main wastewater constituents, such as organic matter, Cl-, S2-, PO43- and NH4+, on the stability and dissolution of nano-Ag (40 nm) at PECs was also determined. Diagrams of the predominant species of silver exposed to major ligands were generated using MINTEQ. After 5 h in SWW, 20 nm nano-Ag dissolved 19.27% and 40 nm nano-Ag dissolved 14.8%. Aggregates of Ag particles were clearly noted for 80 and 100 nm nano-Ag after 5 h of exposure to SWW. Aggregates size also ranged very similar for both techniques, NTA and sp-ICP-MS, 29-211 nm and 38-241 for NTA and 48-210 and 50-220 nm, for sp-ICP-MS, respectively. Monodispersed size distribution (22-85 nm) and low dissolution (up to 5.1%) of nano-Ag at PECs were observed in presence of organic matter (5-800 μg/L) and PO43- (9.5-47.5 mg/L), while precipitation and higher dissolution (up to 74.9%) were observed in media containing either Cl- (0.07-10.64 g/L), S2- (0.32-32.1 mg/L) or NH4+ (36-90 mg/L), respectively. Speciation diagrams predict the formation of Ag2S(s) and AgCl(s), and soluble species such as AgClx(x-1)-, AgNH3+ and Ag(NH3)2+ when Ag+ at PECs in wastewater. The NTA and sp-ICP-MS were suitable techniques for sizing nano-Ag in wastewater at PECs at experimented nominal sizes. sp-ICP-MS was also useful to quantify the coexistence of Ag+ and nano-Ag. The LSPR analysis served to determine the relative persistence of original nano-Ag at PECs in the wastewater during the first 5 h after spiking.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; UC Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, 93106, USA
| | - Yuxiong Huang
- UC Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, 93106, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; UC Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Cervantes-Avilés P, Huang Y, Keller AA. Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. WATER RESEARCH 2019; 156:188-198. [PMID: 30913422 DOI: 10.1016/j.watres.2019.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/23/2023]
Abstract
While the predicted or observed concentrations of Ag NPs in wastewater treatment plants (WWTPs) have ranged from μg/L to ng/L, there is still uncertainty with regards to the realistic concentration range of Ag NPs in WWTPs. In addition, the persistence, removal, and size of Ag NPs throughout WWTP process is also not well investigated, particularly in real operating conditions. In this study, the incidence and persistence of Ag NPs in the wastewater process were studied by using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The incidence of Ag NPs was determined in samples collected at the influent and effluent of the conventional process, as well as reclaimed and backwash waters of the ultrafiltration (UF) system in a WWTP (Santa Barbara, CA), showing a concentration of 13.5, 3.2, 0.5 and 9.8 ng/L, respectively, with relative standard deviations (RSDs) < 5%. Total Ag concentration (Ag NP and Ag+) ranged from 40 to 70 ng/L, in line with lower predicted values. Most of the Ag NPs detected were below 100 nm, with a few above 100 nm in the conventional effluent. Biological and physical processes in the secondary treatment removed 76.3% of the colloidal Ag fraction, while with the tertiary treatment (UF) the WWTP achieved a removal of 96.3% of the colloidal fraction. Persistence of Ag NPs in various water matrixes, including a synthetic wastewater (SWW), was determined by spiking 300 ng/L of Ag NPs (40 nm) and monitoring the concentrations and size change for 15 days. The persistence of Ag NPs in suspension was Influent > Effluent > Reclaimed > SWW. Partial dissolution of NPs in all waters was observed from time 0 h. Although the current concentrations in the outlet flows from WWTP (effluent and reclaimed waters) were low, the presence of small and stable Ag NPs may raise ecotoxicological concerns via bioaccumulation.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA
| | - Yuxiong Huang
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
10
|
Cervantes-Avilés P, Ida J, Toda T, Cuevas-Rodríguez G. Effects and fate of TiO 2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:227-233. [PMID: 29857315 DOI: 10.1016/j.jenvman.2018.05.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/05/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of TiO2 nanoparticles (NPs) in customer products has also increased the concerns about their effects in the environment. Anaerobic digestion is a process probably exposed to high concentrations of TiO2 NPs due to its application for wastewater and waste sludge treatment. In this work, it was studied the anaerobic digestion performance and the extracellular polymeric substances (EPS) production in presence of TiO2 NPs, as well as the fate of TiO2 NPs in anaerobic reactors. Results showed that methane production enhanced an average of 14.9% in presence TiO2 NPs, which is considered a positive effect. A strong affinity between TiO2 NPs and EPS was found, especially for proteins (PRO) and polysaccharides (PS) in the loosely and tightly bound EPS layers of microorganisms (LB-EPS and TB-EPS). Ti quantification indicated that 92% of the TiO2 NPs are removed by anaerobic sludge, while 8% remain in the treated effluent.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, 2336 Bren Hall, University of California, Santa Barbara, CA, 93106, USA.
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University. 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Tatsuki Toda
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University. 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato. Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, Mexico
| |
Collapse
|