1
|
Lane SJ, Fossett TE, VanDiest IJ, Sewall KB. Recovery through resistance? nesting urban female song sparrows ( Melospiza melodia) have a lower glucocorticoid response to disturbance and return to parental care as quickly as rural females. Front Physiol 2025; 16:1520208. [PMID: 40241715 PMCID: PMC11999856 DOI: 10.3389/fphys.2025.1520208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Urbanization represents a dramatic and relatively rapid change in the environment that has profound impacts on wild animals. Shifts in behavior and endocrine mechanisms of stress response could allow animals to successfully survive and reproduce in urban habitats. Numerous studies have examined the behavioral and physiological responses of territory-holding male songbirds to urbanization. However, breeding females likely experience anthropogenic noise, light at night, and human disturbance more frequently, and their behavioral coping responses to these disturbances are limited during incubation. Moreover, breeding females face higher energetic demands (allostatic load). Understanding how some species cope with novel urban habitats requires studying individuals facing the greatest challenges, such as breeding females. Therefore, we compared the glucocorticoid stress response and behavioral recovery from a disturbance between urban and rural female song sparrows (Melospiza melodia) during incubation. If facultative adjustments to the glucocorticoid stress response allow birds to cope with urban habitats, we predicted that urban females would return to parental care behaviors after a standardized stressor as soon or sooner than rural females, and that urban females would have a lower glucocorticoid response to the stressor. We captured female song sparrows at the end of the incubation period and measured their glucocorticoid (corticosterone) levels at baseline and after 30 min of standardized restraint. Concurrently, we installed radio frequency identification (RFID) systems at the nest to capture the time to return to parental care behaviors. We found that incubating urban females had significantly lower corticosterone levels when controlling for sampling timepoint (baseline and restraint-induced) compared to rural. Nest return times did not differ across habitats, and latency to return was not significantly correlated with corticosterone levels. Our findings are consistent with prior work in breeding male song sparrows at our study sites; urban males provide higher parental care and have lower restraint-induced corticosterone levels. The absence of a relationship between glucocorticoids and behavior makes it unlikely that these hormones directly regulate parental care, but lower corticosterone levels in urban birds could reflect stress resistance, which has been hypothesized to permit animals to breed in challenging or novel conditions such as urban habitats.
Collapse
Affiliation(s)
- Samuel J. Lane
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA, United States
- Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| | - Taylor E. Fossett
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA, United States
| | - Isaac J. VanDiest
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA, United States
| | - Kendra B. Sewall
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA, United States
- Virginia Tech, School of Neuroscience, Blacksburg, VA, United States
| |
Collapse
|
2
|
Reid R, Capilla-Lasheras P, Haddou Y, Boonekamp J, Dominoni DM. The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proc Biol Sci 2024; 291:20240617. [PMID: 39016598 PMCID: PMC11253839 DOI: 10.1098/rspb.2024.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Stressors associated with urban habitats have been linked to poor wildlife health but whether a general negative relationship between urbanization and animal health can be affirmed is unclear. We conducted a meta-analysis of avian literature to test whether health biomarkers differed on average between urban and non-urban environments, and whether there are systematic differences across species, biomarkers, life stages and species traits. Our dataset included 644 effect sizes derived from 112 articles published between 1989 and 2022, on 51 bird species. First, we showed that there was no clear impact of urbanization on health when we categorized the sampling locations as urban or non-urban. However, we did find a small negative effect of urbanization on health when this dichotomous variable was replaced by a quantitative variable representing the degree of urbanization at each location. Second, we showed that the effect of urbanization on avian health was dependent on the type of health biomarker measured as well as the individual life stage, with young individuals being more negatively affected. Our comprehensive analysis calls for future studies to disentangle specific urban-related drivers of health that might be obscured in categorical urban versus non-urban comparisons.
Collapse
Affiliation(s)
- Rachel Reid
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Yacob Haddou
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Jelle Boonekamp
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Davide M. Dominoni
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| |
Collapse
|
3
|
Pérez-Ortega B, Hendry AP. A meta-analysis of human disturbance effects on glucocorticoid hormones in free-ranging wild vertebrates. Biol Rev Camb Philos Soc 2023; 98:1459-1471. [PMID: 37095625 DOI: 10.1111/brv.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
Free-ranging wild vertebrates need to cope with natural and anthropogenic stressors that cause short and/or long-term behavioural and physiological responses. In areas of high human disturbance, the use of glucocorticoid (GC) hormones as biomarkers to measure stress responses is an increasingly common tool for understanding how animals cope with human disturbance. We conducted a meta-analysis to investigate how human disturbances such as habitat conversion, habitat degradation, and ecotourism influence baseline GC hormones of free-ranging wild vertebrates, and we further test the role of protected areas in reducing the impact of such disturbances on these hormones. A total of 58 studies met the inclusion criteria, providing 152 data points for comparing levels of GC hormones under disturbed and undisturbed conditions. The overall effect size suggests that human disturbance does not cause a consistent increase in levels of GC hormones (Hedges' g = 0.307, 95% CI = -0.062 to 0.677). However, when the data were analysed by disturbance type, living in unprotected areas or in areas with habitat conversion were found to increase GC hormone levels compared to living in protected or undisturbed areas. By contrast, we found no evidence that ecotourism or habitat degradation generates a consistent increase in baseline GC hormone levels. Among taxonomic groups, mammals appeared more sensitive to human disturbance than birds. We advocate the use of GC hormones for inferring major human-caused contributors to the stress levels of free-ranging wild vertebrates - although such information needs to be combined with other measures of stress and interpreted in the context of an organism's life history, behaviour, and history of interactions with human disturbance.
Collapse
Affiliation(s)
- Betzi Pérez-Ortega
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Panama, Republic of Panama
| | - Andrew P Hendry
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
| |
Collapse
|
4
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
5
|
White JH, Heppner JJ, Ouyang JQ. Increased lead and glucocorticoid concentrations reduce reproductive success in house sparrows along an urban gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2688. [PMID: 35754197 PMCID: PMC9722646 DOI: 10.1002/eap.2688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Urbanization is increasing at a rapid pace globally. Understanding the links among environmental characteristics, phenotypes, and fitness enables researchers to predict the impact of changing landscapes on individuals and populations. Although avian reproductive output is typically lower in urban compared with natural areas, the underlying reasons for this discrepancy may lie at the intersection of abiotic and biotic environmental and individual differences. Recent advances in urban ecology highlight the effect of heavy metal contamination on stress physiology. As high levels of glucocorticoid hormones decrease parental investment, these hormones might be the link to decreased reproductive success in areas of high environmental pollution. In this study, we aimed to identify which abiotic stressors are linked to avian reproductive output in urban areas and whether this link is mediated by individual hormone levels. We used fine-scaled estimates (2 m2 spatial resolution) of nighttime light, noise, and urban density to assess their impacts on the physiological condition of adult house sparrows (Passer domesticus). We measured circulating levels of lead and glucocorticoid concentrations in 40 breeding pairs of free-living house sparrows and related these physiological traits to reproductive success. Using structural equation modeling, we found that increased urban density levels linked directly to increased plasma corticosterone and lead concentrations that subsequently led to decreased fledgling mass. Sparrows with increased lead concentrations in plasma also had higher corticosterone levels. Although urban areas may be attractive due to decreased natural predators and available nesting sites, they may act as ecological traps that increase physiological damage and decrease fitness. To illustrate, avian development is strongly explained by parental corticosterone levels, which vary significantly in response to urban density and lead pollution. With fine-scale ecological mapping for a species with small home ranges, we demonstrated the presence and impacts of urban stressors in a small city with high human densities.
Collapse
Affiliation(s)
- Justin H White
- Department of Economics and Geosciences, United States Air Force Academy, Colorado Springs, Colorado, USA
| | | | - Jenny Q Ouyang
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
6
|
Kilgour DAV, Linkous CR, Pierson TW, Guindre-Parker S. Sex ratios and the city: Secondary offspring sex ratios, parental corticosterone, and parental body condition in an urban-adapted bird. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.894583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Trivers–Willard hypothesis states that mothers should adjust their offspring sex ratio according to their own condition and the environment they face during breeding. Past tests of this hypothesis have focused on how natural variation in weather, food availability, or predation pressure shapes sex allocation trade-offs. However, anthropogenic activities, such as urbanization, can alter all of the above characteristics presenting animals with novel challenges in optimizing their brood sex ratio. Previous research has examined how urban living influences individual body condition in several bird taxa, but few have explored subsequent impacts on secondary offspring sex ratio. One likely mediator of the link between environmental conditions, parental condition, and sex ratios is corticosterone (CORT), the primary glucocorticoid in birds. Research on CORT’s influence on sex ratios has focused solely on maternal CORT. However, for species with biparental care, paternal CORT or the similarity of maternal and paternal phenotypes may also help ensure that offspring demand matches parental care quality. To test these hypotheses, we explore offspring secondary sex ratios in European starlings (Sturnus vulgaris). We did not find an effect of site or parental body condition on the production of the more costly sex (males). Instead, we found preliminary evidence suggesting that the similarity of maternal and paternal CORT levels within a breeding pair may increase the likelihood of successfully fledging sons. Maternal and paternal CORT were not significant predictors of secondary sex ratio, suggesting that parental similarity, rather than parental CORT alone, could play a role in shaping secondary offspring sex ratios, but additional work is needed to support this pattern. Starlings are considered an urban-adapted species, making them a compelling model for future studies of the relationship between urbanization, parental body condition, and sex ratios.
Collapse
|
7
|
|
8
|
Lane SJ, Emmerson MG, VanDiest IJ, Hucul C, Beck ML, Davies S, Gilbert ER, Sewall KB. Hypothalamic-pituitary-adrenal axis regulation and organization in urban and rural song sparrows. Gen Comp Endocrinol 2021; 310:113809. [PMID: 33964287 DOI: 10.1016/j.ygcen.2021.113809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Urban habitats present animals with persistent disturbances and acute stressors not present in rural habitats or present at significantly lower levels. Differences in the glucocorticoid stress response could underlie colonization of these novel habitats. Despite urban habitats characterization as more stressful, previous comparisons of urban and rural birds have failed to find consistent differences in baseline and stress induced glucocorticoid levels. Another aspect of glucocorticoid regulation that could underlie an animal's ability to inhabit novel habitats, but has yet to be well examined, is more efficient termination of the glucocorticoid stress response which would allow birds in urban habitats to recover more quickly after a disturbance. The glucocorticoid stress response is terminated by negative feedback achieved primarily through their binding of receptors in the hippocampus and hypothalamus and subsequent decreased synthesis and release from the adrenals. We investigated if male song sparrows (Melospiza melodia) in urban habitats show more efficient termination of the glucocorticoid stress response than their rural counterparts using two approaches. First, we measured glucocorticoid receptor, mineralocorticoid receptor and 11β-HSD2 (an enzyme that inactivates corticosterone) mRNA expression in negative feedback targets of the brain (the hippocampus and hypothalamus) as a proxy measure of sensitivity to negative feedback. Second, we measured plasma corticosterone levels after standardized restraint and again following a challenge with the synthetic glucocorticoid, dexamethasone, as a means of assessing how quickly birds decreased glucocorticoid synthesis and release. Though there were no differences in the hypothalamus of urban and rural song sparrows, urban birds had lower glucocorticoid receptor and 11β-HSD2 mRNA expression in the hippocampus. Further, urban and rural birds had similar reductions in corticosterone following the dexamethasone challenge, suggesting that they do not differ in how quickly they decrease glucocorticoid synthesis and release. Thus, urban and rural song sparrows display similar termination of the glucocorticoid stress response even though urban birds have decreased hippocampal glucocorticoid receptor and 11β-HSD2 abundance.
Collapse
Affiliation(s)
- Samuel J Lane
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States.
| | - Michael G Emmerson
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States
| | - Isaac J VanDiest
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States
| | - Catherine Hucul
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States
| | - Michelle L Beck
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States
| | - Scott Davies
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States
| | - Elizabeth R Gilbert
- Virginia Tech, Department of Animal and Poultry Sciences, 175 W Campus Dr, Blacksburg, VA 24061, United States
| | - Kendra B Sewall
- Virginia Tech, Department of Biological Sciences, 1405 Perry Street, Blacksburg, VA 24061, United States; Virginia Tech, School of Neuroscience, 1405 Perry Street, Blacksburg, VA 24061, United States
| |
Collapse
|
9
|
Names GR, Krause JS, Schultz EM, Angelier F, Parenteau C, Ribout C, Hahn TP, Wingfield JC. Relationships between avian malaria resilience and corticosterone, testosterone and prolactin in a Hawaiian songbird. Gen Comp Endocrinol 2021; 308:113784. [PMID: 33862049 DOI: 10.1016/j.ygcen.2021.113784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
Glucocorticoids, androgens, and prolactin regulate metabolism and reproduction, but they also play critical roles in immunomodulation. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of the Hawaii Amakihi (Chlorodrepanis virens) that have experienced strong selection by avian malaria have evolved increased resilience (the ability to recover from infection), while high elevation populations that have undergone weak selection remain less resilient. We investigated how variation in malaria selection has affected corticosterone, testosterone, and prolactin hormone levels in Amakihi during the breeding season. We predicted that baseline corticosterone and testosterone (which have immunosuppressive functions) would be reduced in low elevation and malaria-infected birds, while stress-induced corticosterone and prolactin (which have immunostimulatory functions) would be greater in low elevation and malaria-infected birds. As predicted, prolactin was significantly higher in malaria-infected than uninfected females (although more robust sample sizes would help to confirm this relationship), while testosterone trended higher in malaria-infected than uninfected males and, surprisingly, neither baseline nor stress-induced CORT varied with malaria infection. Contrary to our predictions, stress-induced corticosterone was significantly lower in low than high elevation birds while testosterone in males and prolactin in females did not vary by elevation, suggesting that Amakihi hormone modulation across elevation is determined by variables other than disease selection (e.g., timing of breeding, energetic challenges). Our results shed new light on relationships between introduced disease and hormone modulation, and they raise new questions that could be explored in experimental settings.
Collapse
Affiliation(s)
- Gabrielle R Names
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Elizabeth M Schultz
- Department of Biology, Wittenberg University, 200 W Ward Street, Springfield, OH 45504, USA
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
10
|
Iglesias-Carrasco M, Aich U, Jennions MD, Head ML. Stress in the city: meta-analysis indicates no overall evidence for stress in urban vertebrates. Proc Biol Sci 2020; 287:20201754. [PMID: 33023414 PMCID: PMC7657868 DOI: 10.1098/rspb.2020.1754] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
As cities continue to grow it is increasingly important to understand the long-term responses of wildlife to urban environments. There have been increased efforts to determine whether urbanization imposes chronic stress on wild animals, but empirical evidence is mixed. Here, we conduct a meta-analysis to test whether there is, on average, a detrimental effect of urbanization based on baseline and stress-induced glucocorticoid levels of wild vertebrates. We found no effect of urbanization on glucocorticoid levels, and none of sex, season, life stage, taxon, size of the city nor methodology accounted for variation in the observed effect sizes. At face value, our results suggest that urban areas are no more stressful for wildlife than rural or non-urban areas, but we offer a few reasons why this conclusion could be premature. We propose that refining methods of data collection will improve our understanding of how urbanization affects the health and survival of wildlife.
Collapse
Affiliation(s)
- Maider Iglesias-Carrasco
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
11
|
Ibáñez-Álamo JD, Jimeno B, Gil D, Thomson RL, Aguirre JI, Díez-Fernández A, Faivre B, Tieleman BI, Figuerola J. Physiological stress does not increase with urbanization in European blackbirds: Evidence from hormonal, immunological and cellular indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137332. [PMID: 32169634 DOI: 10.1016/j.scitotenv.2020.137332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Urbanization changes the landscape structure and ecological processes of natural habitats. While urban areas expose animal communities to novel challenges, they may also provide more stable environments in which environmental fluctuations are buffered. Species´ ecology and physiology may determine their capacity to cope with the city life. However, the physiological mechanisms underlying organismal responses to urbanization, and whether different physiological systems are equally affected by urban environments remain poorly understood. This severely limits our capacity to predict the impact of anthropogenic habitats on wild populations. In this study, we measured indicators of physiological stress at the endocrine, immune and cellular level (feather corticosterone levels, heterophil to lymphocyte ratio, and heat-shock proteins) in urban and non-urban European blackbirds (Turdus merula) across 10 European populations. Among the three variables, we found consistent differences in feather corticosterone, which was higher in non-urban habitats. This effect seems to be dependent on sex, being greater in males. In contrast, we found no significant differences between urban and non-urban habitats in the two other physiological indicators. The discrepancy between these different measurements of physiological stress highlights the importance of including multiple physiological variables to understand the impact of urbanization on species' physiology. Overall, our findings suggest that adult European blackbirds living in urban and non-urban habitats do not differ in terms of physiological stress at an organismal level. Furthermore, we found large differences among populations on the strength and direction of the urbanization effect, which illustrates the relevance of spatial replication when investigating urban-induced physiological responses.
Collapse
Affiliation(s)
- Juan Diego Ibáñez-Álamo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands; Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain.
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Diego Gil
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, (MNCN-CSIC), Madrid, Spain
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa; Section of Ecology, Department of Biology, University of Turku, Finland
| | - José I Aguirre
- Departmento de Zoología y Antropología Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Alazne Díez-Fernández
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| | - Bruno Faivre
- UMR CNRS Biogéosciences, Université de Bourgogne Franche-Comté, Dijon, France
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain; CIBER Epidemiología y Salud Publica (CIBERESP), Seville, Spain
| |
Collapse
|
12
|
Injaian AS, Francis CD, Ouyang JQ, Dominoni DM, Donald JW, Fuxjager MJ, Goymann W, Hau M, Husak JF, Johnson MA, Kircher BK, Knapp R, Martin LB, Miller ET, Schoenle LA, Williams TD, Vitousek MN. Baseline and stress-induced corticosterone levels across birds and reptiles do not reflect urbanization levels. CONSERVATION PHYSIOLOGY 2020; 8:coz110. [PMID: 31993201 PMCID: PMC6978728 DOI: 10.1093/conphys/coz110] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 05/21/2023]
Abstract
Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change.
Collapse
Affiliation(s)
- Allison S Injaian
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Ithaca NY 14850, USA
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Davide M Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jeremy W Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen 82319, Germany
- University of Konstanz, 78457 Konstanz, Germany
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | | | - Laura A Schoenle
- Office of Undergraduate Biology, Cornell University, Ithaca NY 14853, USA
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA
- Cornell Lab of Ornithology, Ithaca NY 14850, USA
| |
Collapse
|
13
|
Beaugeard E, Brischoux F, Henry P, Parenteau C, Trouvé C, Angelier F. Does urbanization cause stress in wild birds during development? Insights from feather corticosterone levels in juvenile house sparrows ( Passer domesticus). Ecol Evol 2019; 9:640-652. [PMID: 30680144 PMCID: PMC6342122 DOI: 10.1002/ece3.4788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Urban landscapes are associated with abiotic and biotic environmental changes that may result in potential stressors for wild vertebrates. Urban exploiters have physiological, morphological, and behavioral adaptations to live in cities. However, there is increasing evidence that urban exploiters themselves can suffer from urban conditions, especially during specific life-history stages. We looked for a link between the degree of urbanization and the level of developmental stress in an urban exploiter (the house sparrow, Passer domesticus), which has recently been declining in multiple European cities (e.g., London, UK). Specifically, we conducted a large-scale study and sampled juvenile sparrows in 11 urban and rural sites to evaluate their feather corticosterone (CORT) levels. We found that juvenile feather CORT levels were positively correlated with the degree of urbanization, supporting the idea that developing house sparrows may suffer from urban environmental conditions. However, we did not find any correlation between juvenile feather CORT levels and body size, mass, or body condition. This suggests either that the growth and condition of urban sparrows are not impacted by elevated developmental CORT levels, or that urban sparrows may compensate for developmental constraints once they have left the nest. Although feather CORT levels were not correlated with baseline CORT levels, we found that feather CORT levels were slightly and positively correlated with the CORT stress response in juveniles. This suggests that urban developmental conditions may potentially have long-lasting effects on stress physiology and stress sensitivity in this urban exploiter.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d’Études Biologiques de Chizé (CEBC)UMR 7372 CNRS‐Université de La RochelleVilliers‐en‐BoisFrance
| | - François Brischoux
- Centre d’Études Biologiques de Chizé (CEBC)UMR 7372 CNRS‐Université de La RochelleVilliers‐en‐BoisFrance
| | - Pierre‐Yves Henry
- Centre de Recherches sur la Biologie des Populations d’Oiseaux (CRBPO)CESCO UMR 7204 Sorbonne Universités‐MNHN‐CNRS‐UPMCParisFrance
| | - Charline Parenteau
- Centre d’Études Biologiques de Chizé (CEBC)UMR 7372 CNRS‐Université de La RochelleVilliers‐en‐BoisFrance
| | - Colette Trouvé
- Centre d’Études Biologiques de Chizé (CEBC)UMR 7372 CNRS‐Université de La RochelleVilliers‐en‐BoisFrance
| | - Frédéric Angelier
- Centre d’Études Biologiques de Chizé (CEBC)UMR 7372 CNRS‐Université de La RochelleVilliers‐en‐BoisFrance
| |
Collapse
|
14
|
Price K, Kittridge C, Damby Z, Hayes SG, Addis EA. Relaxing life of the city? Allostatic load in yellow-bellied marmots along a rural-urban continuum. CONSERVATION PHYSIOLOGY 2018; 6:coy070. [PMID: 30591838 PMCID: PMC6301289 DOI: 10.1093/conphys/coy070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Urban environments are expanding. As rural areas are urbanized, animals living in those environments must respond. Examinations of ecological responses to urbanization are abundant, but much less work has focused on the physiological responses driving those ecological patterns, particularly in mammals. Whether an animal interprets urbanized environments as stressful or not can help us understand, and even predict, the likelihood of individuals persisting in urbanized areas. Unpredictable events can cause stress and responses to such events can deplete limited stores of energy. Differences between required and available energy is termed allostatic load and is an indicator of stress. Allostatic load, and hence stress, is correlated with baseline levels of the metabolic hormones, glucocorticoids. We examined allostatic load in yellow-bellied marmots along a rural-urban gradient through analysis of fecal glucocorticoid metabolites (FGMs). We used GIS data and 'on-the-ground' measurements to quantify the degree of urbanization. We collected fecal samples from males and females of all age classes at six sites along this continuum. Female marmots had higher FGMs than males. All age groups of marmots exhibited a parabolic relationship between the degree of urbanization and FGM levels. In general, adult marmots had higher FGMs in more rural than urban environments, and both juveniles and yearlings had exhibited higher FGM levels in more urban environments.
Collapse
Affiliation(s)
- Kirsten Price
- Biology Department, Gonzaga University, AD-5, 502 E Boone Ave, Spokane, WA, USA
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Charles Kittridge
- Biology Department, Gonzaga University, AD-5, 502 E Boone Ave, Spokane, WA, USA
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Zach Damby
- Biology Department, Gonzaga University, AD-5, 502 E Boone Ave, Spokane, WA, USA
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Stephen G Hayes
- Biology Department, Gonzaga University, AD-5, 502 E Boone Ave, Spokane, WA, USA
| | - Elizabeth A Addis
- Biology Department, Gonzaga University, AD-5, 502 E Boone Ave, Spokane, WA, USA
| |
Collapse
|
15
|
Weaver M, Gao S, McGraw KJ. Circulating corticosterone levels vary during exposure to anthropogenic stimuli and show weak correlation with behavior across an urban gradient in house finches (Haemorhous mexicanus). Gen Comp Endocrinol 2018; 266:52-59. [PMID: 29673843 DOI: 10.1016/j.ygcen.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 01/08/2023]
Abstract
Urban environments are rapidly expanding and presenting animal populations with novel challenges, many of which are thought to be stressors that contribute to low biodiversity. However, studies on stress responses in urban vs rural populations have produced mixed results, and many of these studies use a standard stressor that cannot be replicated in the wild (e.g. restraining an animal in a bag). Pairing physiological and behavioral measurements in response to urban-related stressors improves our understanding of the mechanism underlying animal success in human-dominated landscapes. Here, we examined the physiological stress (plasma corticosterone, CORT) responses of a songbird species (the house finch, Haemorhous mexicanus) to two different anthropogenic stimuli - (1) the presence of a human and (2) a captive environment containing man-made objects. During three field seasons (summer 2012, winter 2014, and winter 2015), we captured birds at six sites along an urban gradient in Phoenix, Arizona, USA and measured plasma CORT levels both before and after each trial. Though CORT levels did increase post-human exposure, though not during exposure to novel environment, indicating only one of the treatments caused a physiological response, baseline or post-trial plasma CORT levels did not differ between finches between urban and rural birds in 2012 or 2014. However, rural birds demonstrated relatively low pre- and post-trial plasma CORT levels during the human-exposure trials in 2015. Furthermore, we found few correlations between behavioral and physiological responses. A significant positive correlation was only detected between activity behavior after human approach and post-trial plasma CORT levels in 2012. Taken together, our results reveal a weak, conditional relationship between stress physiology, behavioral responses, and urbanization in house finches.
Collapse
Affiliation(s)
- Melinda Weaver
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States.
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| |
Collapse
|
16
|
Sepp T, McGraw KJ, Kaasik A, Giraudeau M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life? GLOBAL CHANGE BIOLOGY 2018; 24:1452-1469. [PMID: 29168281 DOI: 10.1111/gcb.13969] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The concept of a pace-of-life syndrome describes inter- and intraspecific variation in several life-history traits along a slow-to-fast pace-of-life continuum, with long lifespans, low reproductive and metabolic rates, and elevated somatic defences at the slow end of the continuum and the opposite traits at the fast end. Pace-of-life can vary in relation to local environmental conditions (e.g. latitude, altitude), and here we propose that this variation may also occur along an anthropogenically modified environmental gradient. Based on a body of literature supporting the idea that city birds have longer lifespans, we predict that urban birds have a slower pace-of-life compared to rural birds and thus invest more in self maintenance and less in annual reproduction. Our statistical meta-analysis of two key traits related to pace-of-life, survival and breeding investment (clutch size), indicated that urban birds generally have higher survival, but smaller clutch sizes. The latter finding (smaller clutches in urban habitats) seemed to be mainly a characteristic of smaller passerines. We also reviewed urbanization studies on other traits that can be associated with pace-of-life and are related to either reproductive investment or self-maintenance. Though sample sizes were generally too small to conduct formal meta-analyses, published literature suggests that urban birds tend to produce lower-quality sexual signals and invest more in offspring care. The latter finding is in agreement with the adult survival hypothesis, proposing that higher adult survival prospects favour investment in fewer offspring per year. According to our hypothesis, differences in age structure should arise between urban and rural populations, providing a novel alternative explanation for physiological differences and earlier breeding. We encourage more research investigating how telomere dynamics, immune defences, antioxidants and oxidative damage in different tissues vary along the urbanization gradient, and suggest that applying pace-of-life framework to studies of variation in physiological traits along the urbanization gradient might be the next direction to improve our understanding of urbanization as an evolutionary process.
Collapse
Affiliation(s)
- Tuul Sepp
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
17
|
Sewall KB, Davies S. Two Neural Measures Differ between Urban and Rural Song Sparrows after Conspecific Song Playback. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Li Y, Sun Y, Krause JS, Li M, Liu X, Zhu W, Yao Y, Wu Y, Li D. Dynamic interactions between corticosterone, corticosteroid binding globulin and testosterone in response to capture stress in male breeding Eurasian tree sparrows. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:41-47. [DOI: 10.1016/j.cbpa.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
|
19
|
Wright S, Fokidis HB. Sources of variation in plasma corticosterone and dehydroepiandrosterone in the male northern cardinal (Cardinalis cardinalis): II. Effects of urbanization, food supplementation and social stress. Gen Comp Endocrinol 2016; 235:201-209. [PMID: 27255367 DOI: 10.1016/j.ygcen.2016.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Perturbations in an organism's environment can induce significant shifts in hormone secretory patterns. In this context, the glucocorticoid (GC) steroids secreted by the adrenal cortex have received much attention from ecologists and behaviorists due to their role in the vertebrate stress response. Adrenal GCs, such as corticosterone (CORT), are highly responsive to instability in environmental and social conditions. However, little is understood about how adrenal dehydroepiandrosterone (DHEA) is influenced by changing conditions. We conducted field experiments to determine how circulating CORT and DHEA vary during restraint stress in the male northern cardinals (Cardinalis cardinalis). Specifically, we examined how four different changes in the physical (urbanization and food availability) and social (territorial conflict, distress of a mate) environment affect CORT and DHEA levels. The majority of cardinals responded to restraint stress by increasing and decreasing CORT and DHEA, respectively, however this depended on sampling context. Cardinals sampled from urban habitats had both lower initial and restraint stress CORT concentrations, but a comparable DHEA pattern to those sampled from a forest. Supplementing food to territorial males did not alter circulating initial DHEA or CORT concentrations nor did it change the response to restraint stress when compared to unsupplemented controls. Exposing cardinals to varying durations of song playback, which mimics a territorial intrusion, did not affect CORT levels, but did attenuate the DHEA response to restraint stress. Examining a larger dataset of males captured before, after or at the same time as their female mate, allowed us to address how the stress of a captured mate affected the male's CORT and DHEA response. Males showed elevated initial and restraint CORT and DHEA when their female mate was captured first. Taken together, these data demonstrate that both CORT and DHEA secretion patterns depends on environmental, and particularly current social conditions.
Collapse
Affiliation(s)
- Sarah Wright
- Department of Biology, Rollins College, Winter Park, FL 37289, USA
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA.
| |
Collapse
|
20
|
Fokidis HB. Sources of variation in plasma corticosterone and dehydroepiandrosterone in the male northern cardinal (Cardinalis cardinalis): I. Seasonal patterns and effects of stress and adrenocorticotropic hormone. Gen Comp Endocrinol 2016; 235:192-200. [PMID: 27255363 DOI: 10.1016/j.ygcen.2016.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022]
Abstract
The secretion of steroids from the adrenal gland is a classic endocrine response to perturbations that can affect homeostasis. During an acute stress response, glucocorticoids (GC), such as corticosterone (CORT), prepare the metabolic physiology and cognitive abilities of an animal in a manner that promotes survival during changing conditions. Although GC functions during stress are well established, much less is understood concerning how adrenal androgens, namely dehydroepiandrosterone (DHEA) are influenced by stress. I conducted three field studies (one experimental and two descriptive) aimed at identifying how both CORT and DHEA secretion in free-living male northern cardinals (Cardinalis cardinalis), vary during acute stress; across different circulations (brachial vs. jugular); in response to ACTH challenge; and during the annual cycle. As predicted, restraint stress increased plasma CORT, but unexpectedly DHEA levels decreased, but the latter effect was only seen for blood sampled from the jugular vein, and not the brachial. The difference in DHEA between circulations may result from increased neural uptake of DHEA during stress. Injection with exogenous adrenocorticotropic hormone (ACTH) increased CORT concentrations, but failed to alter DHEA levels, thus suggesting ACTH is not a direct regulator of DHEA. Monthly field sampling revealed distinct seasonal patterns to both initial and restraint stress CORT and DHEA levels with distinct differences in the steroid milieu between breeding and non-breeding seasons. These data suggest that the CORT response to stress remains relatively consistent, but DHEA secretion is largely independent of the response by CORT. Although CORT functions have been well-studied in wild animals, little research exists for the role of DHEA and their variable relationship sets the stage for future experimental research addressing steroid stress responses.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA.
| |
Collapse
|
21
|
Angelier F, Meillère A, Grace JK, Trouvé C, Brischoux F. No evidence for an effect of traffic noise on the development of the corticosterone stress response in an urban exploiter. Gen Comp Endocrinol 2016; 232:43-50. [PMID: 26686316 DOI: 10.1016/j.ygcen.2015.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Anthropogenic noise can have important physiological and behavioral effects on wild animals. For example, urban noise could lead to a state of chronic stress and could alter the development of the hypothalamus-pituitary-adrenal (HPA) axis. Supporting this hypothesis, several studies have found that human disturbance is associated with increased circulating corticosterone (CORT) levels. However, it remains unclear whether increased CORT levels are the result of anthropogenic noise or other anthropogenic factors. Here, we experimentally tested the impact of urban noise on the CORT stress response in an urban exploiter (the house sparrow, Passer domesticus) by exposing chicks to a traffic noise ('disturbed chicks') or not ('control chicks'). If noise exposure has a negative impact on developing chicks, we predicted that (1) disturbed chicks will grow slower, will be in poorer condition, and will have a lower fledging probability than controls; (2) disturbed chicks will have higher baseline CORT levels than control; (3) the CORT stress response will be affected by this noise exposure. Contrary to these predictions, we found no effect of our experiment on growth, body condition, and fledging success, suggesting that house sparrow chicks were not negatively affected by this noise exposure. Moreover, we did not find any effect of noise exposure on either baseline CORT levels or the CORT stress response of chicks. This suggests not only that house sparrow chicks did not perceive this noise as stressful, but also that the development of the HPA axis was not affected by such noise exposure. Our study suggests that, contrary to urban avoiders, urban exploiters might be relatively insensitive to urban noise during their development. Further comparative studies are now needed to understand whether such insensitivity to anthropogenic noise is a consistent phenomenon in urban exploiters and whether this is a major requirement of an urban way of life.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, 79360 Villiers en Bois, France.
| | - Alizée Meillère
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, 79360 Villiers en Bois, France
| | - Jacquelyn K Grace
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, 79360 Villiers en Bois, France
| | - Colette Trouvé
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, 79360 Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
22
|
Innate immunity and testosterone rapidly respond to acute stress, but is corticosterone at the helm? J Comp Physiol B 2016; 186:907-18. [PMID: 27188192 DOI: 10.1007/s00360-016-0996-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/25/2023]
Abstract
When faced with a stressor, vertebrates can rapidly increase the secretion of glucocorticoids, which is thought to improve the chances of survival. Concurrent changes in other physiological systems, such as the reproductive endocrine or innate immune systems, have received less attention, particularly in wild vertebrates. It is often thought that glucocorticoids directly modulate immune performance during a stress response, but, in many species, androgens also rapidly respond to stress. However, to our knowledge, no study has simultaneously examined the interactions between the glucocorticoid, androgen, and innate immune responses to stress in a wild vertebrate. To address this issue, we tested the hypothesis that the change in plasma corticosterone (CORT) in response to the acute stress of capture and restraint is correlated with the concurrent changes in plasma testosterone (T) and innate immune performance (estimated by the capacity of plasma to agglutinate and lyse foreign cells) in the Abert's Towhee (Melozone aberti). Furthermore, to broaden the generality of the findings, we compared male and female towhees, as well as males from urban and non-urban populations. Acute stress increased plasma CORT, decreased plasma T in males, and decreased innate immune performance, but the increase in CORT during stress was not correlated with the corresponding decreases in either plasma T or innate immunity. By contrast, the plasma T stress response was positively correlated with the innate immune stress response. Collectively, our results challenge the proposition that the glucocorticoid stress response is correlated with the concurrent changes in plasma T, a key reproductive hormone, and innate immunity, as estimated by agglutination and lysis.
Collapse
|
23
|
Differences in measures of boldness even when underlying behavioral syndromes are present in two populations of the song sparrow (Melospiza melodia). J ETHOL 2016. [DOI: 10.1007/s10164-016-0465-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Influence of Urbanization on Body Size, Condition, and Physiology in an Urban Exploiter: A Multi-Component Approach. PLoS One 2015; 10:e0135685. [PMID: 26270531 PMCID: PMC4535910 DOI: 10.1371/journal.pone.0135685] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/25/2015] [Indexed: 12/03/2022] Open
Abstract
Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability). In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus). We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging) and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels) between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows’ nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds.
Collapse
|
25
|
Foltz SL, Ross AE, Laing BT, Rock RP, Battle KE, Moore IT. Get off my lawn: increased aggression in urban song sparrows is related to resource availability. Behav Ecol 2015. [DOI: 10.1093/beheco/arv111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|