1
|
Breves JP, Runiewicz ER, Richardson SG, Bradley SE, Hall DJ, McCormick SD. Transcriptional regulation of esophageal, intestinal, and branchial solute transporters by salinity, growth hormone, and cortisol in Atlantic salmon. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:107-117. [PMID: 38010889 DOI: 10.1002/jez.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
In marine habitats, Atlantic salmon (Salmo salar) imbibe seawater (SW) to replace body water that is passively lost to the ambient environment. By desalinating consumed SW, the esophagus enables solute-linked water absorption across the intestinal epithelium. The processes underlying esophageal desalination in salmon and their hormonal regulation during smoltification and following SW exposure are unresolved. To address this, we considered whether two Na+ /H+ exchangers (Nhe2 and -3) expressed in the esophagus contribute to the uptake of Na+ from lumenal SW. There were no seasonal changes in esophageal nhe2 or -3 expression during smoltification; however, nhe3 increased following 48 h of SW exposure in May. Esophageal nhe2, -3, and growth hormone receptor b1 were elevated in smolts acclimated to SW for 2.5 weeks. Treatment with cortisol stimulated branchial Na+ /K+ -ATPase (Nka) activity, and Na+ /K+ /2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and nka-α1b expression. Esophageal nhe2, but not nhe3 expression, was stimulated by cortisol. In anterior intestine, cortisol stimulated nkcc2, cftr2, and nka-α1b. Our findings indicate that salinity stimulates esophageal nhe2 and -3, and that cortisol coordinates the expression of esophageal, intestinal, and branchial solute transporters to support the SW adaptability of Atlantic salmon.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | - Ellie R Runiewicz
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | | | - Serena E Bradley
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | - Daniel J Hall
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Stephen D McCormick
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Localization of the Neuropeptide Arginine Vasotocin and Its Receptor in the Osmoregulatory Organs of Black Porgy, Acanthopagrus schlegelii: Gills, Kidneys, and Intestines. Int J Mol Sci 2022; 23:ijms232113421. [DOI: 10.3390/ijms232113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The neurohypophysial hormone arginine vasotocin (avt) and its receptor (avtr) regulates ions in the osmoregulatory organs of euryhaline black porgy (Acanthopagrus schlegelii). The localization of avt and avtr transcripts in the osmoregulatory organs has yet to be demonstrated. Thus, in the present study, we performed an in situ hybridization analysis to determine the localization of avt and avtr in the gills, kidneys, and intestines of the black porgy. The avt and avtr transcripts were identified in the filament and lamellae region of the gills in the black porgy. However, the basal membrane of the filament contained more avt and avtr transcripts. Fluorescence double tagging analysis revealed that avt and avtr mRNAs were partially co-localized with α-Nka-ir cells in the gill filament. The proximal tubules, distal tubules, and collecting duct of the kidney all had positive hybridization signals for the avt and avtr transcripts. Unlike the α-Nka immunoreactive cells, the avt and avtr transcripts were found on the basolateral surface of the distal convoluted tubule and in the entire cells of the proximal convoluted tubules of the black porgy kidney. In the intestine, the avt and avtr transcripts were found in the basolateral membrane of the enterocytes. Collectively, this study provides a summary of evidence suggesting that the neuropeptides avt and avtr with α-Nka-ir cells may have functions in the gills, kidneys, and intestines via ionocytes.
Collapse
|
3
|
Breves JP, McKay IS, Koltenyuk V, Nelson NN, Lema SC, McCormick SD. Na +/HCO 3- cotransporter 1 (nbce1) isoform gene expression during smoltification and seawater acclimation of Atlantic salmon. J Comp Physiol B 2022; 192:577-592. [PMID: 35715660 DOI: 10.1007/s00360-022-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
The life history of Atlantic salmon (Salmo salar) includes an initial freshwater phase (parr) that precedes a springtime migration to marine environments as smolts. The development of osmoregulatory systems that will ultimately support the survival of juveniles upon entry into marine habitats is a key aspect of smoltification. While the acquisition of seawater tolerance in all euryhaline species demands the concerted activity of specific ion pumps, transporters, and channels, the contributions of Na+/HCO3- cotransporter 1 (Nbce1) to salinity acclimation remain unresolved. Here, we investigated the branchial and intestinal expression of three Na+/HCO3- cotransporter 1 isoforms, denoted nbce1.1, -1.2a, and -1.2b. Given the proposed role of Nbce1 in supporting the absorption of environmental Na+ by ionocytes, we first hypothesized that expression of a branchial nbce1 transcript (nbce1.2a) would be attenuated in salmon undergoing smoltification and following seawater exposure. In two separate years, we observed spring increases in branchial Na+/K+-ATPase activity, Na+/K+/2Cl- cotransporter 1, and cystic fibrosis transmembrane regulator 1 expression characteristic of smoltification, whereas there were no attendant changes in nbce1.2a expression. Nonetheless, branchial nbce1.2a levels were reduced in parr and smolts within 2 days of seawater exposure. In the intestine, gene transcript abundance for nbce1.1 increased from spring to summer in the anterior intestine, but not in the posterior intestine or pyloric caeca, and nbce1.1 and -1.2b expression in the intestine showed season-dependent transcriptional regulation by seawater exposure. Collectively, our data indicate that tissue-specific modulation of all three nbce1 isoforms underlies adaptive responses to seawater.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ian S McKay
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Victor Koltenyuk
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Nastasia N Nelson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
4
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
5
|
Kokou F, Con P, Barki A, Nitzan T, Slosman T, Mizrahi I, Cnaani A. Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:11-18. [DOI: 10.1016/j.cbpa.2019.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
6
|
Williams M, Barranca D, Bucking C. Zonation of Ca 2+ transport and enzyme activity in the caeca of rainbow trout - a simple structure with complex functions. ACTA ACUST UNITED AC 2019; 222:jeb.187484. [PMID: 30765468 DOI: 10.1242/jeb.187484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
Abstract
Trout caeca are vermiform structures projecting from the anterior intestine of the gastrointestinal tract. Despite their simple gross morphology, these appendages are physically distinct along the anterior-posterior axis, and ultrastructural evidence suggests zonation of function within the structures. Individual caeca from three sections (anterior, middle and posterior) were removed from the intestine of freshwater rainbow trout and investigated for ion transport and enzyme activity. Ca2+ absorption appeared as a combination of active and passive movement, with Michaelis-Menten kinetics observable under symmetrical conditions, and was inhibited by several pharmacological agents (ouabain, La3+ and a calmodulin antagonist). There was a decrease in ion transport function from adjacent to the intestine (proximal) to the distal tip of each caecum, along with decreasing transport from anterior to posterior for the proximal portion alone. Feeding increased the J Max and K M for Ca2+ absorption within all sections, whereas ion-poor water (IPW) exposure further increased the J Max and K M for Ca2+ transport in the anterior and middle sections. Increased Na+/K+-ATPase (NKA) and citrate synthase (CS) activity rates paralleled trends seen in Ca2+ transport. Feeding in freshwater and IPW exposure increased the glycolytic capacity of the caeca via increased pyruvate kinase (PK) and decreased lactate dehydrogenase (LDH) activity, while amino acid metabolism increased with IPW exposure through increased glutamate dehydrogenase (GDH) activity. Overall, feeding and IPW exposure each altered ionoregulation within the caeca of freshwater rainbow trout in a zone-specific pattern, with the anterior and proximal portions of the caeca being most affected. Increased carbohydrate and protein metabolism fueled the increased ATP demand of NKA through CS.
Collapse
Affiliation(s)
- Melanie Williams
- Department of Biology, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Domenico Barranca
- Department of Biology, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Carol Bucking
- Department of Biology, York University, Toronto, Ontario, Canada, M3J 1P3
| |
Collapse
|
7
|
Kasozi N, Iwe Degu G, Mukalazi J, Kato CD, Kisekka M, Owori Wadunde A, Kityo G, Namulawa VT. Histomorphological Description of the Digestive System of Pebbly Fish, Alestes baremoze (Joannis, 1835). ScientificWorldJournal 2017; 2017:8591249. [PMID: 28798951 PMCID: PMC5535748 DOI: 10.1155/2017/8591249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/14/2017] [Indexed: 01/25/2023] Open
Abstract
Histomorphological studies of the digestive system of Alestes baremoze captured from Lake Albert, Uganda, were done using standard procedures. These revealed that A. baremoze has a fleshy-lipped terminal small mouth, large molar, short oesophagus, a three-lobed liver, pouch-like stomach, a nine-fingered caeca, and a long tubular intestine. A stratified squamous epithelium with numerous mucus-secreting cells lined the lips with no taste buds. Stratified squamous epithelia lined the oesophagus in the anterior portion which turned into a columnar epithelium towards the stomach. The lamina propria had numerous tubular glands throughout the entire oesophageal length. The stomach consisted of three distinct regions (cardiac, fundic, and pyloric) with distinguished lamina propria glands. The intestinal mucosa was thrown into villi of varying heights, with the tallest in the anterior part, lined with a simple columnar epithelium with numerous lymphocytes-like infiltrations. Numerous goblet cells appeared in the intestinal lamina epithelialis; these increased uniformly towards the anal opening. The liver was divided into lobules, with a central vein. Hepatocytes were visibly arranged closely, forming irregular cords, and the scattered tubular acinar glands formed the exocrine pancreas (hepatopancreas). Stomach content analysis indicated that the fish eats plankton, mollusks, crustaceans, and insects as the main proportion of its diet.
Collapse
Affiliation(s)
- Nasser Kasozi
- Abi Zonal Agricultural Research & Development Institute, National Agricultural Research Organisation, P.O. Box 219, Arua, Uganda
| | - Gerald Iwe Degu
- Abi Zonal Agricultural Research & Development Institute, National Agricultural Research Organisation, P.O. Box 219, Arua, Uganda
| | - Julius Mukalazi
- Abi Zonal Agricultural Research & Development Institute, National Agricultural Research Organisation, P.O. Box 219, Arua, Uganda
| | - Charles Drago Kato
- College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Majid Kisekka
- College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Akisoferi Owori Wadunde
- Aquaculture Research & Development Center, National Agricultural Research Organisation, P.O. Box 530, Kampala, Uganda
| | - Godfrey Kityo
- Aquaculture Research & Development Center, National Agricultural Research Organisation, P.O. Box 530, Kampala, Uganda
| | - Victoria Tibenda Namulawa
- Aquaculture Research & Development Center, National Agricultural Research Organisation, P.O. Box 530, Kampala, Uganda
| |
Collapse
|
8
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
9
|
|
10
|
Sundh H, Nilsen TO, Lindström J, Hasselberg-Frank L, Stefansson SO, McCormick SD, Sundell K. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2014; 85:1227-52. [PMID: 25263190 DOI: 10.1111/jfb.12531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/11/2014] [Indexed: 05/13/2023]
Abstract
This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmon Salmo salar. Emphasis was placed on Na(+) , K(+) -ATPase (NKA) and Na(+) , K(+) , Cl(-) co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na(+) , Cl(-) co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel 3.
Collapse
Affiliation(s)
- H Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Effects of salinity on growth and ion regulation of juvenile alligator gar Atractosteus spatula. Comp Biochem Physiol A Mol Integr Physiol 2013; 169:44-50. [PMID: 24368134 DOI: 10.1016/j.cbpa.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022]
Abstract
The alligator gar (Atractosteus spatula) is a primitive euryhaline fish, found primarily in estuaries and freshwater drainages associated with the northern Gulf of Mexico. The extent of its hypo-osmotic regulatory abilities is not well understood. In order to determine how salinity affects growth rates and ionic and osmoregulation, juvenile alligator gar (330 days after hatch; 185 g) were exposed to 4 different salinities (0, 8, 16, and 24 ppt) for a 30-day period. Specific growth rate, plasma osmolality and ion concentrations, gill and gastrointestinal tract Na(+), K(+)-ATPase activities, and drinking rate were compared. Juvenile alligator gar were able to tolerate hyperosmotic salinities up to 24 ppt for a 30 day period, albeit with decreased growth resulting largely from decreased food consumption. Plasma osmolality and ionic concentrations were elevated in hyperosmotic salinities, and drinking rates and gastrointestinal tract Na(+), K(+)-ATPase activities increased, particularly in the pyloric caeca, presumably the primary location of water absorption. Therefore, juvenile alligator gar<1 year of age are capable of prolonged exposure to hyperosmotic salinities, but, based on the inference of these data, require access to lower salinities for long-term survival.
Collapse
|
12
|
Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: effects of cortisol treatment and seawater acclimation. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:228-36. [PMID: 23507572 DOI: 10.1016/j.cbpa.2013.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 12/27/2022]
Abstract
This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment.
Collapse
|
13
|
Sundell KS, Sundh H. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. Front Physiol 2012; 3:388. [PMID: 23060812 PMCID: PMC3460234 DOI: 10.3389/fphys.2012.00388] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2012] [Indexed: 01/17/2023] Open
Abstract
The anadromous salmonid life cycle includes both fresh water (FW) and seawater (SW) stages. The parr-smolt transformation (smoltification) pre-adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+, K+-ATPase (NKA) activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs) into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle.
Collapse
Affiliation(s)
- Kristina S Sundell
- Fish Endocrinology Laboratory, Department of Biology and Environmental Sciences, University of Gothenburg Gothenburg, Sweden
| | | |
Collapse
|
14
|
Madsen SS, Olesen JH, Bedal K, Engelund MB, Velasco-Santamaría YM, Tipsmark CK. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine. Front Physiol 2011; 2:56. [PMID: 21941512 PMCID: PMC3171111 DOI: 10.3389/fphys.2011.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 01/05/2023] Open
Abstract
Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally (27% in M), or both (61% in M and 58% in P), suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L(-1) mercaptoethanol. By comparison, 10 mmol L(-1) mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited J(v) by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na(+)-glucose co-transporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab, and -8ab, we detected Aqp1aa, and -1ab immunoreactivity in the brush border and sub-apical region of enterocytes in all intestinal segments. The Aqp8ab antibody showed a particularly strong immunoreaction in the brush border and sub-apical region of enterocytes throughout the intestine and also stained lateral membranes and peri-nuclear regions though at lower intensity. The present localization of three aquaporins in both apical and lateral membranes of salmonid enterocytes facilitates a model for transcellular water transport in the intestine of SW-acclimated salmonids.
Collapse
Affiliation(s)
- Steffen S Madsen
- Institute of Biology, University of Southern Denmark Odense, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Zizza S, Desantis S. Morphology and lectin-binding sites of pyloric caeca epithelium in normal and GnRH-treated Atlantic bluefin tuna (Thunnus thynnus) Linnaeus 1758. Microsc Res Tech 2011; 74:863-73. [PMID: 23939675 DOI: 10.1002/jemt.20970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/26/2010] [Indexed: 11/06/2022]
Abstract
Mucosal epithelium of pyloric caeca was studied in normal and in GnRH-treated Atlantic bluefin tuna Thunnus thynnus L., using morphological analysis, conventional and lectin glycohistochemistry. The lining epithelium consisted of columnar (absorptive) cells, goblet cells and intraepithelial leucocytes. The epithelium from normal animals was significantly taller than GnRH-treated samples. Conventional histochemistry displayed the same staining pattern in normal and hormone-treated specimens which showed a mixture of neutral and sulphated acidic glycoconjugates in the luminal surface and goblet cells, and neutral glycans in apical granules of enterocytes. Lectin histochemistry revealed a different glycoconjugate pattern in normal and GnRH-treated tunas. In normal specimens the luminal surface expressed sialoglycoconjugates which bound MAL II, SNA, KOH-sialidase-PNA, KOH-sialidase-SBA as well as asialoglycans stained with HPA, SBA, GSA I-B4 , LTA. N-linked glycans were highlighted by Con A and KOH-sialidase-WGA. In GnRH-treated tunas the luminal surface did not react with SNA, SBA and LTA. The columnar cells of normal tunas bound KOH-sialisase-PNA in the apical region, KOH-sialidase-PNA, KOH-sialidase-DBA, HPA, SBA, KOH-sialidase-SBA and KOH-sialidase-WGA in apical granules, GSA I-B₄ and LTA in the supranuclear region. GnRH-treated specimens showed some columnar cells that stained with KOH-sialidase-WGA in the apical granules and with GSA I-B4 in the supranuclear region. The goblet cells of normal animals produced mucins positive to PNA, HPA, KOH-sialidase-DBA, SBA, GSA II. The latter three binding sites lacked in GnRH-treated tunas. The results suggest that the mucosal epithelium of Thunnus thynnus L. pyloric caeca expresses a complex glycan pattern that is affected by GnRH-treatment.
Collapse
Affiliation(s)
- Sara Zizza
- Department of Animal Health and Well-being, Faculty of Veterinary Medicine, University of Bari Aldo Moro, S.P. Casamassima Km. 3, 70010 Valenzano, BA, Italy
| | | |
Collapse
|
16
|
Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B 2011; 182:1-39. [DOI: 10.1007/s00360-011-0601-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/08/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022]
|
17
|
Tipsmark CK, Sørensen KJ, Hulgard K, Madsen SS. Claudin-15 and -25b expression in the intestinal tract of Atlantic salmon in response to seawater acclimation, smoltification and hormone treatment. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:361-70. [DOI: 10.1016/j.cbpa.2009.11.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 12/26/2022]
|
18
|
Tipsmark CK, Sørensen KJ, Madsen SS. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J Exp Biol 2010; 213:368-79. [DOI: 10.1242/jeb.034785] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY
Osmotic balance in fish is maintained through the coordinated regulation of water and ion transport performed by epithelia in intestine, kidney and gill. In the current study, six aquaporin (AQP) isoforms found in Atlantic salmon (Salmo salar) were classified and their tissue specificity and mRNA expression in response to a hyperosmotic challenge and during smoltification were examined. While AQP-1a was generic, AQP-1b had highest expression in kidney and AQP-3 was predominantly found in oesophagus, gill and muscle. Two novel teleost isoforms, AQP-8a and -8b, were expressed specifically in liver and intestinal segments, respectively. AQP-10 was predominantly expressed in intestinal segments, albeit at very low levels. Transfer from freshwater (FW) to seawater (SW) induced elevated levels of intestinal AQP-1a, -1b and -8b mRNA, whereas only AQP-8b was stimulated during smoltification. In kidney, AQP-1a, -3 and -10 were elevated in SW whereas AQP-1b was reduced compared with FW levels. Correspondingly, renal AQP-1a and -10 peaked during smoltification in April and March, respectively, as AQP-1b and AQP-3 declined. In the gill, AQP-1a and AQP-3 declined in SW whereas AQP-1b increased. Gill AQP-1a and -b peaked in April, whereas AQP-3 declined through smoltification. These reciprocal isoform shifts in renal and gill tissues may be functionally linked with the changed role of these organs in FW compared with SW. The presence and observed dynamics of the AQP-8b isoform specifically in intestinal sections suggest that this is a key water channel responsible for water uptake in the intestinal tract of seawater salmonids.
Collapse
Affiliation(s)
- C. K. Tipsmark
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - K. J. Sørensen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - S. S. Madsen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
19
|
|
20
|
Grosell M, Genz J, Taylor JR, Perry SF, Gilmour KM. The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3- secretion in seawater-acclimated rainbow trout. ACTA ACUST UNITED AC 2009; 212:1940-8. [PMID: 19483012 DOI: 10.1242/jeb.026856] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyloric caeca and anterior intestine epithelia from seawater-acclimated rainbow trout exhibit different electrophysiological parameters with lower transepithelial potential and higher epithelial conductance in the pyloric caeca than the anterior intestine. Both pyloric caeca and the anterior intestine secrete HCO(3)(-) at high rates in the absence of serosal HCO(3)(-)/CO(2), demonstrating that endogenous CO(2) is the principal source of HCO(3)(-) under resting control conditions. Apical, bafilomycin-sensitive, H(+) extrusion occurs in the anterior intestine and probably acts to control luminal osmotic pressure while enhancing apical anion exchange; both processes with implications for water absorption. Cytosolic carbonic anhydrase (CAc) activity facilitates CO(2) hydration to fuel apical anion exchange while membrane-associated, luminal CA activity probably facilitates the conversion of HCO(3)(-) to CO(2). The significance of membrane-bound, luminal CA may be in part to reduce HCO(3)(-) gradients across the apical membrane to further enhance anion exchange and thus Cl(-) absorption and to facilitate the substantial CaCO(3) precipitation occurring in the lumen of marine teleosts. In this way, membrane-bound, luminal CA thus promotes the absorption of osmolytes and reduction on luminal osmotic pressure, both of which will serve to enhance osmotic gradients to promote intestinal water absorption.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, Division of Marine Biology and Fisheries, University of Miami, Miami, FL 33149, USA.
| | | | | | | | | |
Collapse
|
21
|
Allen PJ, Cech JJ, Kültz D. Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. J Comp Physiol B 2009; 179:903-20. [PMID: 19517116 PMCID: PMC2745624 DOI: 10.1007/s00360-009-0372-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/25/2022]
Abstract
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | |
Collapse
|
22
|
Grosell M, Gilmour KM, Perry SF. Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2099-111. [PMID: 17761514 DOI: 10.1152/ajpregu.00156.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.
Collapse
Affiliation(s)
- Martin Grosell
- Rosensteil School of Marine Atmospheric Sciences, University of Miami, FL 33149-1098, USA.
| | | | | |
Collapse
|
23
|
Forgan LG, Forster ME. Development and physiology of gastric dilation air sacculitis in Chinook salmon, Oncorhynchus tshawytscha (Walbaum). JOURNAL OF FISH DISEASES 2007; 30:459-69. [PMID: 17640249 DOI: 10.1111/j.1365-2761.2007.00832.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The syndrome known as gastric dilation air sacculitis (GDAS) has previously been shown to affect Chinook salmon, Oncorhynchus tshawytscha, in seawater (SW) aquaculture. Feed and osmoregulatory stress have been implicated as potential epidemiological co-factors. The development and physiology of GDAS was investigated in SW and freshwater (FW) adapted smolts. Diet A (low-cohesion pellets) and diet B (high-cohesion pellets) were fed to both FW- and SW-adapted fish. GDAS was induced only in the SW trial on feeding diet A. Stimulated gastro-intestinal (GI) smooth muscle contractility, and fluid transport by the pyloric caeca were different in GDAS-affected fish, which also showed osmoregulatory dysfunction. Cardiac stomach (CS) smooth muscle contractility in response to acetylcholine and potassium chloride (KCl) was significantly reduced in fish fed diet A relative to controls from weeks 3-5. In contrast, maximal pyloric sphincter (PS) circular smooth muscle contraction in response to KCl was significantly elevated in fish fed diet A in weeks 4 and 5. Serum osmolality was elevated in GDAS-affected fish from week 2 of the SW trial. Fluid transport from the mucosal to serosal surface of isolated pyloric caeca was significantly reduced in weeks 3, 4 and 5 in SW fish fed diet A. Gastric evacuation from the stomach of healthy fish was shown to be significantly different when diets of low- and high-cohesion were fed. The results are consistent with the intestinal brake playing a role in the development of the disease.
Collapse
Affiliation(s)
- L G Forgan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
24
|
Psochiou E, Mamuris Z, Panagiotaki P, Kouretas D, Moutou KA. The response of digestive proteases to abrupt salinity decrease in the euryhaline sparid Sparus aurata L. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:156-63. [PMID: 17407829 DOI: 10.1016/j.cbpb.2006.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 12/28/2006] [Accepted: 12/30/2006] [Indexed: 11/16/2022]
Abstract
The response of the digestive proteases to abrupt salinity change was studied in juvenile gilthead sea bream (Sparus aurata) for 15 days after transfer from 33 per thousand to 21 per thousand. Salinity decrease affected significantly neither the activity of total acid proteases in stomach, nor the activities of total alkaline proteases and major serine proteases--trypsin and chymotrypsin--in the alkaline part of the intestine. The activity of the major proteases was significantly different between the alkaline segments of the intestine, with the posterior intestine presenting the highest activities followed by the pyloric caeca. This distribution pattern remained unaffected by salinity decrease. Notably, salinity change led to significant alterations in elastase and carboxypeptidase activity. The changes were more prominent in the upper part of the intestine (pyloric caeca and anterior intestine) than in the posterior intestine. In pyloric caeca significant alteration of carboxypeptidase A and B activities was observed, elastase changes were confined to anterior intestine together with alterations in carboxypeptidase B activity, while in posterior intestine the changes were restricted to carboxypeptidase A activity. The results are discussed in relation to the osmoregulatory action of the intestinal segments and dietary protein digestion.
Collapse
Affiliation(s)
- Eleni Psochiou
- Department of Biochemistry & Biotechnology, University of Thessaly, 26 Ploutonos Street, 41221 Larissa, Greece
| | | | | | | | | |
Collapse
|
25
|
Veillette PA, Breves JP, Reardon DR, Specker JL. Adaptation for water balance in the partial gastrointestinal tract of summer flounder. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:211-7. [PMID: 16423546 DOI: 10.1016/j.cbpa.2005.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Marine teleosts continually drink and absorb water across the intestine to prevent dehydration. Surprisingly, summer flounder that are missing most of their intestine, due to necrotizing enteritis, maintain osmotic homeostasis. Here, we tested the hypothesis that this remnant gastrointestinal tract undergoes compensatory adaptation for fluid uptake. Flounder (Paralicthys dentatus) with a partial gastrointestinal tract had an emaciated liver. Moisture content of muscle however was similar to healthy cohorts with an intact gastrointestinal tract, indicative of an undisturbed osmoregulatory status. Mass-specific rates of fluid uptake across all segments of the partial gastrointestinal tract were less than or similar to rates in corresponding segments from intact flounder. In contrast, weights (percent of body mass) were doubled in stomach and partial intestine of the remnant gastrointestinal tract. Consequently, total capacity for fluid uptake (microL h(-1) g body mass(-1)) was similar for both groups. The functional capacity of the remnant gastrointestinal tract was therefore of a magnitude sufficient to maintain osmoregulatory ability, further evidencing a critical role of the intestine in salt and water balance of marine teleosts.
Collapse
Affiliation(s)
- Philip A Veillette
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197, United States.
| | | | | | | |
Collapse
|