1
|
Kan H, Zhao M, Wang W, Sun B. Understanding Propofol's Protective Mechanism in Tubular Epithelial Cells: Mitigating Pyroptosis via the miR-143-3p/ATPase Na + /K + Transporting Subunit Alpha 2 Pathway in Renal Ischemia-Reperfusion. Mol Biotechnol 2025; 67:1165-1177. [PMID: 38498283 DOI: 10.1007/s12033-024-01116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Propofol (Pro), a prevalent intravenous anesthetic, has recently been recognized for its potential in mitigating ischemia-reperfusion (I/R) injuries. Despite a plethora of evidence suggesting the beneficial effects of low-dose Pro in renal I/R injury (RI/R), its role in modulating pyroptosis in renal tubular epithelial cells consequent to RI/R has not been thoroughly elucidated. In our investigation, we explored the therapeutic potential of Pro against pyroptosis in renal tubular epithelial cells under the duress of RI/R, employing both in vivo and in vitro models, while deciphering the intricate molecular pathways involved. Our results demonstrate an elevation in the expression of miR-143-3p, contrasted by a diminution in ATPase Na + /K + Transporting Subunit Alpha 2 (ATP1A2) under RI/R conditions. Pro effectively mitigates apoptosis in renal tubular epithelial cells induced by RI/R, principally characterized by the inhibition of pro-inflammatory cytokines interleukin (IL-)-1β and IL-18, enhancement of cellular viability, reduction in the ratio of pyroptotic cells, and suppression of nucleotide-binding domain and leucine-rich repeat-related family, pyrin domain containing 3 inflammasome activation along with the expression of cleaved caspase-1, and gasdermin D. Both knockdown and overexpression studies of miR-143-3p revealed its pivotal role in modulating RI/R-induced tubular cell pyroptosis. Notably, Pro's capacity to inhibit pyroptosis in renal tubular epithelial cells was found to be reversible following ATP1A2 knockdown. Furthermore, our study unveils miR-143-3p as a targeted regulator of ATP1A2 expression. From a mechanistic standpoint, Pro's therapeutic efficacy is attributed to its regulatory influence on miR-143-3p and ATP1A2 expression levels. In conclusion, our findings pioneer the understanding that Pro can significantly ameliorate pyroptosis in renal tubular epithelial cells in the context of RI/R, predominantly through the modulation of the miR-143-3p/ATP1A2 axis. This novel insight furnishes robust empirical support for the development of targeted therapeutics and clinical strategies in addressing RI/R.
Collapse
Affiliation(s)
- Hongjun Kan
- Department of Anesthesiology, Shandong Second Provincial General Hospital, No.4 Duanxing West Road, Huaiyin District, Jinan City, 250022, Shandong Province, China
| | - Miaomiao Zhao
- Department of Paediatrics, Pediatrics, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang City, 277100, Shandong Province, China
| | - Wei Wang
- Anesthesia and Perioperative Medicine, Zaozhuang Municipal Hospital, Zaozhuang City, 277000, Shandong Province, China
| | - Baozhong Sun
- Department of Anesthesiology, Shandong Second Provincial General Hospital, No.4 Duanxing West Road, Huaiyin District, Jinan City, 250022, Shandong Province, China.
| |
Collapse
|
2
|
Chu YJ, Zhang H, Jin BX, Liu YF, Yao YX. Effect of total intravenous-based immediate extubation on patient outcomes in adult liver transplantation: A retrospective cohort study. Heliyon 2025; 11:e42108. [PMID: 39906806 PMCID: PMC11791107 DOI: 10.1016/j.heliyon.2025.e42108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Background Although step-down emergence and extubation are universally practiced after liver transplantation (LT), prolonged mechanical ventilation and positive end-expiratory pressure may enhance predisposition to ventilator-associated complications and may be associated with inferior outcomes. Methods We screened 339 patients who underwent LT in this retrospective cohort study. After propensity score matching, 35 patients in Group F (total intravenous-based immediate extubation, TIIE) and 107 patients in Group C (balanced anesthesia with step-down extubation) with balanced and comparable pre- and intraoperative profiles were selected for analysis. Patients in Group F received propofol- and remifentanil-based total intravenous anesthesia, followed by immediate tracheal extubation. Patients in Group C received sevoflurane-based balanced anesthesia and were step-down extubated in the intensive care unit. The primary outcomes were postoperative respiratory support time and length of postoperative ICU stay. Other postoperative outcomes were compared between the two groups. Results Group F had significantly shorter postoperative respiratory support time than Group C (median, 0.08 vs 17 h; P < 0.001). The duration of postoperative intensive unit care stay in Group F was significantly shorter than that in Group C (mean, 5.84 vs 7.08 days; P = 0.019). Group F had a lower incidence of bacterial infection (20.0 % vs 42.1 %; P = 0.019) than Group C. No significant differences in continuous renal replacement therapy use (2.86 % vs 13.08 %; odds ratio, 0.195; P = 0.088), early mortality rate, percentage reduction of bilirubin, the incidence of exploratory laparotomy, pneumonia, or thrombosis were observed between groups. Conclusion TIIE is safe, effective, and associated with a lower incidence of postoperative bacterial infection.
Collapse
Affiliation(s)
- Yan-Jun Chu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui Zhang
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bing-Xin Jin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yu-Fan Liu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yong-Xing Yao
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Sun C, Liu D, Gao S, Xiu M, Zhang Z. Propofol Ameliorates Spinal Cord Injury Process by Mediating miR-672-3p/TNIP2 Axis. Biochem Genet 2024; 62:4914-4928. [PMID: 38379038 DOI: 10.1007/s10528-024-10718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Propofol has been found to have a protective effect against spinal cord injury (SCI). However, the underlying molecular mechanism of propofol regulating SCI process remains unclear. In this study, lipopolysaccharide (LPS)-induced PC12 cells were used to build SCI cell models. Cell viability and apoptosis were determined by cell counting kit 8 assay, flow cytometry, and caspase-3 activity detection. The protein levels of apoptosis-related markers and TNFAIP3 interacting protein 2 (TNIP2) were assessed using western blot analysis, and the levels of inflammatory factors were detected using ELISA. Cell oxidative stress was evaluated by measuring malondialdehyde (MDA) and reactive oxygen species (ROS) levels. The expression of microRNA (miR)-672-3p was examined by quantitative real-time PCR. SCI rat models were constructed to assess the effect of propofol in vivo. We found that propofol treatment promoted viability, while inhibited apoptosis, inflammation and oxidative stress of LPS-induced PC12 cells. Propofol decreased miR-672-3p expression, and miR-672-3p overexpression eliminated the inhibiting effect of propofol on LPS-induced PC12 cell injury. Besides, miR-672-3p targeted TNIP2, and TNIP2 knockdown reversed the protective effect of miR-672-3p inhibitor or propofol against LPS-induced PC12 cell injury. In vivo experiments, propofol treatment enhanced the motor function recovery and inhibited apoptosis of SCI rat models. In conclusion, propofol increased TNIP2 level by reducing miR-672-3p expression, thereby alleviating LPS-induced PC12 cell injury and improving the motor function of SCI rat models.
Collapse
Affiliation(s)
- Chengliang Sun
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Dongzhi Liu
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Shunheng Gao
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Mingyu Xiu
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Zhaojian Zhang
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China.
| |
Collapse
|
4
|
López-Royo T, Moreno-Martínez L, Zaragoza P, García-Redondo A, Manzano R, Osta R. Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis. Open Biol 2024; 14:240015. [PMID: 39406341 PMCID: PMC11479763 DOI: 10.1098/rsob.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor function and muscle mass loss. Despite extensive research in the field, the underlying causes of ALS remain incompletely understood, contributing to the absence of specific diagnostic and prognostic biomarkers and effective therapies. This study investigates the expression of long-non-coding RNAs (lncRNAs) in skeletal muscle as a potential source of biomarkers and therapeutic targets for the disease. The expression profiles of 12 lncRNAs, selected from the literature, were evaluated across different disease stages in tissue and muscle biopsies from the SOD1G93A transgenic mouse model of ALS. Nine out of the 12 lncRNAs were differentially expressed, with Pvt1, H19 and Neat1 showing notable increases in the symptomatic stages of the disease, and suggesting their potential as candidate biomarkers to support diagnosis and key players in muscle pathophysiology in ALS. Furthermore, the progression of Myhas and H19 RNA levels across disease stages correlated with longevity in the SOD1G93A animal model, effectively discriminating between long- and short-term survival individuals, thereby highlighting their potential as prognostic indicators. These findings underscore the involvement of lncRNAs, especially H19 and Myhas, in ALS pathophysiology, offering novel insights for diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Tresa López-Royo
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Moreno-Martínez
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Alberto García-Redondo
- Neurology Department, ALS Unit, Hospital 12 de Octubre Health Research Institute (i+12), CIBERER U-723 (Instituto de Salud Carlos III), Avenida Córdoba, s/n, 28041 Madrid, Spain
| | - Raquel Manzano
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Wang Q, Xiao J, Wei S, Yang X, Li J, Zuo Y, Hu Z. Remote liver ischemic preconditioning protects against renal ischemia/reperfusion injury via phosphorylation of extracellular signal-regulated kinases 1 and 2 in mice. PLoS One 2024; 19:e0308977. [PMID: 39159207 PMCID: PMC11332924 DOI: 10.1371/journal.pone.0308977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Perioperative acute kidney injury (AKI), which is mainly mediated by renal ischemia‒reperfusion (I/R) injury, is commonly observed in clinical practice. However, effective measures for preventing and treating this perioperative complication are still lacking in the clinic. Thus, we designed this study to examine whether remote liver ischemic preconditioning (RLIPC) has a protective effect on damage caused by renal I/R injury. In a rodent model, 30 mice were divided into five groups to assess the effects of RLIPC and ERK1/2 inhibition on AKI. The groups included the sham-operated (sham), kidney ischemia and reperfusion (CON), remote liver ischemic preconditioning (RLIPC), CON with the ERK1/2 inhibitor U0126 (CON+U0126), and RLIPC with U0126 (RLIPC+U0126). RLIPC consisted of 4 liver ischemia cycles before renal ischemia. Renal function and injury were assessed through biochemical assays, histology, cell apoptosis and protein phosphorylation analysis. RLIPC significantly mitigated renal dysfunction, tissue damage, inflammation, and apoptosis caused by I/R, which was associated with ERK1/2 phosphorylation. Furthermore, ERK1/2 inhibition with U0126 negated the protective effects of RLIPC and exacerbated renal injury. To summarize, we demonstrated that RLIPC has a strong renoprotective effect on kidneys post I/R injury and that this effect may be mediated by phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Qifeng Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Xu Y, Zhu Y, Xu J, Mao H, Li J, Zhu X, Kong X, Zhang J. Analysis of microRNA expression in rat kidneys after VEGF inhibitor treatment under different degrees of hypoxia. Physiol Genomics 2023; 55:504-516. [PMID: 37642276 PMCID: PMC11178269 DOI: 10.1152/physiolgenomics.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Previously, we found that the incidence of kidney injury in patients with chronic hypoxia was related to the partial pressure of arterial oxygen. However, at oxygen concentrations that contribute to kidney injury, the changes in the relationship between microRNAs (miRNAs) and the hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) axis and the key miRNAs involved in this process have not been elucidated. Therefore, we elucidated the relationship between VEGF and kidney injury at different oxygen concentrations and the mechanisms mediated by miRNAs. Sprague-Dawley rats were exposed to normobaric hypoxia and categorized into six groups based on the concentration of the oxygen inhaled and injection of the angiogenesis inhibitor bevacizumab, a humanized anti-VEGF monoclonal antibody. Renal tissue samples were processed to determine pathological and morphological changes and HIF-1α, VEGF, and miRNA expression. We performed a clustering analysis of high-risk pathways and key hub genes. The results were validated using two Gene Expression Omnibus datasets (GSE94717 and GSE30718). As inhaled oxygen concentration decreased, destructive changes in the kidney tissues became more severe. Although the kidney possesses a self-protective mechanism under an intermediate degree of hypoxia (10% O2), bevacizumab injections disrupted this mechanism, and VEGF expression was associated with the ability of the kidney to repair itself. rno-miR-124-3p was identified as a crucial miRNA; a key gene target, Mapk14, was identified during this process. VEGF plays an important role in kidney protection from injury under different hypoxia levels. Specific miRNAs and their target genes may serve as biomarkers that provide new insights into kidney injury treatment.NEW & NOTEWORTHY Renal tolerance to hypoxic environments is limited, and the degree of hypoxia does not show a linear relationship with angiogenesis. VEGF plays an important role in the kidney's self-protective mechanism under different levels of hypoxia. miR-124-3p may be particularly important in kidney repair, and it may modulate VEGF expression through the miR-124-3p/Mapk14 signaling pathway. These microRNAs may serve as biomarkers that provide new insights into kidney injury treatment.
Collapse
Affiliation(s)
- Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Yueniu Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jiayue Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Haoyun Mao
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jiru Li
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xiangmei Kong
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Zhang
- Department of Pediatric Respiratory Department, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Wang P, Chen W, Zhao S, Cheng F. The role of LncRNA-regulated autophagy in AKI. Biofactors 2023; 49:1010-1021. [PMID: 37458310 DOI: 10.1002/biof.1980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 10/04/2023]
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome involving a series of pathophysiological processes regulated by multiple pathways at the molecular and cellular level. Long noncoding RNAs (lncRNAs) play an important role in the regulation of epigenetics, and their regulation of autophagy-related genes in AKI has attracted increasing attention. However, the role of lncRNA-regulated autophagy in AKI has not been fully elucidated. Evidence indicated that lncRNAs play regulatory roles in most factors that induce AKI. LncRNAs can regulate autophagy in AKI via a complex network of regulatory pathways to affect the development and prognosis of AKI. This article reviewed and analyzed the pathways of lncRNA regulation of autophagy in AKI in recent years. The results provide new ideas for further study of the pathophysiological process and targeted therapy for AKI.
Collapse
Affiliation(s)
- Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Liu Z, Li C, Li Y, Yu L, Qu M. Propofol Reduces Renal Ischemia Reperfusion-mediated Necroptosis by Up-regulation of SIRT1 in Rats. Inflammation 2022; 45:2038-2051. [PMID: 35460396 DOI: 10.1007/s10753-022-01673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Propofol (Pro) is well known to regulate the asleep-awake-asleep technique. Increasing indication recommends that Pro also has promising properties such as anti-oxidant and anti-inflammation belongings in several disease models. It has been described that Pro has beneficial properties against renal ischemia/reperfusion (rI/R)-mediated acute lung injury (ALI). Nevertheless, pathogenesis underlying the beneficial action of Pro on the remote ALI mediated by rI/R remains unwell unstated. In this research, we displayed that Pro administration remarkably inhibits rI/R-mediated pro-inflammatory cytokines production. Increased levels of oxidative stress were mainly decreased by Pro. Pro administration ameliorated apoptosis-related caspase-3 activation. Furthermore, the levels of crucial necroptosis-associated protein were reduced by Pro. Sirtuin 1 (SIRT1) inhibitor attenuated the aforementioned changes of Pro. In conclusion, these results propose that Pro attenuates rI/R-induced inflammation, oxidative stress, apoptosis, and necroptosis by up-regulation of SIRT1 in rats. Our findings disclose an original pathogenesis underlying the beneficial effect of Pro against rI/R-mediated ALI and reinforce the knowledge that Pro might be a hopeful beneficial agent for the rI/R-mediated ALI.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China.
| | - Chunlei Li
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Min Qu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| |
Collapse
|
9
|
Fei L, Zhang N, Zhang J. Mechanism of miR-126 in hypoxia-reoxygenation-induced cardiomyocyte pyroptosis by regulating HMGB1 and NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022; 44:500-509. [PMID: 35297734 DOI: 10.1080/08923973.2022.2054819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Pyroptosis refers to the programmed cell death. This study evaluated the mechanism of miR-126 in hypoxia-reoxygenation (HR)-induced cardiomyocyte pyroptosis. METHODS The HR rat cardiomyocyte models were established. The cell viability, cytotoxicity, and levels of miR-126, pro-caspase-1 (p45), activated caspase-1 (p20/p10), caspase-11, gasdermin D (GSDMD), and GSDMD-N were detected. The cells were transfected with miR-126 mimics to verify the effect on rat cardiomyocyte pyroptosis, and added with HMGB1 inhibitor (Glycyrrhizin) or NLRP3 inhibitor (S3680) to explore the regulatory mechanisms on rat cardiomyocyte pyroptosis. The binding relationship of miR-126 and HMGB1 was explored. The regulatory effect of miR-126 and HMGB1 on HR-stimulated cardiomyocytes was verified through co-transfection with miR-126 mimics and pcDNA3.1-HMGB1. RESULTS HR treatment inhibited rat cardiomyocyte viability and increased cytotoxicity. After HR treatment, pro-caspase-1 (p45), activated caspase-1 (p20/p10), caspase-11, GSDMD, and GSDMD-N were elevated in rat cardiomyocytes, while miR-126 was evidently downregulated in rat cardiomyocytes. miR-126 overexpression, and inhibition of HMGB1 or NLRP3 partially reversed HR-induced rat cardiomyocyte cytotoxicity and pyroptosis. miR-126 targeted HMGB1 and HMGB1 overexpression partly reversed the inhibition of miR-126 overexpression on HR-induced cardiomyocyte pyroptosis. CONCLUSION miR-126 inhibits HMGB1/NLRP3 activity and the caspase-1/11 activation and reduces the GSDMD-N cleaved from GSDMD, ultimately inhibiting HR-induced cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Ling Fei
- Department of Cardiovascular, Tian Jin Medical University, Chengdu Xinhua Hospital, Cheng Du, 610055, China
| | - Ning Zhang
- Department of Cardiovascular, Chengdu Xinhua Hospital, Cheng Du, 610055, China
| | - Jun Zhang
- Department of Cardiovascular, Cang Zhou Central Hospital, Tian Jin Medical University, Cang Zhou, 061011, China
| |
Collapse
|