1
|
Feng P, Zhang X, Gao J, Jiang L, Li Y. The Roles of Exosomes in Anti-Cancer Drugs. Cancer Med 2025; 14:e70897. [PMID: 40298189 PMCID: PMC12038748 DOI: 10.1002/cam4.70897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Cancer is an escalating global health issue, with rising incidence rates annually. Chemotherapy, a primary cancer treatment, often exhibits low tumor-targeting efficiency and severe side effects, limiting its effectiveness. Recent research indicates that exosomes, due to their immunogenicity and molecular delivery capabilities, hold significant potential as drug carriers for tumor treatment. METHODS This review summarizes the current status, powerful therapeutic potential, and challenges of using exosomes for the treatment of tumors. RESULTS Exosomes are crucial in tumor diagnosis, onset, and progression. To improve the efficacy of exosome-based treatments, researchers are exploring various biological, physical, and chemical approaches to engineer exosomes as a new nanomedicine translational therapy platform with broad and alterable therapeutic capabilities. Numerous clinical trials are currently underway investigating the safety and tolerability of exosomes carrying drugs to specific sites for the treatment of tumors. CONCLUSIONS Exosomes can be engineered as carriers to deliver therapeutic molecules to specific cells and tissues, offering a novel approach for disease treatment.
Collapse
Affiliation(s)
- Panpan Feng
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiaodong Zhang
- Department of General SurgeryBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jian Gao
- Science Experiment Center of China Medical UniversityShenyangChina
| | - Lei Jiang
- Department of General SurgeryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yan Li
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Liaoning Provincial Key Laboratory of Clinical Oncology MetabonomicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
2
|
Deng W, Zhu X, Li H, Hu P, Qian K, Liu F. Lung Tissue Extracellular Vesicles-Mediated Delivery of miR-128-3p as a Novel Mechanism of Acute Lung Inflammation. Int J Nanomedicine 2025; 20:4831-4848. [PMID: 40255671 PMCID: PMC12009125 DOI: 10.2147/ijn.s510241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
Background Emerging evidence links macrophage overactivation to sepsis-associated acute lung injury (ALI), yet the role of lung tissue-derived extracellular vesicles (Ti-EVs) in this process remains unclear. This study combines transcriptomic profiling and functional validation to reveal how Lung Ti-EVs mediate macrophage polarization through miRNA-dependent NLRP3 inflammasome activation. Methods We established a sepsis mouse model, extracted and characterized lung tissue-derived EVs, performed high-throughput transcriptome sequencing and bioinformatics analysis. Intratracheal administration of these EVs to wild-type C57BL/6 mice revealed their effects on pulmonary inflammation, macrophage polarization, and proliferation. In vitro co-culture experiments with Raw264.7 macrophages further validated these findings and explored underlying mechanisms. Results We identified extracellular vesicles (EVs) enriched in lung tissues from septic ALI mice, selectively carrying miRNAs including miR-128-3p. In vivo administration of these EVs exacerbated pulmonary inflammation by expanding M1 macrophage populations, while in vitro experiments demonstrated EV-mediated miR-128-3p delivery to macrophages stimulated TNF-α and IL-6 production. Mechanistically, miR-128-3p promoted macrophage proliferation and inflammatory responses by targeting Rab20.
Collapse
Affiliation(s)
- Wei Deng
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoping Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hang Li
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ping Hu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Kejian Qian
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fen Liu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
3
|
Ji Y, Li R, Tang G, Wang W, Chen C, Yang Q. The interrelated roles of RAB family proteins in the advancement of neoplastic growth. Front Oncol 2025; 15:1513360. [PMID: 40196733 PMCID: PMC11974252 DOI: 10.3389/fonc.2025.1513360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rab Proteins, A Subfamily Of The Ras Superfamily Of Small Gtpases, Are Critical Regulators Of Intracellular Vesicular Trafficking, Which Is Intricately Linked To Various Cellular Processes. These Proteins Play Essential Roles Not Only In Maintaining Cellular Homeostasis But Also In Mediating The Complex Interplay Between Cancer Cells and Their Microenvironment. Rab Proteins Can Act As Either Oncogenic Factors Or Tumor Suppressors, With Their Functions Highly Dependent On The Cellular Context. Mechanistic Studies Have Revealed That Rab Proteins Are Involved In A Variety Of Processes, Including Vesicular Transport, Tumor Microenvironment Regulation, Autophagy, Drug Resistance, and Metabolic Regulation, and Play Either A Promotional Or Inhibitory Role In Cancer Development. Consequently, Targeting Rab Gtpases To Restore Dysregulated Vesicular Transport Systems May Offer A Promising Therapeutic Strategy To Inhibit Cancer Progression. However, It Is Equally Important To Consider The Potential Risks Of Disrupting Rab Functions, As Their Roles Are Highly Context-Dependent and May Have Opposing Effects In Different Malignancies. This Review Focuses On The Multifaceted Involvement Of Rab Family Proteins In Cancer Progression Underscores Their Importance As Potential Therapeutic Targets and Underscores The Need For A Deeper Understanding Of Their Complex Roles In Tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
4
|
Lu P, Yang L, Chen W, Li K, Chen X, Qu S. Four-dimensional trapped ion mobility spectrometry proteomics reveals circulating extracellular vesicles encapsulated drivers of nasopharyngeal carcinoma distant dissemination. Talanta 2025; 282:126907. [PMID: 39341061 DOI: 10.1016/j.talanta.2024.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with a high propensity for early metastatic spread. Emerging evidence shows that extracellular vesicles (EVs) are key players in cancer metastasis, but their role in NPC metastasis remains poorly understood. We here present the first description of the proteomic and functional profiles of serum-derived circulating small EVs in metastatic NPC patients. To enhance the capture of low-abundance signaling proteins in EVs, timsTOF-based four-dimensional label-free quantitative proteomics was employed. We found that metastatic NPC patients (M-NPC-EVs) exhibited the highest serum EV levels compared to locoregional patients (L-NPC-EVs) and healthy subjects (Normal-EVs). The proteome of M-NPC-EVs differed substantially from L-NPC-EVs and was functionally enriched in pathways regulating cell polarity and motility, glucose metabolism, and angiogenesis. Functional assays testing individual EV samples demonstrated that M-NPC-EVs pronouncedly enhanced NPC cell migration, invasion, and the formation of lamellipodia and filopodia in vitro, and promoted angiogenesis in subcutaneous Matrigel plugs in vivo. In silico analyses suggested that PTPRA, TPI1 and GPI highly enriched in M-NPC-EVs were putative drivers underlying the motogenic and angiogenic activities of M-NPC-EVs, and their high expression levels were associated with a poor prognosis of NPC patients. The increased expression of PTPRA, TPI1 and GPI in M-NPC-EVs was then validated in an independent cohort consisting of 175 NPC patients (locoregional n = 114; metastatic n = 61). Together, utilizing patient-derived EVs, we mimicked the potential pro-metastatic functions of EVs in NPC patients in vitro and in vivo and provided novel insights into their bioactive cargoes.
Collapse
Affiliation(s)
- Pingan Lu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Liu Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Weiling Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Xuxia Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Nasopharyngeal Carcinoma Clinical Research Center, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
6
|
Zhao J, Zhu W, Mao Y, Li X, Ling G, Luo C, Zhang P. Unignored intracellular journey and biomedical applications of extracellular vesicles. Adv Drug Deliv Rev 2024; 212:115388. [PMID: 38969268 DOI: 10.1016/j.addr.2024.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The intracellular journey of extracellular vesicles (EVs) cannot be ignored in various biological pathological processes. In this review, the biogenesis, biological functions, uptake pathways, intracellular trafficking routes, and biomedical applications of EVs were highlighted. Endosomal escape is a unique mode of EVs release. When vesicles escape from endosomes, they avoid the fate of fusing with lysosomes and being degraded, thus having the opportunity to directly enter the cytoplasm or other organelles. This escape mechanism is crucial for EVs to deliver specific signals or substances. The intracellular trafficking of EVs after endosomal escape is a complex and significant biological process that involves the coordinated work of various cellular structures and molecules. Through the in-depth study of this process, the function and regulatory mechanism of EVs are fully understood, providing new dimensions for future biomedical diagnosis and treatment.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wenjing Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuxuan Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Long Q, Huang C, Zhang L, Jiang H, Zhao S, Zhang L, Zheng X, Ou S, Gu H. A novel tissue-engineered corneal epithelium based on ultra-thin amniotic membrane and mesenchymal stem cells. Sci Rep 2024; 14:17407. [PMID: 39075142 PMCID: PMC11286932 DOI: 10.1038/s41598-024-68219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.
Collapse
Affiliation(s)
- Qiurong Long
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Chao Huang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Liying Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Hao Jiang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Su Zhao
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Lingli Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueer Zheng
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangkun Ou
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| | - Hao Gu
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA. Cancer EV stimulate endothelial glycolysis to fuel protein synthesis via mTOR and AMPKα activation. J Extracell Vesicles 2024; 13:e12449. [PMID: 39001708 PMCID: PMC11245686 DOI: 10.1002/jev2.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 07/15/2024] Open
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status.
Collapse
Affiliation(s)
- Joël E. J. Beaumont
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Lydie M. O. Barbeau
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Jinzhe Ju
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Kim G. Savelkouls
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Marijke I. Zonneveld
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Kim R. Kampen
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
- Laboratory for Disease Mechanisms in CancerDepartment of Oncology, KU LeuvenLeuvenBelgium
- Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Tom G. H. Keulers
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
9
|
Ruan Y, Qiao J, Wang J, Liu Z. NREP, transcriptionally upregulated by HIF-1α, aggravates breast cancer cell growth and metastasis by promoting glycolysis. Cell Death Discov 2024; 10:210. [PMID: 38697993 PMCID: PMC11066005 DOI: 10.1038/s41420-024-01951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Breast cancer (BC) poses a great threat to women's health. Neuronal regeneration related protein (NREP) is a multifunctional protein that is involved in embryonic development, regeneration, and human disease. However, the biological function of NREP in tumors is rarely reported and its role in BC remains unknown. Bioinformatics analysis showed that NREP is highly expressed and closely correlated with poor survival in BC patients. Under hypoxic conditions, NREP was upregulated in BC cells, and this promotion was reversed by hypoxia-inducible factor HIF-1α suppression. Luciferase reporter system and chromatin immunoprecipitation assays confirmed that HIF-1α directly binds to the promoter of NREP to increase the transcriptional activity of NREP. NREP suppression inhibited cell proliferation, arrested the cell cycle at the G1/S phase, and promoted apoptosis and caspase-3 activity in BC cells. Suppression of NREP decreased the tube formation ability of HUVECs. In addition, NREP downregulation showed an inhibition effect on cell migration, invasion, and EMT of BC cells. In NREP overexpressed cells, all these changes were reversed. In vivo, animal experiments also confirmed that NREP promotes BC tumor growth and metastasis. In addition, NREP promoted cellular glycolysis and enhanced the levels of glucose consumption, ATP, lactate production, and glucose transporters expression in NREP-overexpressed BC cells. In summary, our results demonstrated that NREP could be transcriptional activated by HIF-1α, which may aggravate BC tumor growth and metastasis by promoting cellular glycolysis. This result suggested that NREP may play an essential part in BC progression.
Collapse
Affiliation(s)
- Yuxia Ruan
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jianghua Qiao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jiabin Wang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
10
|
Xu J, Zhao Y, Chen Z, Wei L. Clinical Application of Different Liquid Biopsy Components in Hepatocellular Carcinoma. J Pers Med 2024; 14:420. [PMID: 38673047 PMCID: PMC11051574 DOI: 10.3390/jpm14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, usually occurring in the background of chronic liver disease. HCC lethality rate is in the third highest place in the world. Patients with HCC have concealed early symptoms and possess a high-level of heterogeneity. Once diagnosed, most of the tumors are in advanced stages and have a poor prognosis. The sensitivity and specificity of existing detection modalities and protocols are suboptimal. HCC calls for more sophisticated and individualized therapeutic regimens. Liquid biopsy is non-invasive, repeatable, unaffected by location, and can be monitored dynamically. It has emerged as a useable aid in achieving precision malignant tumor treatment. Circulating tumor cells (CTCs), circulating nucleic acids, exosomes and tumor-educated platelets are the commonest components of a liquid biopsy. It possesses the theoretical ability to conquer the high heterogeneity and the difficulty of early detection for HCC patients. In this review, we summarize the common enrichment techniques and the clinical applications in HCC for different liquid biopsy components. Tumor recurrence after HCC-related liver transplantation is more insidious and difficult to treat. The clinical use of liquid biopsy in HCC-related liver transplantation is also summarized in this review.
Collapse
Affiliation(s)
| | | | | | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China; (J.X.); (Y.Z.); (Z.C.)
| |
Collapse
|
11
|
Li Y, Zheng Y, Tan X, Du Y, Wei Y, Liu S. Extracellular vesicle-mediated pre-metastatic niche formation via altering host microenvironments. Front Immunol 2024; 15:1367373. [PMID: 38495881 PMCID: PMC10940351 DOI: 10.3389/fimmu.2024.1367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
The disordered growth, invasion and metastasis of cancer are mainly attributed to bidirectional cell-cell interactions. Extracellular vesicles (EVs) secreted by cancer cells are involved in orchestrating the formation of pre-metastatic niches (PMNs). Tumor-derived EVs mediate bidirectional communication between tumor and stromal cells in local and distant microenvironments. EVs carrying mRNAs, small RNAs, microRNAs, DNA fragments, proteins and metabolites determine metastatic organotropism, enhance angiogenesis, modulate stroma cell phenotypes, restructure the extracellular matrix, induce immunosuppression and modify the metabolic environment of organs. Evidence indicates that EVs educate stromal cells in secondary sites to establish metastasis-supportive microenvironments for seeding tumor cells. In this review, we provide a comprehensive overview of PMN formation and the underlying mechanisms mediated by EVs. Potential approaches to inhibit cancer metastasis by inhibiting the formation of PMNs are also presented.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Li Y, Pan B, Zhang F, Jia X, Zhu X, Tong X, Zhao J, Li C. TPI1 promotes MAPK/ERK-induced EMT, cell migration and invasion in lung adenocarcinoma. Thorac Cancer 2024; 15:327-338. [PMID: 38130074 PMCID: PMC10834191 DOI: 10.1111/1759-7714.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Triosephosphate isomerase 1 (TPI1), as a widely involved glycolytic enzyme, plays a significant role in glucose metabolism and is highly expressed in various tumors. However, its role in lung adenocarcinoma (LUAD) remains incompletely understood. METHODS Through bioinformatic analysis, we identified a positive association between high expression of TPI1 and metastasis in LUAD. Western blot, RT-qPCR, wound healing assays and transwell experiments, were employed to investigate potential mechanisms. RESULTS In this study, bioinformatic analysis showed that high expression of TPI1 was associated with poor prognosis in LUAD patients. We examined the expression of TPI1 in 29 paired LUAD tissues and found that TPI1 expression was higher in LUAD tissues than in paired adjacent noncancerous tissues. Meanwhile, overexpression of TPI1 promoted the epithelial-mesenchymal transition (EMT) process in LUAD cells, while silencing TPI1 weakened the EMT process. Furthermore, TPI1 was shown to regulate EMT through the MAPK/ERK signaling pathway. CONCLUSION TPI1 promotes LUAD metastasis by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bin Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Cardiothoracic SurgeryPeople's Hospital Affiliated to Jiangsu UniversityZhenjiangChina
| | | | - Xinyu Jia
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinyu Zhu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Tong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chang Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
13
|
Li JD, Chen Y, Jing SW, Wang LT, Zhou YH, Liu ZS, Song C, Li DZ, Wang HQ, Huang ZG, Dang YW, Chen G, Luo JY. Triosephosphate isomerase 1 may be a risk predictor in laryngeal squamous cell carcinoma: a multi-centered study integrating bulk RNA, single-cell RNA, and protein immunohistochemistry. Eur J Med Res 2023; 28:591. [PMID: 38102653 PMCID: PMC10724924 DOI: 10.1186/s40001-023-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Shu-Wen Jing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Li-Ting Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yu-Hong Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Da-Zhi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Hai-Quan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
| |
Collapse
|
14
|
Papadakos SP, Arvanitakis K, Stergiou IE, Vallilas C, Sougioultzis S, Germanidis G, Theocharis S. Interplay of Extracellular Vesicles and TLR4 Signaling in Hepatocellular Carcinoma Pathophysiology and Therapeutics. Pharmaceutics 2023; 15:2460. [PMID: 37896221 PMCID: PMC10610499 DOI: 10.3390/pharmaceutics15102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a significant contributor to global cancer-related mortality. Chronic inflammation, often arising from diverse sources such as viral hepatitis, alcohol misuse, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH), profoundly influences HCC development. Within this context, the interplay of extracellular vesicles (EVs) gains prominence. EVs, encompassing exosomes and microvesicles, mediate cell-to-cell communication and cargo transfer, impacting various biological processes, including inflammation and cancer progression. Toll-like receptor 4 (TLR4), a key sentinel of the innate immune system, recognizes both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), thereby triggering diverse signaling cascades and pro-inflammatory cytokine release. The intricate involvement of the TLR4 signaling pathway in chronic liver disease and HCC pathogenesis is discussed in this study. Moreover, we delve into the therapeutic potential of modulating the TLR4 pathway using EVs as novel therapeutic agents for HCC. This review underscores the multifaceted role of EVs in the context of HCC and proposes innovative avenues for targeted interventions against this formidable disease.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Stavros Sougioultzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
15
|
Li Y, Shen X. Cadmium Exposure Affects Serum Metabolites and Proteins in the Male Guizhou Black Goat. Animals (Basel) 2023; 13:2705. [PMID: 37684969 PMCID: PMC10487163 DOI: 10.3390/ani13172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Food safety and environmental pollution are the hotspots of general concern globally. Notably, long-term accumulation of trace toxic heavy metals, such as cadmium (Cd), in animals may endanger human health via the food chain. The mechanism of Cd toxicity in the goat, a popular farmed animal, has not been extensively investigated to date. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg-1·BW) for 30 days (five male goats per group). In this study, we used an integrated approach combining proteomics and metabolomics to profile proteins and metabolites in the serum of Cd-exposed goats. It was found that Cd exposure impacted the levels of 30 serum metabolites and 108 proteins. The combined proteomic and metabolomic analysis revealed that Cd exposure affected arginine and proline metabolism, beta-alanine metabolism, and glutathione metabolism. Further, antioxidant capacity in the serum of goats exposed to Cd was reduced. We identified CKM and spermidine as potential protein and metabolic markers, respectively, of early Cd toxicity in the goat. This study details approaches for the early diagnosis and prevention of Cd-poisoned goats.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
16
|
Perry RN, Albarracin D, Aherrahrou R, Civelek M. Network Preservation Analysis Reveals Dysregulated Metabolic Pathways in Human Vascular Smooth Muscle Cell Phenotypic Switching. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:372-381. [PMID: 37387208 PMCID: PMC10434832 DOI: 10.1161/circgen.122.003781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their dysfunction may impact disease progression. METHODS We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 multiethnic heart transplant donors cultured under quiescent or proliferative conditions. RESULTS We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen metabolism-related genes and coronary artery disease-associated genes and found significant correlations, suggesting the involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation. CONCLUSIONS Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI (mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in smooth muscle cells.
Collapse
Affiliation(s)
- R. Noah Perry
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Diana Albarracin
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
| | - Mete Civelek
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| |
Collapse
|
17
|
Seay TW, Suo Z. Roles of Extracellular Vesicles on the Progression and Metastasis of Hepatocellular Carcinoma. Cells 2023; 12:1879. [PMID: 37508544 PMCID: PMC10378249 DOI: 10.3390/cells12141879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Liver cancer is a global health challenge as it is the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is often found in liver cells, where it is associated with high morbidity and mortality rates. Recent studies have shown that extracellular vesicles (EVs) secreted by HCC cells play a critical role in HCC progression and metastasis. EVs contain proteins, nucleic acids, lipids, and metabolites as cargos. EVs derived from HCC cells can transfer oncogenic factors to surrounding cells leading to increased tumor growth, cell invasion, and angiogenesis. In this review, we summarize the roles that EVs play and the specific effects of their cargos on HCC progression and metastasis and identify potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Turner W Seay
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Zhang S, Pei Y, Zhu F. Multi-omic analysis of glycolytic signatures: exploring the predictive significance of heterogeneity and stemness in immunotherapy response and outcomes in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1210111. [PMID: 37351550 PMCID: PMC10282758 DOI: 10.3389/fmolb.2023.1210111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a global health challenge with complex pathophysiology, characterized by high mortality rates and poor early detection due to significant tumor heterogeneity. Stemness significantly contributes to the heterogeneity of HCC tumors, and glycolysis is crucial for maintaining stemness. However, the predictive significance of glycolysis-related metabolic genes (GMGs) in HCC remains unknown. Therefore, this study aimed to identify critical GMGs and establish a reliable model for HCC prognosis. Methods: GMGs associated with prognosis were identified by evaluating genes with notable expression changes between HCC and normal tissues retrieved from the MsigDB database. Prognostic gene characteristics were established using univariate and multivariate Cox regression studies for prognosis prediction and risk stratification. The "CIBERSORT" and "pRRophetic" R packages were respectively used to evaluate the immunological environment and predict treatment response in HCC subtypes. The HCC stemness score was obtained using the OCLR technique. The precision of drug sensitivity prediction was evaluated using CCK-8 experiments performed on HCC cells. The miagration and invasion ability of HCC cell lines with different riskscores were assessed using Transwell and wound healing assays. Results: The risk model based on 10 gene characteristics showed high prediction accuracy as indicated by the receiver operating characteristic (ROC) curves. Moreover, the two GMG-related subgroups showed considerable variation in the risk of HCC with respect to tumor stemness, immune landscape, and prognostic stratification. The in vitro validation of the model's ability to predict medication response further demonstrated its reliability. Conclusion: Our study highlights the importance of stemness variability and inter-individual variation in determining the HCC risk landscape. The risk model we developed provides HCC patients with a novel method for precision medicine that enables clinical doctors to customize treatment plans based on unique patient characteristics. Our findings have significant implications for tailored immunotherapy and chemotherapy methods, and may pave the way for more personalized and effective treatment strategies for HCC.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Emergency, Jincheng People’s Hospital, Affiliated Jincheng Hospital of Changzhi Medical College, Jincheng, China
| | - Yangting Pei
- Department of Medical Record, Jincheng People’s Hospital, Affiliated Jincheng Hospital of Changzhi Medical College, Jincheng, China
| | - Feng Zhu
- Department of General Surgery, Jincheng People’s Hospital, Affiliated Jincheng Hospital of Changzhi Medical College, Jincheng, China
| |
Collapse
|
19
|
Meng Z, Geng X, Lin X, Wang Z, Chen D, Liang H, Zhu Y, Sui Y. A prospective diagnostic and prognostic biomarker for hepatocellular carcinoma that functions in glucose metabolism regulation: Solute carrier family 37 member 3. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166661. [PMID: 36773462 DOI: 10.1016/j.bbadis.2023.166661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Due to the insidious onset of HCC, early diagnosis is relatively difficult. HCC also exhibit strong resistance to first-line therapeutic drugs. Therefore, novel precise diagnostic and prognostic biomarkers for HCC are urgently needed. We employed a combination methods of bioinformatic analysis, cell functional experiments in vitro and a xenograft tumour model in vivo to systematically investigate the role of solute carrier family 37 member 3 (SLC37A3) in HCC progression. First, bioinformatic analysis demonstrated that SLC37A3 expression was significantly increased in HCC tissues compared with normal tissues. SLC37A3 expression was also associated with tumour stages and various clinical and pathological features. Similar trends in SLC37A3 expression levels were verified in HCC cells and by using IHC experiments. Next, survival analysis showed that the overall, 1-year, 3-year and 5-year survival rates were decreased in HCC patients with high SLC37A3 expression compared with HCC patients low SLC37A3 expression. Xenograft tumour experiments also suggested that SLC37A3 knockdown significantly inhibited HCC tumourigenesis in vivo. Cell functional experiments suggested that SLC37A3 knockdown inhibited HCC cell proliferation and metastasis, but promoted apoptosis. Furthermore, RNA-seq analysis of SLC37A3-knockdown HCC cells indicated that the type 1 diabetes mellitus (T1DM)-related signalling pathway was significantly altered. The expression levels of insulin secretion-related and glycolysis/gluconeogenesis-related genes were also altered, suggesting that SLC37A3 might be involved in the regulation of glucose homeostasis. In summary, SLC37A3 represents a prospective diagnostic and prognostic biomarker for HCC that functions in glucose metabolism regulation.
Collapse
Affiliation(s)
- Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xiaoyue Lin
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Danchun Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Hua Liang
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ying Zhu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| |
Collapse
|
20
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Gao Y, Yu Z. Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles. Front Mol Biosci 2023; 10:1114594. [PMID: 37006626 PMCID: PMC10060991 DOI: 10.3389/fmolb.2023.1114594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Due to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| |
Collapse
|
21
|
Xu H, Li L, Qu L, Tu J, Sun X, Liu X, Xu K. Atractylenolide-1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple-negative breast cancer cells. Phytother Res 2023; 37:820-833. [PMID: 36420870 DOI: 10.1002/ptr.7661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiyuan Tu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiongjie Sun
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
22
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
23
|
Yeung CLS, Yam JWP. Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:1088-1101. [PMID: 35158067 DOI: 10.1016/j.semcancer.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
Despite rapid development of anti-tumorigenic treatments, the clinical outcome for hepatocellular carcinoma (HCC) is still far from satisfactory. With a deeper understanding about tumor microenvironment (TME), the critical role of extracellular vesicles (EVs) as intercellular liaison has come into spotlight. The dynamic functionality of these nanoparticles revealed cancer cells can employ both tumor and non-tumorous components for their own benefit, so as to mediate cell-to-cell communication and interchange of oncogenic biomolecules. Increasing studies on HCC-derived EVs have identified various irregulated biomolecules, that may serve as biomarkers or therapeutic targets. In this review, we first introduce the current knowledge about EVs and how they operate to maintain a healthy liver microenvironment. We then summarize some of the aberrant observations reported on HCC-derived EVs and how they contribute to HCC pathogenesis. Finally, we describe how current treatments for HCC alter behavior of EVs, which may shed light for potential prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
24
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
25
|
Liu Y, Wu Q, Sun T, Huang J, Han G, Han H. DNAAF5 promotes hepatocellular carcinoma malignant progression by recruiting USP39 to improve PFKL protein stability. Front Oncol 2022; 12:1032579. [PMID: 36276075 PMCID: PMC9582515 DOI: 10.3389/fonc.2022.1032579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
PurposesDynein axonemal assembly factor 5 (DNAAF5) is the transcription factor of regulating the cytoskeleton and hydrodynamic protein complex assembly, however, it was not well elucidated in the malignant progression of hepatocellular carcinoma (HCC).MethodsWe investigated the role of DNAAF5 in hepatocellular carcinoma by using multiple groups of clinical tissues combined with data from the TCGA database. Then we overexpressed DNAAF5 in hepatocellular carcinoma tumor tissues, which correlates with poor patient survival outcomes. Furthermore, we constructed stable cell lines of HCC cells to confirm the cancer-promoting effects of DNAAF5 in hepatocellular carcinoma. To explore the mechanisms of DNAAF5, transcriptome sequencing combined with mass spectrometry was also performed, which showed that DNAAF5 affects its downstream signaling pathway by interacting with PFKL and that DNAAF5 regulates PFKL protein stability by recruiting the deubiquitination protein, USP39. To corroborate these findings, the same series of tissue microarrays were used to confirm correlations between DNAAF5 and PFKL expressions. In animal experiments, DNAAF5 also promoted the proliferation of HCC cells.ResultsWe found that DNAAF5 expressions were markedly higher in HCC tissues, compared to the adjacent normal tissues. Increased levels of DNAAF5 were associated with significantly worse prognostic outcomes for HCC patients. Cell function experiments showed that HCC cells of overexpressing DNAAF5 exhibited faster proliferation rates, stronger clone formation abilities and higher drug resistance rates. However, tumor cell proliferation rates and colony formation were significantly decreased after DNAAF5 knockout, accompanied by an increase in sensitivity to sorafenib. In addition, the results of our study showed that DNAAF5 accelerates PFKL protein deubiquitination by recruiting USP39 in HCC cells. Furthermore, The overexpression of DNAAF5 could promote HCC cell proliferation in vivo and in vitro, whereas USP39 knockdown inhibited this effect. Overall, DNAAF5 serves as a scaffold protein to recruit USP39 to form a ternary complex by directly binding the PFKL protein, thereby improving the stability of the latter, which promotes the malignant process of hepatocellular carcinoma.ConclusionsThese findings revealed DNAAF5 was negatively correlated with the prognosis of patients with hepatocellular carcinoma. It underlying mechanism showed that DNAAF5 directly binds PFKL and recruits the deubiquitinated protein (USP39) to improve the stability of the PFKL protein, thus enhancing abnormal glycolysis in HCC cells.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Qiong Wu
- Department of Geriatrics, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Tiantian Sun
- Medical Department, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Junxing Huang
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
- *Correspondence: Junxing Huang, ; Gaohua Han, ; Hexu Han,
| | - Gaohua Han
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
- *Correspondence: Junxing Huang, ; Gaohua Han, ; Hexu Han,
| | - Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Jiangsu, China
- *Correspondence: Junxing Huang, ; Gaohua Han, ; Hexu Han,
| |
Collapse
|
26
|
Guo Y, Li Q, Ren W, Wu H, Wang C, Li X, Xue B, Qiu Y, Zhang J, Chen J, Fang L. Quantitative Proteomics Reveals Down-Regulated Glycolysis/Gluconeogenesis in the Large-Duct Type Intrahepatic Cholangiocarcinoma. J Proteome Res 2022; 21:2504-2514. [PMID: 36066509 DOI: 10.1021/acs.jproteome.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a lethal hepatobiliary malignancy that arises from the epithelial cells of the intrahepatic bile ducts, accounting for approximately 10% of cholangiocarcinoma (CCA). According to the 2019 World Health Organization (WHO) classification of tumors of the digestive system, iCCA is divided into small-duct type (SD-type) and large-duct type (LD-type). However, it remains unknown which molecular events contribute to the disparity. To explore the proteomic characteristics of iCCA, we used an isobaric tag for relative and absolute quantitation (iTRAQ) based quantitative proteomics strategy to investigate stably dysregulated proteins in the SD-type and LD-type of iCCA tissues. Importantly, we found three glycolysis/gluconeogenesis-related enzymes, triosephosphate isomerize 1 (TPI1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and phosphoglycerate kinase 1 (PGK1), were significantly down-regulated in the LD-type iCCA, which were further confirmed by immunohistochemistry using tissue microarray. Moreover, we demonstrated that the knockdown of these three candidate proteins by siRNAs notably increased the ability of proliferation in two CCA cell lines (HuH28 and RBE), suggesting that effective down-regulation of the glycolysis/gluconeogenesis pathway might be an underlying novel mechanism contributing to the LD-type iCCA.
Collapse
Affiliation(s)
- Yan Guo
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Qi Li
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Wei Ren
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Hongyan Wu
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chengzhi Wang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Xinyu Li
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yudong Qiu
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jun Chen
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lei Fang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Huang Z, Yan Y, Wang T, Wang Z, Cai J, Cao X, Yang C, Zhang F, Wu G, Shen B. Identification of ENO1 as a prognostic biomarker and molecular target among ENOs in bladder cancer. Lab Invest 2022; 20:315. [PMID: 35836227 PMCID: PMC9281045 DOI: 10.1186/s12967-022-03509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/27/2022] [Indexed: 02/19/2025]
Abstract
Background Enolase is an essential enzyme in the process of glycolysis and has been implicated in cancer progression. Though dysregulation of ENOs has been reported in multiple cancers, their prognostic value and specific role in bladder cancer (BLCA) remain unclear. Methods Multiple databases were employed to examine the expression of ENOs in BLCA. The expression of ENO1 was also validated in BLCA cell lines and tissue samples by western blotting and immunohistochemistry. Kaplan–Meier analysis, ROC curve, univariate and multivariate Cox regression were performed to evaluate the predictive capability of the ENO1. Gene ontology (GO) and Gene Set Enrichment Analyses (GSEA) analysis were employed to perform the biological processes enrichment. Function experiments were performed to explore the biological role of ENO1 in BLCA. The correlation of ENO1 with immune cell infiltration was explored by CIBERSORT. Results By analyzing three ENO isoforms in multiple databases, we identified that ENO1 was the only significantly upregulated gene in BLCA. High expression level of ENO1 was further confirmed in BLCA tissue samples. Aberrant ENO1 overexpression was associated with clinicopathological characteristics and unfavorable prognosis. Functional studies demonstrated that ENO1 depletion inhibited cancer cell aggressiveness. Furthermore, the expression level of ENO1 was correlated with the infiltration levels of immune cells and immune-related functions. Conclusions Taken together, our results indicated that ENO1 might serve as a promising prognostic biomarker for prognosticating prognosis associated with the tumor immune microenvironment, suggesting that ENO1 could be a potential immune-related target against BLCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03509-1.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Tengjiao Wang
- Shanghai Key Lab of Cell Engineering, Shanghai, 200433, China.,Department of Stem Cells and Regenerative Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, 200433, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, China
| | - Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Bing Shen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. .,Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
28
|
Li L, Xu H, Qu L, Xu K, Liu X. Daidzin inhibits hepatocellular carcinoma survival by interfering with the glycolytic/gluconeogenic pathway through downregulation of TPI1. Biofactors 2022; 48:883-896. [PMID: 35118741 DOI: 10.1002/biof.1826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023]
Abstract
Daidzin (DDZ) is a natural brassin-like compound extracted from the soybean, and has been found to have therapeutic potential against tumors in recent years. This study investigates the therapeutic effect of DDZ on hepatocellular carcinoma cells and elucidates the possible mechanisms of action. The viability of HCCLM3 and Hep3B cells was detected by MTT assay. Western blots and qPCR were used to detect the protein and mRNA levels of proliferation and apoptosis related genes. Gas chromatography-mass spectrometry (GC-MS) was used for metabolome analysis. In vivo antitumor effects were assessed in nude mice engrafted with HCC cell lines. Our results show that DDZ treatment dose-dependently inhibited cell viability, migration, and survival. The expressions of CDK1, BCL2, MYC, and survivin were reduced, while the expressions of BAX and PARP were increased in DDZ treated cells. The differentially expressed metabolites detected in DDZ treated cultures are associated with glycolysis/gluconeogenesis pathways. Bioinformatic analysis identified TPI1, a gene in the glycolysis pathway with prognostic value for hepatocellular carcinoma (HCC), and DDZ treatment downregulated this gene. In vivo experiments show that DDZ significantly reduced the tumor volume and weight, and inhibited Ki67 expression within tumors. This study shows that DDZ interfered with the survival and migration of hepatocellular carcinoma cells, likely via TPI1 and the gluconeogenesis pathway.
Collapse
Affiliation(s)
- Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
29
|
Tey SK, Wong SWK, Yeung CLS, Li JYK, Mao X, Chung CYS, Yam JWP. Liver cancer cells with nuclear MET overexpression release translation regulatory protein-enriched extracellular vesicles exhibit metastasis promoting activity. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e39. [PMID: 38939527 PMCID: PMC11080920 DOI: 10.1002/jex2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/29/2024]
Abstract
MET receptor tyrosine kinase is a cell surface receptor that plays important role in embryonic development and tissue regeneration. Aberrant MET activation has been widely reported in different human cancers, making MET an attractive therapeutic target. The presence of truncated MET within the nucleus (nMET) with potential novel functions poses a great challenge to the current therapeutic strategies against MET surface receptor. Previous work has demonstrated the promoting effect of nMET in aggressive properties of hepatocellular carcinoma (HCC) cells by activating TAK1/NF-κB signalling pathway. Herein, we report the role of nMET in modulating tumour microenvironment and tumour metastasis mediated by extracellular vesicles (EVs). EVs released by nMET overexpressing cells enhanced cell motility and provoked metastasis. Proteomic profiling revealed the enrichment of translational regulatory proteins in EVs derived from nMET overexpressing cells. These proteins include eukaryotic initiation factor (EIF), ribosomal protein small subunit (RPS) and ribosomal protein larger subunit (RPL) gene families. Knockdown of EIF3I, RPS3A and RPL10 diminished the promoting effect of EVs in cell migration invasiveness and metastasis. In conclusion, the findings reveal an unrecognized capacity of nMET to augment HCC through the release of EVs with oncogenic effect. Targeting these translation-related proteins may serve as an alternative treatment for patients with nMET overexpression.
Collapse
Affiliation(s)
- Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- School of Biological SciencesCollege of ScienceNanyang Technological UniversitySingapore
| | - Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Jason Ying Ki Li
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Clive Yik Sham Chung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong Kong
| |
Collapse
|
30
|
RAB20 Promotes Proliferation via G2/M Phase through the Chk1/cdc25c/cdc2-cyclinB1 Pathway in Penile Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14051106. [PMID: 35267417 PMCID: PMC8909501 DOI: 10.3390/cancers14051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
RAB20, a member of the RAS GTPase oncogene family, is overexpressed in several cancers with poor outcomes, promoting tumorigenesis and inducing genomic instability. Here, we performed comprehensive genomic sequencing on eight penile squamous cell carcinoma (PSCC) and normal tissue pairs and found that RAB20 was upregulated in tumors, especially in metastatic lymph nodes. RAB20 overexpression in tumors was further verified by qPCR, Western blotting, and immunohistochemistry of our newly established PSCC cell lines and paired tissues. The clinical significance of RAB20 was validated in 259 PSCC patients, the largest cohort to date, and high RAB20 expression positively correlated with the T, N, M status, extranodal extension, and clinical stage (all p < 0.01). RAB20 was an unfavorable independent prognostic indicator in the survival analysis (p = 0.011, HR = 2.090; 95% Cl: 1.183−4.692), and PSCC patients with high RAB20 expression experienced shorter 5-year cancer-specific survival times (p < 0.001). Furthermore, tumorigenesis assays demonstrated that RAB20 knockdown inhibited cell proliferation, migration, and colony formation in vitro and tumor growth in vivo. RAB20 depletion also induced PSCC cell cycle arrest at G2/M by increasing Chk1 expression and promoting cdc25c phosphorylation to reduce cdc2-cyclinB1 complex formation. Our study revealed an oncogenic role for RAB20 in promoting PSCC cell proliferation at the G2/M phase via the Chk1/cdc25c/cdc2-cyclinB1 pathway. Thus, RAB20 could be a promising prognostic biomarker of advanced PSCC with poor patient survival outcomes and could be a potential therapeutic target.
Collapse
|
31
|
Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, Zhang X, Zhang W, Xu Y, Liu Y, Pan J, Wang J, Fan J, Che Y, Huang Y, Zhang J, Ding J, Yang S, Yang K. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m 6A-MYC expression. Int J Biol Sci 2022; 18:507-521. [PMID: 35002506 PMCID: PMC8741847 DOI: 10.7150/ijbs.67770] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Enhanced aerobic glycolysis constitutes an additional source of energy for tumor proliferation and metastasis. Human papillomavirus (HPV) infection is the main cause of cervical cancer (CC); however, the associated molecular mechanisms remain poorly defined, as does the relationship between CC and aerobic glycolysis. To investigate whether HPV 16/18 E6/E7 can enhance aerobic glycolysis in CC, E6/E7 expression was knocked down in SiHa and HeLa cells using small interfering RNA (siRNA). Then, glucose uptake, lactate production, ATP levels, reactive oxygen species (ROS) content, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were evaluated. RNA-seq was used to probe the molecular mechanism involved in E6/E7-driven aerobic glycolysis, and identified IGF2BP2 as a target of E6/E7. The regulatory effect of IGF2BP2 was confirmed by qRT-PCR, western blot, and RIP assay. The biological roles and mechanisms underlying how HPV E6/E7 and IGF2BP2 promote CC progression were confirmed in vitro and in vivo. Human CC tissue microarrays were used to analyze IGF2BP2 expression in CC. The knockdown of E6/E7 and IGF2BP2 attenuated the aerobic glycolytic capacity and growth of CC cells, while IGF2BP2 overexpression rescued this effect in vitro and in vivo. IGF2BP2 expression was higher in CC tissues than in adjacent tissues and was positively correlated with tumor stage. Mechanistically, E6/E7 proteins promoted aerobic glycolysis, proliferation, and metastasis in CC cells by regulating MYC mRNA m6A modifications through IGF2BP2. We found that E6/E7 promote CC by regulating MYC methylation sites via activating IGF2BP2 and established a link between E6/E7 and the promotion of aerobic glycolysis and CC progression. Blocking the HPV E6/E7-related metabolic pathway represents a potential strategy for the treatment of CC.
Collapse
Affiliation(s)
- Chenchen Hu
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Tianyue Liu
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Chenying Han
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yuxin Xuan
- School of Basic Medicine, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Dongbo Jiang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yuanjie Sun
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Xiyang Zhang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Wenxin Zhang
- School of Basic Medicine, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yiming Xu
- School of Basic Medicine, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yang Liu
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jingyu Pan
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jiangjiang Fan
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yinggang Che
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yinan Huang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jiaxing Zhang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jiaqi Ding
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Shuya Yang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Kun Yang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| |
Collapse
|