1
|
Denizli I, Monteiro A, Elmer KR, Stevenson TJ. Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:327-337. [PMID: 39954063 DOI: 10.1007/s00359-025-01733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Seasonal cycles in breeding, often orchestrated by annual changes in photoperiod, are common in nature. Here, we studied how change in photoperiod affects DNA methylation in the testes of a highly seasonal breeder: the Siberian hamster (Phodopus sungorus). We hypothesized that DNA methylation in promoter regions associated with key reproductive genes such as follicle-stimulating hormone receptor in the testes is linked to breeding and non-breeding states. Using Oxford Nanopore sequencing, we identified more than 10 million (10,151,742) differentially methylated cytosine-guanine (CpG) sites in the genome between breeding long photoperiod and non-breeding short photoperiod conditions. ShinyGo enrichment analyses identified biological pathways consisting of reproductive system, hormone-mediated signalling and gonad development. We found that short photoperiod induced DNA methylation in the promoter regions for androgen receptor (Ar), estrogen receptors (Esr1, Esr2), kisspeptin1 receptor (kiss1r) and follicle-stimulating hormone receptor (Fshr). Long photoperiods were observed to have higher DNA methylation in promoters for basic helix-loop-helix ARNT-like 1 (Bmal1), progesterone receptor (Pgr) and thyroid-stimulating hormone receptor (Tshr). Our findings provide insights into the epigenetic mechanisms underlying seasonal adaptations in timing reproduction in Siberian hamsters and could be informative for understanding male fertility and reproductive disorders in mammals.
Collapse
Affiliation(s)
- Irem Denizli
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ana Monteiro
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Hahn TP, Cornelius JM, Watts HE. Timing mismatches, carryover effects, and the role of neuroendocrine mechanisms in determining birds' responses to environmental change. J Neuroendocrinol 2025:e70032. [PMID: 40268496 DOI: 10.1111/jne.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
The neuroendocrine system plays a critical role in the synchronization of life cycle stages with variation in the environment, and in the coordination of life cycle stages with one another. When humans modify environments, these neuroendocrine mechanisms may impact how different individuals, populations, species, and even communities are affected. Here we conceptualize how endocrine mechanisms may influence the likelihood of: (1) timing mismatches between life cycle stages and environmental conditions, and (2) carryover effects within annual cycles. Timing mismatches can occur when an individual fails to synchronize a particular life cycle stage to the appropriate environmental conditions. Carryover effects occur when activities of one stage (including its timing) affect the performance in one or more subsequent stages. We suggest that there is a trade-off between timing adjustments within and across stages such that neuroendocrine mechanisms that reduce timing mismatches in temporally changing environments (e.g., strong neuroendocrine responsiveness to short-term cues, with resultant increased temporal flexibility to fine-tune the current stage to local conditions) may inherently increase the likelihood of carryover effects (e.g., through delay of a transition between stages), and vice versa. We use two examples-flexibility of the onset of photorefractoriness mediated by responsiveness to short-term cues, and sensitivity of molt to sex steroids-to illustrate these ideas, and suggest that future work should investigate the impacts of variation in these and potentially other seasonal timing mechanisms on carryover effects. The conceptual framework presented here suggests that there may be no single best set of tactics for coping with the effects of climate change; species with neuroendocrine mechanisms facilitating temporal flexibility may avoid some timing mismatches but set themselves up for deleterious carryover effects as they make temporal adjustments to environmental conditions modified by climate change.
Collapse
Affiliation(s)
- Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California, USA
| | - Jamie M Cornelius
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Yan L, Liu J, Chen R, Lei M, Guo B, Chen Z, Dai Z, Zhu H. Reproductive characteristics and methods to improve reproductive performance in goose production: A systematic review. Poult Sci 2025; 104:105099. [PMID: 40209471 PMCID: PMC12008642 DOI: 10.1016/j.psj.2025.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
In the past two decades, the high demand of and significance of poultry meat have promoted the development of the goose industry. Despite the continuous expansion of the goose breeding scale and the generation of large economic benefits by the goose industry, low reproductive efficiency remains a barrier to limit vigorous development of the goose industry. Poor reproductive efficiency can be attributed to breeding seasonality, strong broody behavior, and poor semen quality. Based on the reproductive endocrine regulation mechanism of geese, an overview of past studies that have developed various methods to achieve a significant improvement in goose reproductive performance including physical facilities for artificial illumination control and dietary nutrition manipulation to improve breeder reproductivity, and artificial incubation equipment and technology for better hatchability. The most recent advances utilize immunoneutralization to regulate critical hormones involved in goose reproduction. This review provides new information for industry and academic studies of goose breeding.
Collapse
Affiliation(s)
- Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Liu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rong Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingming Lei
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
4
|
Sur S, Tiwari J, Malik S, Stevenson T. Endocrine and molecular regulation of seasonal avian immune function. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230507. [PMID: 39842486 PMCID: PMC11753886 DOI: 10.1098/rstb.2023.0507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 05/01/2024] [Indexed: 01/24/2025] Open
Abstract
Birds have evolved seasonal adaptations in multiple aspects of the innate and adaptive immune systems. Seasonal immunological adaptations are crucial for survival in harsh environmental conditions and in response to increased prevalence of acute and chronic diseases. Similar to other vertebrates, birds exhibit remarkable plasticity in cytokine production, chemotaxis, phagocytosis and inflammation across the year. In this review, we provide a comparative perspective on seasonal rhythms in bird immune function. We describe advances in our understanding of annual changes in immune cells and responses to innate and adaptive immune challenges. Then, the role of glucocorticoids, sex steroids, thyroid hormones (THs) and melatonin to act as immunomodulators is described. We then discuss the impact of a major and emerging disease, the high pathogenicity avian influenza, as one of the most critical seasonal diseases with significant implications for poultry and wild bird populations. The review identifies the need to enhance our knowledge of annual rhythms in immune cells and tissues in birds, at molecular, cellular and hormonal levels across the year. Moreover, there is a significant absence of information on sex-specific seasonal variation in immune function. Understanding seasonal immune system dynamics will aid in addressing the negative impacts of pathogenic diseases, minimize global economic losses and aid conservation efforts.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, UK
| | - Jyoti Tiwari
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh226007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh226007, India
| | - Tyler Stevenson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, UK
| |
Collapse
|
5
|
Milewski TM, Lee W, Young RL, Hofmann HA, Curley JP. Rapid changes in plasma corticosterone and medial amygdala transcriptome profiles during social status change reveal molecular pathways associated with a major life history transition in mouse dominance hierarchies. PLoS Genet 2025; 21:e1011548. [PMID: 39804961 PMCID: PMC11761145 DOI: 10.1371/journal.pgen.1011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/24/2025] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies. We show that mice of all social ranks rapidly establish new stable social hierarchies when placed in novel social groups with animals of equivalent social status. Seventy minutes following social hierarchy formation, males that were socially dominant prior to being placed into new social hierarchies exhibit higher increases in plasma corticosterone and vastly greater transcriptional changes in the medial amygdala (MeA), which is central to the regulation of social behavior, compared to males who were socially subordinate prior to being placed into a new hierarchy. Specifically, the loss of social status in a new hierarchy (social descent) is associated with reductions in MeA expression of myelination and oligodendrocyte differentiation genes. Maintaining high social status is associated with high expression of genes related to cholinergic signaling in the MeA. Conversely, gaining social status in a new hierarchy (social ascent) is related to relatively few unique rapid changes in the MeA. We also identify novel genes associated with social transition that show common changes in expression when animals undergo either social descent or social ascent compared to maintaining their status. Two genes, Myosin binding protein C1 (Mybpc1) and μ-Crystallin (Crym), associated with vasoactive intestinal polypeptide (VIP) and thyroid hormone pathways respectively, are highly upregulated in socially transitioning individuals. Further, increases in genes associated with synaptic plasticity, excitatory glutamatergic signaling and learning and memory pathways were observed in transitioning animals suggesting that these processes may support rapid social status changes.
Collapse
Affiliation(s)
- Tyler M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Won Lee
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, California, United States of America
| | - Rebecca L. Young
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Hans A. Hofmann
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
6
|
Sur S, Stewart C, Liddle TA, Monteiro AM, Denizli I, Majumdar G, Stevenson TJ. Molecular basis of photoinduced seasonal energy rheostasis in Japanese quail (Coturnix japonica). Mol Cell Endocrinol 2025; 595:112415. [PMID: 39561917 DOI: 10.1016/j.mce.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Seasonal rhythms in photoperiod are a predictive cue used by many temperate-zone animals to time cycles of lipid accumulation. The neuroendocrine regulation of seasonal energy homeostasis and rheostasis are widely studied. However, the molecular pathways underlying tissue-specific adaptations remain poorly described. We conducted two experiments to examine long-term rheostatic changes in energy stability using the well-characterized photoperiodic response of the Japanese quail. In experiment 1, we exposed quails to photoperiodic transitions simulating the annual photic cycle and examined the morphology and fat deposition in liver, muscle, and adipose tissue. To identify changes in gene expression and molecular pathways during the vernal transition in lipid accumulation, we conducted transcriptomic analyses of adipose and liver tissues. Experiment 2 assessed whether the changes observed in Experiment 1 reflected constitutive levels or were due to time-of-day sampling. We identified increased expression of transcripts involved in adipocyte growth, such as Cysteine Rich Angiogenic Inducer 61 and Very Low-Density Lipoprotein Receptor, and in obesity-linked disease resistance, such as Insulin-Like Growth Factor Binding Protein 2 and Apolipoprotein D, in anticipation of body mass gain. Under long photoperiods, hepatic transcripts involved in fatty acid (FA) synthesis (FA Synthase, FA Desaturase 2) were down-regulated. Parallel upregulation of hepatic FA Translocase and Pyruvate Dehydrogenase Kinase 4 expression suggests increased FA uptake and inhibition of the pyruvate dehydrogenase complex. Our findings demonstrate tissue-specific biochemical and molecular changes that drive photoperiod-induced adipogenesis. These findings can be used to determine conserved pathways that enable animals to accumulate fat without developing metabolic diseases.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Calum Stewart
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Timothy A Liddle
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Ana Maria Monteiro
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Irem Denizli
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Gaurav Majumdar
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, India.
| | - Tyler J Stevenson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
7
|
Egbuniwe IC, Akogwu MS, Obetta TU. Mechanisms underlying reproductive responses of Japanese quails to heat stress conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2173-2184. [PMID: 39075280 DOI: 10.1007/s00484-024-02742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Exposure to heat stress can cause a significant increase in the death rate and disease susceptibility of poultry birds, ultimately impacting the profitability of the poultry industry. Despite being a more economical choice, Japanese quails (Coturnix japonica) are not immune to the harmful effects of heat stress. Quails may experience negative effects on their reproductive performance due to excessive reactive molecules caused by heat stress. However, they have developed various mechanisms to maintain their reproductive abilities in such conditions. The neuroendocrine system in birds plays a vital role in regulating their reproductive responses to thermal stress, and it is also connected to other environmental factors such as photoperiod that can impact their reproductive performance. Hormones are crucial in the complex interactions necessary for sexual maturation and reproductive responses to heat stress in Japanese quails living in stressful thermal conditions.
Collapse
Affiliation(s)
| | - Martins Steven Akogwu
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Timothy Ugochukwu Obetta
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
8
|
Lutterschmidt DI, Stratton K, Winters TJ, Martin S, Merlino LJ. Neural thyroid hormone metabolism integrates seasonal changes in environmental temperature with the neuroendocrine reproductive axis. Horm Behav 2024; 161:105517. [PMID: 38422864 DOI: 10.1016/j.yhbeh.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.
Collapse
Affiliation(s)
| | - Kalera Stratton
- Department of Biology, Portland State University, OR, United States
| | - Treven J Winters
- Department of Biology, Portland State University, OR, United States
| | - Stephanie Martin
- Department of Biology, Portland State University, OR, United States
| | - Lauren J Merlino
- Department of Biology, Portland State University, OR, United States
| |
Collapse
|
9
|
Liddle TA, Majumdar G, Stewart C, Bain MM, Stevenson TJ. Dissociating Mechanisms That Underlie Seasonal and Developmental Programs for the Neuroendocrine Control of Physiology in Birds. eNeuro 2024; 11:ENEURO.0154-23.2023. [PMID: 38548332 PMCID: PMC11007308 DOI: 10.1523/eneuro.0154-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 04/12/2024] Open
Abstract
Long-term programmed rheostatic changes in physiology are essential for animal fitness. Hypothalamic nuclei and the pituitary gland govern key developmental and seasonal transitions in reproduction. The aim of this study was to identify the molecular substrates that are common and unique to developmental and seasonal timing. Adult and juvenile quail were collected from reproductively mature and immature states, and key molecular targets were examined in the mediobasal hypothalamus (MBH) and pituitary gland. qRT-PCR assays established deiodinase type 2 (DIO2) and type 3 (DIO3) expression in adults changed with photoperiod manipulations. However, DIO2 and DIO3 remain constitutively expressed in juveniles. Pituitary gland transcriptome analyses established that 340 transcripts were differentially expressed across seasonal photoperiod programs and 1,189 transcripts displayed age-dependent variation in expression. Prolactin (PRL) and follicle-stimulating hormone subunit beta (FSHβ) are molecular markers of seasonal programs and are significantly upregulated in long photoperiod conditions. Growth hormone expression was significantly upregulated in juvenile quail, regardless of photoperiodic condition. These findings indicate that a level of cell autonomy in the pituitary gland governs seasonal and developmental programs in physiology. Overall, this paper yields novel insights into the molecular mechanisms that govern developmental programs and adult brain plasticity.
Collapse
Affiliation(s)
- Timothy Adam Liddle
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Gaurav Majumdar
- Department of Zoology, University of Allahabad, Allahabad, India
| | - Calum Stewart
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Maureen M Bain
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Tyler John Stevenson
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Majumdar G, Liddle TA, Stewart C, Marshall CJ, Bain M, Stevenson T. FSHβ links photoperiodic signaling to seasonal reproduction in Japanese quail. eLife 2023; 12:RP87751. [PMID: 38150309 PMCID: PMC10752586 DOI: 10.7554/elife.87751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Annual cycles in daylength provide an initial predictive environmental cue that plants and animals use to time seasonal biology. Seasonal changes in photoperiodic information acts to entrain endogenous programs in physiology to optimize an animal's fitness. Attempts to identify the neural and molecular substrates of photoperiodic time measurement in birds have, to date, focused on blunt changes in light exposure during a restricted period of photoinducibility. The objectives of these studies were first to characterize a molecular seasonal clock in Japanese quail and second, to identify the key transcripts involved in endogenously generated interval timing that underlies photosensitivity in birds. We hypothesized that the mediobasal hypothalamus (MBH) provides the neuroendocrine control of photoperiod-induced changes in reproductive physiology, and that the pars distalis of the pituitary gland contains an endogenous internal timer for the short photoperiod-dependent development of reproductive photosensitivity. Here, we report distinct seasonal waveforms of transcript expression in the MBH, and pituitary gland and discovered the patterns were not synchronized across tissues. Follicle-stimulating hormone-β (FSHβ) expression increased during the simulated spring equinox, prior to photoinduced increases in prolactin, thyrotropin-stimulating hormone-β, and testicular growth. Diurnal analyses of transcript expression showed sustained elevated levels of FSHβ under conditions of the spring equinox, compared to autumnal equinox, short (<12L) and long (>12L) photoperiods. FSHβ expression increased in quail held in non-stimulatory short photoperiod, indicative of the initiation of an endogenously programmed interval timer. These data identify that FSHβ establishes a state of photosensitivity for the external coincidence timing of seasonal physiology. The independent regulation of FSHβ expression provides an alternative pathway through which other supplementary environmental cues, such as temperature, can fine tune seasonal reproductive maturation and involution.
Collapse
Affiliation(s)
- Gaurav Majumdar
- Department of Zoology, Science Campus, University of AllahabadPrayagrajIndia
| | - Timothy A Liddle
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Calum Stewart
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Christopher J Marshall
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Maureen Bain
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Tyler Stevenson
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
11
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
12
|
Stevenson TJ. An introduction to the Special Issue on seasonal rhythms in birds and mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART A: ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:871-872. [DOI: 10.1002/jez.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tyler J. Stevenson
- School of Biodiversity, One Health and Veterinary Medicine University of Glasgow Glasgow UK
| |
Collapse
|