1
|
Ma Y, Liu L, Hu G, Wang S, Shan L, Chen J. Effect of Non- Saccharomyces Yeasts Derived from Traditional Fermented Foods on Beer Fermentation Characteristics and Flavor Profiles. Foods 2025; 14:1395. [PMID: 40282796 PMCID: PMC12027376 DOI: 10.3390/foods14081395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
In recent years, numerous studies have demonstrated that non-Saccharomyces yeasts hold potential for industrial application and aroma generation during fermentation. Non-Saccharomyces wild yeasts can be important tools in the development of new products, and the objective of this work was to obtain and characterize novel yeast isolates for their ability to produce beer. Traditional fermented beverages serve as a vital source of yeast strains that can exhibit unique characteristics during the brewing process. Thus, 22 strains of Saccharomycopsis fibuligera were isolated from traditional fermented foods in this work. Subsequently, through primary and secondary screening, S. fibuligera G02 was identified as a promising candidate for beer brewing, attributed to its advantageous physiological traits and notable potential for beer production. Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was employed to analyze the volatile flavor substances in beer fermented using the S. fibuligera G02 strain. Chemometric analysis revealed that S. fibuligera G02 had a unique influence on beer aroma. Accordingly, isoamyl alcohol, phenyl-1-ethanol, ethyl acetate, isoamyl acetate, and 4-ethyl guaiacol (4EG) were the key aroma components of S. fibuligera G02. This work provides useful insights into the non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
| | - Liangyu Liu
- Kweichow Moutai Co., Ltd., Zunyi 564501, China;
| | - Guanhui Hu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
| | - Shuyi Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
| | - Lei Shan
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Jingyu Chen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| |
Collapse
|
2
|
Picknell KJ, Poddar N, McCauley JI, Chaves AV, Ralph PJ. Whole cell microalgae: Potential to transform industry waste into sustainable ruminant feed. BIORESOURCE TECHNOLOGY 2025; 430:132547. [PMID: 40245992 DOI: 10.1016/j.biortech.2025.132547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Microalgae offer an innovative solution for utilizing industrial waste to produce sustainable ruminant feed. With strong carbon capture capabilities, they play a vital role in biological carbon capture and utilization. Advances in biotechnology enable the use of industrial waste streams, offering a pathway to reducing carbon emissions and cultivation costs. Extensive research highlights microalgae's nutritional and anti-methanogenic benefits for ruminants, yet they remain commercially unutilized in feed. To address cultivation limitations, this review explores advancements in algae carbon capture biotechnology and proposes brewery waste to support algae cultivation. In addition, the challenges and bottlenecks that remain to be overcome for future commercial translation of this strategy are presented. This review establishes a theoretical solution for integrating microalgae into high-emission industries like breweries and utilization of algae biomass to reduce agricultural emissions.
Collapse
Affiliation(s)
- Kira J Picknell
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2000, Australia.
| | - Nature Poddar
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2000, Australia.
| | - Janice I McCauley
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2002, Australia.
| | - Alexandre V Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|
3
|
Sabatini F, Maresca E, Aulitto M, Termopoli V, De Risi A, Correggia M, Fiorentino G, Consonni V, Gosetti F, Orlandi M, Lange H, Contursi P. Exploiting agri-food residues for kombucha tea and bacterial cellulose production. Int J Biol Macromol 2025; 302:140293. [PMID: 39864711 DOI: 10.1016/j.ijbiomac.2025.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell density, pH variation, minerals, trace elements and production of bacterial cellulose. Moreover, the total phenolic and radical scavenging capacity was measured by spectrophotometric tests on the beverage and bacterial cellulose. Several classes of compounds were detected by gas chromatography coupled with mass spectrometry performing extractions on the headspace above fresh kombucha beverages and their lyophilized fractions, using solid phase micro extraction and liquid phase extraction, respectively. The obtained results allowed assessing molecular profiles of each kombucha beverages. A chemometric meta-analysis of the data revealed the individual impacts of the single ingredients and the effects of the fermentation process.
Collapse
Affiliation(s)
- Francesca Sabatini
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Emanuela Maresca
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Martina Aulitto
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Veronica Termopoli
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Arianna De Risi
- NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy
| | - Monica Correggia
- University of Naples Federico II, Department of Biology, Naples, Italy
| | | | - Viviana Consonni
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy
| | - Fabio Gosetti
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Orlandi
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Heiko Lange
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå, Sweden
| | - Patrizia Contursi
- NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy.
| |
Collapse
|
4
|
Yoon JA, Cho SW, Kwun SY, Park EH, Kim MD. Flavor patterns of beer fermented by Lachancea thermotolerans. Food Sci Biotechnol 2025; 34:1437-1441. [PMID: 40110393 PMCID: PMC11914542 DOI: 10.1007/s10068-024-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 03/22/2025] Open
Abstract
Lachancea thermotolerans, formerly known as Kluyveromyces thermotolerans, is the yeast that produces ethanol and lactic acid in sour beer fermentation. The three strains of L. thermotolerans were isolated in this study, and their performances as starters for sour beer fermentation were evaluated. All L. thermotolerans isolates exhibited comparable performances to the control in producing ethanol, acetic acid, and lactic acid. Electronic nose and gas chromatography/mass spectrometry analysis revealed that flavor patterns of beer varied notably according to the L. thermotolerans strains used. Among the three L. thermotolerans isolates, the NIYL22663 was most prominent in producing flavor compounds. In addition, it was suggested that six flavor compounds, including ethyl acetate, isoamyl alcohol, and isoamyl acetate, are closely related to NIYL22663. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01769-9.
Collapse
Affiliation(s)
- Jeong-Ah Yoon
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Korea
| | - Seong-Wook Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Korea
| | - Se-Young Kwun
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Korea
| | - Eun-Hee Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341 Korea
| | - Myoung-Dong Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341 Korea
- Institute of Fermentation and Brewing, Kangwon National University, Chuncheon, 24341 Korea
| |
Collapse
|
5
|
Garbers P, Brandal HA, Vardeberg Skeie A, Karlsnes GW, Varela P, Tyl C, Westereng B. Pea-Derived Raffinose-Family Oligosaccharides as a Novel Ingredient to Accelerate Sour Beer Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4219-4230. [PMID: 39907239 PMCID: PMC11843718 DOI: 10.1021/acs.jafc.4c06748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
This study investigated raffinose family oligosaccharides (RFOs) derived from pulses as selective carbon sources for sour beer production. Fourteen lactic acid bacteria (LAB) were screened for growth in media supplemented with RFOs. Furthermore, the influence of ethanol and isomerized α-acids on the bacterial growth was investigated. While most LAB grew in the presence of RFOs, few did so in the presence of ethanol and α-acids. Some of the LAB with tolerance to these stressors were then combined with Brettanomyces claussenii to create classic-style sour beers with or without RFOs. These were characterized chemically, physically, and sensorially. Sour beers made with RFOs were evaluated as being comparable to a commercial Belgian sour beer for some sensory characteristics. Furthermore, the sensory analysis revealed significantly increased acidity levels and differences in flavor and taste between beers fermented with and without RFOs, which was underpinned by chemical analysis. Crucially, beany off-flavors, which are a common problem with pulse-derived ingredients, did not increase upon RFO addition. Thus, by combining selected LAB with RFOs, we successfully utilized a food sidestream and expanded the possibilities for brewing sour beers in a controlled manner in a short time. This is in contrast to the lengthy process used for traditional sour beers.
Collapse
Affiliation(s)
- Philipp Garbers
- Faculty of
Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås 1433, Norway
| | - Hans Andreas Brandal
- Faculty of
Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås 1433, Norway
| | - Aksel Vardeberg Skeie
- Faculty of
Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås 1433, Norway
| | - Gard W. Karlsnes
- Sensory and
Consumer Sciences, Norwegian Institute of
Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Paula Varela
- Sensory and
Consumer Sciences, Norwegian Institute of
Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Catrin Tyl
- Faculty of
Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås 1433, Norway
| | - Bjo̷rge Westereng
- Faculty of
Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås 1433, Norway
| |
Collapse
|
6
|
Ma Y, Xu Y, Tang K. Olfactory perception complexity induced by key odorants perceptual interactions of alcoholic beverages: Wine as a focus case example. Food Chem 2025; 463:141433. [PMID: 39362100 DOI: 10.1016/j.foodchem.2024.141433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The odorants in alcoholic beverages are frequently experienced as complex mixtures, and there is a complex array of influence factors and interactions involved during consumption that deeply increase its olfactory perception complexity, especially the complexity induced by perceptual interactions between different odorants. In this review, the effect of olfactory perceptual interactions and other factors related to the complexity of olfactory perception of alcoholic beverages are discussed. The classification, influencing factors, and mechanisms of olfactory perceptual interactions are outlined. Recent research progress as well as the methodologies applied in these studies on perceptual interactions between odorants observed in representative alcoholic beverages, especially wine, are briefly summarized. In the future, unified theory or systematic research methodology need to be established, since up to now, the rules of perceptual interaction between multiple odorants, which is critical to the alcoholic beverage industry to improve the flavor of their products, are still not revealed.
Collapse
Affiliation(s)
- Yue Ma
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
7
|
Monacci E, Baris F, Bianchi A, Vezzulli F, Pettinelli S, Lambri M, Mencarelli F, Chinnici F, Sanmartin C. Influence of the drying process of Cascade hop and the dry-hopping technique on the chemical, aromatic and sensory quality of the beer. Food Chem 2024; 460:140594. [PMID: 39068805 DOI: 10.1016/j.foodchem.2024.140594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Drying techniques are important for hop storage and quality. The stage of hop addition in beer is another important issue. This study focuses the impact of two drying techniques [freeze-dryer (F) and hot-stove (H)] of Cascade hop, on the chemical, aromatic and sensory quality of beer, comparing beers produced without (BF and BH) and with dry-hopping technique (BFDH and BHDH). Dry-hopping with H significantly increased the bitterness index and reduced the titratable acidity. Isoamyl acetate (450.60 μg/L) and ethyl caprylate (313.60 μg/L) were in high content especially in BH while, ethyl-n-caproate (359.37 μg/L) had the highest content in BF. The beers made with dry-hopping technique, had a significantly higher content in terpenes especially in BFDH (1006.18 μg/L). Sensory evaluation indicated difference preferences, with freeze-dried hop beers generally favored. In conclusion, depending on the type of beer desired, hops dried in different way and a specific hopping technique can be chosen.
Collapse
Affiliation(s)
- Edoardo Monacci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Federico Baris
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, Bologna 40127, Italy.
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Fosca Vezzulli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Stefano Pettinelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Milena Lambri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Fabio Mencarelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, Bologna 40127, Italy.
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
8
|
Zdaniewicz M, Satora P, Kania P, Florkiewicz A. The Impact of Selected Lachancea Yeast Strains on the Production Process, Chemical Composition and Aroma Profiles of Beers. Molecules 2024; 29:5674. [PMID: 39683832 DOI: 10.3390/molecules29235674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Changing trends in the brewing market show that breweries want to attract consumers with new products. New flavours and aromas in beer can be achieved by using various additives. However, non-Saccharomyces yeast strains make it possible to produce beer with an original sensory profile but according to a traditional recipe (without additives). The aim of this study was to evaluate the influence of 10 different yeast strains, belonging to the species Lachancea thermotolerans and L. fermentati, on the creation of different physico-chemical profiles in beers. For this purpose, the same malt wort with a 12°P extract, hopped with Octawia hops (8.4% alpha acids), was inoculated with the aforementioned yeast strains. The fermentation kinetics, the yeast's ability to ferment sugars, the production of organic acids and glycerol and the formation of volatile compounds in the beer were monitored. The beers obtained were classified as low-alcohol and regular. In addition, some beers were measured to have a low pH, qualifying them as "sour" beers, which are currently gaining in popularity. Most interesting, however, was the effect of the selected Lachancea yeast strains on the composition of the beer volatiles. In the second stage of this study, the beers obtained were again subjected to a chromatographic analysis, this time using an olfactometric detector (GC-O). This analysis was dictated by the need to verify the actual influence of the compounds determined (GC-MS) on the creation of the final aroma profile. This study showed that selected strains of Lachancea thermotolerans and L. fermentati have very high brewing potential to produce different original beers from the same hopped wort.
Collapse
Affiliation(s)
- Marek Zdaniewicz
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
- Centre for Innovation and Research on Prohealthy and Safe Food, University of Agriculture in Krakow, Balicka Street 104, 30-149 Krakow, Poland
| | - Paweł Satora
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
| | - Paulina Kania
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
| | - Adam Florkiewicz
- Centre for Innovation and Research on Prohealthy and Safe Food, University of Agriculture in Krakow, Balicka Street 104, 30-149 Krakow, Poland
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
| |
Collapse
|
9
|
Huang PH, Lin YC, Lin YW, Zhang YW, Huang DW. The Potential of Co-Fermentation with Pichia kluyveri and Saccharomyces cerevisiae for the Production of Low-Alcohol Craft Beer. Foods 2024; 13:3794. [PMID: 39682866 DOI: 10.3390/foods13233794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The potential health impacts of moderate alcohol consumption have long been debated. The COVID-19 pandemic has heightened public awareness of health concerns, creating a clear market opportunity for low-alcohol craft beer development. This study investigated the possibility of low-alcohol craft beer by co-fermentation with different ratios of Pichia kluyveri (P. kluyveri) and Saccharomyces cerevisiae (SC) according to the established quality indexes. Specifically, this study was conducted to identify the low-alcohol craft beer quality by fermentation kinetics, growth kinetics, apparent attenuation (AA), real attenuation (RA), residual sugar content, alcohol by volume (ABV), and volatile organic compounds. This study demonstrated that the co-fermentation of SC and P. kluyveri in a 1:10 ratio produced an ABV of 2.98% (v/v). In addition, high concentrations of isoamyl acetate and phenyl ethyl acetate revealed banana, rose, apple, and honey flavors, respectively. Overall, this study revealed that the fermentation of P. kluyveri and SC by co-fermentation and the fermentation process by adjusting the yeast composition developed a craft beer with low alcohol content and rich aroma while establishing the quality indicators.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Rd., Higher Education Park, Huai'an 223003, China
| | - Yung-Chi Lin
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan 710301, Taiwan
| | - Yu-Wen Lin
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, No.70, Dazhi St., Zhongshan Dist., Taipei 104336, Taiwan
| | - You-Wei Zhang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Rd., Higher Education Park, Huai'an 223003, China
| | - Da-Wei Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan 710301, Taiwan
| |
Collapse
|
10
|
Yan ZF, Chen JY, Yang J, Yuan S, Qiao XY, Xu B, Su LQ. Enhancement of the flavor and functional characteristics of cod protein isolate using an enzyme-microbe system. Food Funct 2024; 15:10717-10731. [PMID: 39380384 DOI: 10.1039/d4fo02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cod protein isolate (CPI), a by-product of the cod processing industry, represents a novel source of high value-added products. However, off-flavors in cod protein such as bitterness and fishy odor reduce its acceptability to consumers. Here, CPI was first debittered using aminopeptidase from Streptomyces canus (ScAPase) and then deodorized through probiotic fermentation. This is the first reported demonstration of complete removal of the bitterness of CPI using ScAPase. Subsequently, Syn3 and Syn4, as aromatic CPI (ACPI), were prepared from debittered CPI (DCPI) via fermentation with Lactobacillus acidophilus and Bifidobacterium longum, respectively. These products, DCPI and ACPI, were characterized by the absence of bitterness and fishy odor, along with a strong aromatic scent and high overall acceptability. Additionally, these products exhibited improved physicochemical properties, including enhanced oil-holding capacity, emulsifying activity, and resistance to digestion, compared to untreated CPI. However, significant differences were observed in their radical scavenging activities. The highest scavenging activity was detected in Syn3 against DPPH˙ (63.5%) and ˙OH (79.2%), in DCPI against O2- (32.0%), and in post-digestion Syn4 against ABTS˙+ (95.2%). Furthermore, after digestion treatment, these products significantly promoted the proliferation of probiotics. Notably post-digestion Syn4 showed the most substantial proliferation effect on Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium breve compared to other post-digestion samples. These results indicate that the treated CPI has the potential for applications in health food products.
Collapse
Affiliation(s)
- Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jia-Yu Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Shuai Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xue-Yi Qiao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bo Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ling-Qia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
11
|
Klimczak K, Cioch-Skoneczny M, Ciosek A, Poreda A. Application of Non- Saccharomyces Yeast for the Production of Low-Alcohol Beer. Foods 2024; 13:3214. [PMID: 39456276 PMCID: PMC11507149 DOI: 10.3390/foods13203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, demand for low-alcohol and alcohol-free beers has been rising. Of the many methods of producing such beers, many have expensive implementation requirements or drawbacks in terms of beer quality. The exploration of non-Saccharomyces yeast species presents a promising opportunity to overcome these challenges. These yeasts, with their diverse metabolic capabilities and unique flavor profiles, offer the potential to create innovative and flavorful low-alcohol beers. The study investigates the feasibility of using selected non-Saccharomyces yeasts for brewing low-alcohol beers, focusing on fermentation kinetics, physicochemical parameters, and the sensory attributes of the final product. The evaluated yeast species were Kluyveromyces lactis MG971263, Metschnikowia pulcherrima MG971247 and MG971250, Torulaspora delbrueckii MG971248, Wickerhamomyces anomalus MG971261, and W. onychis MG971246. Two strains of Saccharomyces cerevisiae were used as a control. The results of the study show that selected non-Saccharomyces yeast species might be used to produce low-alcohol beers. The non-Saccharomyces yeast allowed the researchers to obtain beers with an alcohol content in the range of 0.5-1.05%, while the control beer brewed with US-05 had an alcohol content of 3.77%. Among the evaluated strains, the strains M. pulcherrima MG971250 and T. delbrueckii MG971248 were found to be rated better in a sensory evaluation than the brewed and low-alcohol strains of S. cerevisiae.
Collapse
Affiliation(s)
| | - Monika Cioch-Skoneczny
- Department of Fermentation Technology and Microbiology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland; (K.K.); (A.C.); (A.P.)
| | | | | |
Collapse
|
12
|
Wang X, Frank S, Steinhaus M. Molecular Insights into the Aroma Difference between Beer and Wine: A Meta-Analysis-Based Sensory Study Using Concentration Leveling Tests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22250-22257. [PMID: 39344091 PMCID: PMC11468751 DOI: 10.1021/acs.jafc.4c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Beer and wine are popular beverages with clearly different aroma characters, the molecular background of which has not yet been systematically investigated. A comprehensive literature survey returned 14 845 concentration values obtained from 160 beer and 904 wine samples, covering 42 basic beer and 42 basic wine odorants, among which 40 were common to both beverages. Based on mean concentrations and a comparison with threshold data, 29 beer and 32 wine odorants were finally selected to build aroma base models that reflected the basic olfactory difference between beer and wine. Orthonasal concentration leveling tests applied to groups of odorants with similar odor characteristics finally revealed the crucial role of fruity smelling compounds. When 11 fruity compounds, predominantly esters, in the beer aroma base model were adjusted to the respective concentration levels in the wine aroma base model, the sensory panel no longer described the sample as beer-like but as wine-like.
Collapse
Affiliation(s)
- Xingjie Wang
- Technical
University of Munich, TUM School of Natural Sciences,Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Stephanie Frank
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Martin Steinhaus
- Technical
University of Munich, TUM School of Natural Sciences,Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
13
|
Hutama AS, Marlina LA, Akram MB, Wijaya K, Sari RM, Saputri WD. Atmospheric Degradation Mechanism of Isoamyl Acetate Initiated by OH Radicals and Cl Atoms Revealed by Quantum Chemical Calculations and Kinetic Modeling. J Phys Chem A 2024; 128:8483-8500. [PMID: 39314143 DOI: 10.1021/acs.jpca.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Isoamyl acetate is one of the volatile organic compound class molecules relevant to agricultural and industrial applications. With the growing interest in isoamyl acetate applications in industry, the atmospheric fate of isoamyl acetate must be considered. Reaction mechanisms, potential energy profiles, and rate constants of isoamyl acetate reaction with atmospheric relevant oxidant OH radicals and Cl atoms have been obtained from the quantum chemical calculations and kinetic modeling. The geometry optimizations were conducted using M06-2X/6-311++G(3df,3pd) followed by single point-energy calculations at the DLPNO-CCSD(T) method with an extrapolated complete basis set. The rate constants were calculated by solving the master equation. A hydrogen-abstraction reaction dominates the first step of isoamyl acetate degradation, while the addition-substitution reaction plays a small role in the degradation products. The kinetic study was conducted to evaluate the rate constants within a temperature range of 200-400 K. The total rate constants for the isoamyl acetate degradation reactions initiated by the OH radical and Cl atom were determined to be 6.96 × 10-12 and 1.27 × 10-10 cm3 molecule-1 s-1, respectively, under standard temperature and pressure conditions. The product degradation mechanism, ozone formation potential, and atmospheric impacts were discussed.
Collapse
Affiliation(s)
- Aulia Sukma Hutama
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Lala Adetia Marlina
- Research Center for Computing, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia
| | - Muhammad Bahy Akram
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Reka Mustika Sari
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Wahyu Dita Saputri
- Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| |
Collapse
|
14
|
Aguiar-Cervera J, Visinoni F, Zhang P, Hollywood K, Vrhovsek U, Severn O, Delneri D. Effect of Hanseniaspora vineae and Saccharomyces cerevisiae co-fermentations on aroma compound production in beer. Food Microbiol 2024; 123:104585. [PMID: 39038891 DOI: 10.1016/j.fm.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024]
Abstract
In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort. We determined the volatile profile of these yeast strains and found that Hanseniaspora vineae displayed a particularly high production of the desirable aroma compounds ethyl acetate and 2-phenethyl acetate. Given that H. vineae on its own can't ferment maltose and maltotriose, we carried out mixed wort co-fermentations with a S. cerevisiae brewing strain at different ratios. The two yeast strains were able to co-exist throughout the experiment, regardless of their initial inoculum, and the increase in the production of the esters observed in the H. vineae monoculture was maintained, alongside with a high ethanol production. Moreover, different inoculum ratios yielded different aroma profiles: the 50/50 S. cerevisiae/H. vineae ratio produced a more balanced profile, while the 10/90 ratio generated stronger floral aromas. Our findings show the potential of using different yeasts and different inoculum combinations to tailor the final aroma, thus offering new possibilities for a broader range of beer flavours and styles.
Collapse
Affiliation(s)
- Jose Aguiar-Cervera
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom; Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Federico Visinoni
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Penghan Zhang
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Katherine Hollywood
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Urska Vrhovsek
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Oliver Severn
- Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
15
|
Tufariello M, Palombi L, Baiano A, Grieco F. In-depth analysis of volatolomic and odorous profiles of novel craft beer by permutation test features selection and multivariate correlation analysis. Food Chem 2024; 453:139702. [PMID: 38772309 DOI: 10.1016/j.foodchem.2024.139702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
This research explored the impact of binary cereal blends [barley with durum wheat (DW) and soft wheat (CW)], four autochthonous yeast strains (9502, 9518, 14061 and 17290) and two refermentation sugar concentrations (6-9 g/L), on volatolomics (VOCs) and odour profiles of craft beers using unsupervised statistics. For the first time, we applied permutation test to select volatiles with higher significance in explaining variance among samples. The unsupervised approach on the 19 selected VOCs revealed cereal-yeast interaction to be the main source of variability and DW-9502-6/9, DW-17290-6, CW-17290-6 and CW-9518-6 being the best technological strategies. In particular, in samples DW-9502-6/9, concentrations of some of the selected volatiles were observed to be approximately three to more than seven times higher than the average. PLS-correlation between VOCs and odour profiles proved to be very useful in assessing the weight of each of the selected VOCs on the perception of odour notes.
Collapse
Affiliation(s)
- Maria Tufariello
- Institute of Sciences of Food Production, National Research Council, Prov.le, Lecce-Monteroni, 73100 Lecce, Italy
| | - Lorenzo Palombi
- Institute of Applied Physic "Nello Carrara", National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019, Italy.
| | - Antonietta Baiano
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Francesco Grieco
- Institute of Sciences of Food Production, National Research Council, Prov.le, Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
16
|
Stovicek V, Lengeler KB, Wendt T, Rasmussen M, Katz M, Förster J. Modifying flavor profiles of Saccharomyces spp. for industrial brewing using FIND-IT, a non-GMO approach for metabolic engineering of yeast. N Biotechnol 2024; 82:92-106. [PMID: 38788897 DOI: 10.1016/j.nbt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.
Collapse
Affiliation(s)
- Vratislav Stovicek
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Klaus B Lengeler
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark; Traitomic A/S, J.C. Jacobsens Gade 1, DK-1799 Copenhagen V, Denmark
| | - Magnus Rasmussen
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Jochen Förster
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark; DTU Biosustain, The Novo Nordisk Foundation Center for Biosustainability, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Bennis NX, Bieseman J, Daran JMG. Unlocking lager's flavour palette by metabolic engineering of Saccharomyces pastorianus for enhanced ethyl ester production. Metab Eng 2024; 85:180-193. [PMID: 39134117 DOI: 10.1016/j.ymben.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Despite being present in trace amounts, ethyl esters play a crucial role as flavour compounds in lager beer. In yeast, ethyl hexanoate, ethyl octanoate and ethyl decanoate, responsible for fruity and floral taste tones, are synthesized from the toxic medium chain acyl-CoA intermediates released by the fatty acid synthase complex during the fatty acid biosynthesis, as a protective mechanism. The aim of this study was to enhance the production of ethyl esters in the hybrid lager brewing yeast Saccharomyces pastorianus by improving the medium chain acyl-CoA precursor supply. Through CRISPR-Cas9-based genetic engineering, specific FAS1 and FAS2 genes harbouring mutations in domains of the fatty acid synthesis complex were overexpressed in a single and combinatorial approach. These mutations in the ScFAS genes led to specific overproduction of the respective ethyl esters: overexpression of ScFAS1I306A and ScFAS2G1250S significantly improved ethyl hexanoate production and ScFAS1R1834K boosted the ethyl octanoate production. Combinations of ScFAS1 mutant genes with ScFAS2G1250S greatly enhanced predictably the final ethyl ester concentrations in cultures grown on full malt wort, but also resulted in increased levels of free medium chain fatty acids causing alterations in flavour profiles. Finally, the elevated medium chain fatty acid pool was directed towards the ethyl esters by overexpressing the esterase ScEEB1. The genetically modified S. pastorianus strains were utilized in lager beer production, and the resulting beverage exhibited significantly altered flavour profiles, thereby greatly expanding the possibilities of the flavour palette of lager beers.
Collapse
Affiliation(s)
- Nicole X Bennis
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Jimme Bieseman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
18
|
Jabłoński SJ, Mielko-Niziałek KA, Leszczyński P, Gasiński A, Kawa-Rygielska J, Młynarz P, Łukaszewicz M. Examination of internal metabolome and VOCs profile of brewery yeast and their mutants producing beer with improved aroma. Sci Rep 2024; 14:14582. [PMID: 38918455 PMCID: PMC11199613 DOI: 10.1038/s41598-024-64899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Volatile organic compounds (VOCs) are metabolites pivotal in determining the aroma of various products. A well-known VOC producer of industrial importance is Saccharomyces cerevisiae, partially responsible for flavor of beers and wines. We identified VOCs in beers produced by yeast strains characterized by improved aroma obtained in UV-induced mutagenesis. We observed significant increase in concentration of compounds in strains: 1214uv16 (2-phenylethyl acetate, 2- phenylethanol), 1214uv31 (2-ethyl henxan-1-ol), 1214uv33 (ethyl decanoate, caryophyllene). We observed decrease in production of 2-phenyethyl acetate in strain 1214uv33. Analysis of intracellular metabolites based on 1H NMR revealed that intracellular phenylalanine concentration was not changed in strains producing more phenylalanine related VOCs (1214uv16 and 1214uv33), so regulation of this pathway seems to be more sophisticated than is currently assumed. Metabolome analysis surprisingly showed the presence of 3-hydroxyisobutyrate, a product of valine degradation, which is considered to be absent in S. cerevisiae. Our results show that our knowledge of yeast metabolism including VOC production has gaps regarding synthesis pathways for individual metabolites and regulation mechanisms. Detailed analysis of 1214uv16 and 1214uv33 may enhance our knowledge of the regulatory mechanisms of VOC synthesis in yeast, and analysis of strain 1214uv31 may reveal the pathway of 2-ethyl henxan-1-ol biosynthesis.
Collapse
Affiliation(s)
- Sławomir Jan Jabłoński
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Karolina Anna Mielko-Niziałek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Przemysław Leszczyński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
19
|
Ramos‐Parra PA, De Anda‐Lobo IC, Viejo CG, Villarreal‐Lara R, Clorio‐Carillo JA, Marín‐Obispo LM, Obispo‐Fortunato DJ, Escobedo‐Avellaneda Z, Fuentes S, Pérez‐Carillo E, Hernandez‐Brenes C. Consumer insights into the at-home liking of commercial beers: Integrating nonvolatile and volatile flavor chemometrics. Food Sci Nutr 2024; 12:4063-4075. [PMID: 38873484 PMCID: PMC11167190 DOI: 10.1002/fsn3.4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024] Open
Abstract
Consumer acceptability of beers is influenced by product formulation and processing conditions, which impart unique sensory profiles. This study used multivariate techniques to evaluate at-home consumer sensory acceptability of six commercial beers considering their style, fermentation type, and chemical composition. Samples included top-fermented beers (American India Pale Ale and Stout) and bottom-fermented beers (Pilsner, zero-alcohol Pilsner, Vienna Lager, and Munich Dunkel). Beer consumers (n = 50) conducted sensory hedonic, check-all-that-apply (CATA) and just-about-right (JAR) tests. Chemometric variables included iso-alpha-acids, hordenine, and volatile aromatic compounds, quantified by chromatographic methods, whereas bitterness units (IBU) were determined spectrophotometrically. Lager beers had higher acceptability than top-fermented beer (p < .05) for all attributes. Light-colored beers and medium-height foams had the highest liking scores for visual sensory attributes. Higher concentrations of bitter-tasting molecules, hordenine, and acidity decreased the liking scores of top-fermented (Ale) beers, as a sensory penalty analysis suggested. In contrast, the most favored beers (Pilsners and Munich Dunkel) contained higher fusel alcohol esters linked to fruity aromatic notes. Although a low conversion rate of fatty acids into fruity esters was noted in nonalcoholic Pilsner, its overall liking score was not statistically different from the alcoholic version. However, consumers perceived the nonalcoholic Pilsner as less bitter than its alcoholic counterpart even when IBUs were nonsignificantly different. This study emphasized the significance of understanding beer chemometrics to comprehend consumer acceptability, highlighting the crucial role of bitter molecules. Hence, hordenine, acidity, and volatile contents provided additional and valuable insights into consumer preferences.
Collapse
Affiliation(s)
| | | | - Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Research Group, Faculty of SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Raúl Villarreal‐Lara
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNLMéxico
- SensoLab SolutionsCentro de Innovación y Transferencia Tecnológica (CIT2)MonterreyMexico
| | | | | | | | | | - Sigfredo Fuentes
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNLMéxico
- Digital Agriculture, Food and Wine Research Group, Faculty of SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Carmen Hernandez‐Brenes
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNLMéxico
- Tecnologico de MonterreyInstitute for Obesity ResearchMonterreyNLMéxico
| |
Collapse
|
20
|
Kruse J, Wörner J, Schneider J, Dörksen H, Pein-Hackelbusch M. Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses. SENSORS (BASEL, SWITZERLAND) 2024; 24:3520. [PMID: 38894312 PMCID: PMC11175341 DOI: 10.3390/s24113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal per sample, estimating the LOD for substances with instruments yielding multidimensional results like electronic noses (eNoses) is still challenging. In this paper, we will compare and present different approaches to estimate the LOD for eNoses by employing commonly used multivariate data analysis and regression techniques, including principal component analysis (PCA), principal component regression (PCR), as well as partial least squares regression (PLSR). These methods could subsequently be used to assess the suitability of eNoses to help control and steer processes where volatiles are key process parameters. As a use case, we determined the LODs for key compounds involved in beer maturation, namely acetaldehyde, diacetyl, dimethyl sulfide, ethyl acetate, isobutanol, and 2-phenylethanol, and discussed the suitability of our eNose for that dertermination process. The results of the methods performed demonstrated differences of up to a factor of eight. For diacetyl, the LOD and the LOQ were sufficiently low to suggest potential for monitoring via eNose.
Collapse
Affiliation(s)
- Julia Kruse
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Julius Wörner
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Jan Schneider
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Helene Dörksen
- Institute Industrial IT (inIT), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| |
Collapse
|
21
|
Bongaerts D, Bouchez A, De Roos J, Cnockaert M, Wieme AD, Vandamme P, Weckx S, De Vuyst L. Refermentation and maturation of lambic beer in bottles: a necessary step for gueuze production. Appl Environ Microbiol 2024; 90:e0186923. [PMID: 38446583 PMCID: PMC11022581 DOI: 10.1128/aem.01869-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/04/2024] [Indexed: 03/08/2024] Open
Abstract
The production of gueuze beers through refermentation and maturation of blends of lambic beer in bottles is a way for lambic brewers to cope with the variability among different lambic beer batches. The resulting gueuze beers are more carbonated than lambic beers and are supposed to possess a unique flavor profile that varies over time. To map this refermentation and maturation process for gueuze production, a blend of lambic beers was made and bottled, whereby one of them was produced with the old wheat landrace Zeeuwse Witte. Through the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-throughput sequencing of bacterial and fungal amplicons, in combination with metabolite target analysis, new insights into gueuze production were obtained. During the initial stages of refermentation, the conditions in the bottles were similar to those encountered during the maturation phase of lambic beer productions in wooden barrels, which was also reflected microbiologically (presence of Brettanomyces species, Pediococcus damnosus, and Acetobacter lambici) and biochemically (ethanol, higher alcohols, lactic acid, acetic acid, volatile phenolic compounds, and ethyl esters). However, after a few weeks of maturation, a switch from a favorable environment to one with nutrient and dissolved oxygen depletion resulted in several changes. Concerning the microbiology, a sequential prevalence of three lactic acid bacterial species occurred, namely, P. damnosus, Lentilactobacillus buchneri, and Lactobacillus acetotolerans, while the diversity of the yeasts decreased. Concerning the metabolites produced, mainly those of the Brettanomyces yeasts determined the metabolic profiles encountered during later stages of the gueuze production.IMPORTANCEGueuze beers are the result of a refermentation and maturation process of a blend of lambic beers carried out in bottles. These gueuze beers are known to have a long shelf life, and their quality typically varies over time. However, knowledge about gueuze production in bottles is scarce. The present study provided more insights into the varying microbial and metabolite composition of gueuze beers during the first 2 years of this refermentation and maturation process. This will allow gueuze producers to gain more information about the influence of the refermentation and maturation time on their beers. These insights can also be used by gueuze producers to better inform their customers about the quality of young and old gueuze beers.
Collapse
Affiliation(s)
- Dries Bongaerts
- Department of Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Arne Bouchez
- Department of Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonas De Roos
- Department of Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margo Cnockaert
- Department of Biochemistry and Microbiology, Laboratory for Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anneleen D. Wieme
- Department of Biochemistry and Microbiology, Laboratory for Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory for Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Stefan Weckx
- Department of Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Department of Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Martusevice P, Li X, Hengel MJ, Wang SC, Fox GP. A Review of N-Heterocycles: Mousy Off-Flavor in Sour Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7618-7628. [PMID: 38538519 DOI: 10.1021/acs.jafc.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.
Collapse
Affiliation(s)
- Paulina Martusevice
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas 58344, Lithuania
- Botanical Garden, Vytautas Magnus University, Kaunas 44248, Lithuania
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Matt J Hengel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Glen P Fox
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
23
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Randez-Gil F. Sourdough Yeast Strains Exhibit Thermal Tolerance, High Fermentative Performance, and a Distinctive Aromatic Profile in Beer Wort. Foods 2024; 13:1059. [PMID: 38611363 PMCID: PMC11011504 DOI: 10.3390/foods13071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The increasing popularity of home brewing and the fast evolution of craft beer companies have fuelled the interest in novel yeasts as the main actors diversifying the beer portfolio. Here, we have characterized the thermal tolerance and brewing-related features of two sourdough (SD) isolates of Saccharomyces cerevisiae, SDy01 and SDy02, at different temperatures, 20 and 37 °C, comparing them with commercial brew strains, AaB and kNB. The SD strains exhibited tolerance to the main brewing-related stress conditions and increased growth rates and lower lag phases than the reference beer strains at both temperatures. Consistent with this, SDy01 and SDy02 displayed higher fermentative activity in terms of sugar rate depletion and the release of metabolic by-products. Moreover, SDy01 and SDy02 brewing at 20 °C increased their total amount of volatile compounds (VOCs), in particular, their esters and carboxyl compounds, as compared to the reference AaB strain. In contrast, fermentation at 37 °C resulted in a drastic reduction in the number of VOCs in wort fermented with SD yeast, especially in its level of esters. In conclusion, our results stress the high fermentative performance of SD strains in beer wort and their ability to provide a complex and specific aromatic profile at a wide range of temperatures.
Collapse
Affiliation(s)
- Isabel E. Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna (Valencia), Spain (J.A.P.)
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna (Valencia), Spain (J.A.P.)
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna (Valencia), Spain (J.A.P.)
| | - Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain;
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna (Valencia), Spain (J.A.P.)
| |
Collapse
|
24
|
Schreurs M, Piampongsant S, Roncoroni M, Cool L, Herrera-Malaver B, Vanderaa C, Theßeling FA, Kreft Ł, Botzki A, Malcorps P, Daenen L, Wenseleers T, Verstrepen KJ. Predicting and improving complex beer flavor through machine learning. Nat Commun 2024; 15:2368. [PMID: 38531860 PMCID: PMC10966102 DOI: 10.1038/s41467-024-46346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.
Collapse
Affiliation(s)
- Michiel Schreurs
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | - Supinya Piampongsant
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | - Miguel Roncoroni
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | - Lloyd Cool
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | - Christophe Vanderaa
- Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | - Łukasz Kreft
- VIB Bioinformatics Core, VIB, Rijvisschestraat 120, B-9052, Ghent, Belgium
| | - Alexander Botzki
- VIB Bioinformatics Core, VIB, Rijvisschestraat 120, B-9052, Ghent, Belgium
| | | | - Luk Daenen
- AB InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium.
| |
Collapse
|
25
|
Nemenyi J, Pitts ER, Martin-Ryals A, Boz Z, Zhang B, Jia Z, Budner D, MacIntosh AJ, Thompson-Witrick KA. The effect of mixed culture fermentation of Saccharomyces cerevisiae and Saccharomyces cerevisiae var. diastaticus on fermentation parameters and flavor profile. J Food Sci 2024; 89:513-522. [PMID: 37983755 DOI: 10.1111/1750-3841.16833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
Belgian Saisons and Lambics are two well-known examples in the brewing industry of mixed fermentations, combination of two or more yeast and/or bacteria strains. The purpose of this study was to determine the impact different pitch rates of Saccharomyces cerevisiae (traditional brewing yeast) and S. cerevisiae var. diastaticus (a variant associated with Belgian styles) had on the fermentation kinetics and concentration of the volatile compounds in the finished beers. A series of brews were performed utilizing ratios of S. cerevisiae and diastaticus. The fermentations were heavily monitored, and a model was used to fit fermentation variables. It was found that mixed fermentations produced behaviors that were predictable and proportional to the mixture ratios. As expected, the pure cultural fermentations of diastaticus had a slower fermentation midpoint (M) at 45.45 h versus 28.28 h for S. cerevisiae with the mixed ones falling in between the two. Flavor and aroma play a key role in the acceptability of beer. The mixed fermentations showed a combination of the two different yeast strains aromatic profiles. When combined, there was a strong linearity between alcohols (R2 = 0.94), esters (R2 = 0.89), and the overall total (R2 = 0.91) volatile compounds. PRACTICAL APPLICATION: Modeling is a widely utilized tool in several different fields. The purpose of this research is to apply modeling techniques to describe the fermentation speed and flavor profile of a mixed fermentation between S. cerevisiae and diastaticus. The equations from this data can be used by brewers for product development purposes to make beers with certain flavor profiles within a desired timeframe.
Collapse
Affiliation(s)
- John Nemenyi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida, USA
| | - Eric R Pitts
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida, USA
| | - Ana Martin-Ryals
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida, USA
| | - Ziynet Boz
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida, USA
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Zhen Jia
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Drew Budner
- Department of Chemistry, Coastal Carolina University, Conway, South Carolina, USA
| | - Andrew J MacIntosh
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
26
|
de Lima AC, Brandao LR, Botelho BG, Rosa CA, Aceña L, Mestres M, Boqué R. Multivariate Analysis of the Influence of Microfiltration and Pasteurisation on the Quality of Beer during Its Shelf Life. Foods 2023; 13:122. [PMID: 38201150 PMCID: PMC10778496 DOI: 10.3390/foods13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gas chromatography-mass spectrometry (GC-MS), physicochemical and microbiological analyses, sensory descriptive evaluation, and multivariate analyses were applied to evaluate the efficiencies of microfiltration and pasteurization processes during the shelf life of beer. Samples of microfiltered and pasteurised beer were divided into fresh and aged groups. A forced ageing process, which consisted of storing fresh samples at 55° C for 6 days in an incubator and then keeping them under ambient conditions prior to analysis, was applied. Physicochemical analysis showed that both microfiltered and pasteurised samples had a slight variation in apparent extract, pH, and bitterness. The samples that underwent heat treatment had lower colour values compared with those that were microfiltered. Chromatographic peak areas of vicinal diketones increased in both fresh and aged samples. The results of the microbiological analysis revealed spoilage lactic acid bacteria (Lactobacillus) and yeasts (Saccharomyces and non-Saccharomyces) in fresh microfiltered samples. In the GC-MS analysis, furfural, considered by many authors as a heat indicator, was detected only in samples that underwent forced ageing and not in samples that were subjected to thermal pasteurisation. Finally, sensory analysis found differences in the organoleptic properties of fresh microfiltered samples compared with the rest of the samples.
Collapse
Affiliation(s)
- Ana Carolina de Lima
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | | | - Bruno G. Botelho
- Department of Chemistry, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Carlos A. Rosa
- Department of Microbiology, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Laura Aceña
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | - Montserrat Mestres
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | - Ricard Boqué
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| |
Collapse
|
27
|
Cela N, Galgano F, Di Cairano M, Condelli N, Scarpa T, Marconi O, Alfeo V, Perretti G. Development of gluten-free craft beer: Impact of brewing process on quality attributes and consumer expectations for sensory properties. J Food Sci 2023; 88:5203-5215. [PMID: 37876285 DOI: 10.1111/1750-3841.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
To date, few studies investigated the differences between the two main gluten-free (GF) brewing techniques, such as the use of enzymes and the use of unconventional GF grains in brewing, by consumer perspective. In this study a GF beer brewed with sorghum and quinoa, as brewing adjuncts, was compared to the enzymatic-treated counterpart, in order to evaluate the effect of deglutinization treatment on physicochemical, volatile, and sensory characteristics of final beer. Moreover, the influence of brewing process and raw materials information on consumers' sensory perceptions, willingness to buy (WTB) and willingness to pay (WTP) was also investigated (n = 105 consumers), under blind (B), expected (E), and informed (I) conditions. The enzymatic-treated sample showed comparable physicochemical attributes with the untreated counterpart, except for a significant reduction in color and foam stability (p < 0.05). Non-significant difference between samples was found in the overall liking, WTB, and WTP mean scores in all three sensory test conditions (p > 0.05). The information about the deglutinization treatment had a negative impact on overall liking (p < 0.01), although WTP for both samples was significantly higher in the informed test than in blind condition (p < 0.05). Overall, Check-All-That-Apply test results confirmed that the deglutinization treatment does not affect the beer sensory profile, even if the information about brewing ingredients and technologies may slightly influence the consumers' sensory perception. Therefore, this result proves that it is possible to produce a marketable GF beer, simply by partially replacing 40% of barley malt with unconventional GF grains, without using enzymes for gluten reduction purpose.
Collapse
Affiliation(s)
| | - Fernanda Galgano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Maria Di Cairano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Nicola Condelli
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Teresa Scarpa
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, Perugia, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre, University of Perugia, Perugia, Italy
| | - Giuseppe Perretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Mastrangelo N, Bianchi A, Pettinelli S, Santini G, Merlani G, Bellincontro A, Baris F, Chinnici F, Mencarelli F. Novelty of Italian Grape Ale (IGA) beer: Influence of the addition of Gamay macerated grape must or dehydrated Aleatico grape pomace on the aromatic profile. Heliyon 2023; 9:e20422. [PMID: 37780761 PMCID: PMC10539957 DOI: 10.1016/j.heliyon.2023.e20422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
A new category of fruit style beer resulting from the addition of grape matrices is named Italian Grape Ale (IGA). In this paper, we report data on an experimental work to produce IGA beers, adding macerated (CO2 or N2) red Gamay grape must or Aleatico grape pomace resulting from a grape dehydration process. Our hypothesis, that these wine processes can produce volatile organic compounds (VOCs) to characterize these IGA beers which was confirmed by chemical, sensory and aromatic results. IGA beers especially the one with gas-macerated grape musts (IGA-C and IGA-N) showed higher alcohol content than ALE beer (Control) and a higher polyphenol content and antioxidant activity. As regards VOCS, IGA beers increased the concentration of some classes (i.e., alcohols, esters, norisoprenoids) and IGA-N was better characterized by specific compounds such as isobutyric acid, phenylacetate, tyrosol, ethyl hydrogen succinate. Finally, E-nose and sensory evaluation discriminated significantly all the IGA beers.
Collapse
Affiliation(s)
- Nicola Mastrangelo
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Stefano Pettinelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Gregorio Santini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Giorgio Merlani
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via De Lellis, 01100, Viterbo, Italy
| | - Federico Baris
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, Bologna, 40127, Italy
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, Bologna, 40127, Italy
| | - Fabio Mencarelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
29
|
Galli V, Venturi M, Guerrini S, Mangani S, Barbato D, Vallesi G, Granchi L. Exploitation of Selected Sourdough Saccharomyces cerevisiae Strains for the Production of a Craft Raspberry Fruit Beer. Foods 2023; 12:3354. [PMID: 37761063 PMCID: PMC10529207 DOI: 10.3390/foods12183354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Recent interest in the special beer category has encouraged the search for novel brewing materials, including new ingredients and novel yeast strains, in order to differentiate the finished products. The aim of this work was to select non-brewing S. cerevisiae strains for the production of a fruit beer with raspberry. The in vitro tests and the wort fermentations allowed the selection of two sourdough S. cerevisiae strains, showing high maltose and maltotriose consumption, high ethanol production, and high viability. Fruit beers (FB) and control beers (CB) without raspberries were prepared. Fruit addition accelerated sugar consumption (7 days compared to 13 days) and increased ethanol and glycerol production by yeasts. Raspberry addition and the inoculated yeast strongly affected the aroma profile of beers. FB samples showed a higher amount of volatile organic compounds (VOCs); the most represented classes were alcohols, followed by esters and acids. FB inoculated by the selected S. cerevisiae SD12 showed the highest VOCs concentration (507.33 mg/L). Results highlighted the possible application of sourdough yeast strains for the brewing process, which, combined with raspberry addition, can be exploited for the production of beers with enhanced aromatic features and suitable chemical properties.
Collapse
Affiliation(s)
- Viola Galli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Via San Bonaventura, 13-50145 Florence, Italy; (V.G.); (G.V.); (L.G.)
| | - Manuel Venturi
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, Via Santo Spirito, 14-50125 Florence, Italy; (S.G.); (D.B.)
| | - Simona Guerrini
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, Via Santo Spirito, 14-50125 Florence, Italy; (S.G.); (D.B.)
| | - Silvia Mangani
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, Via Santo Spirito, 14-50125 Florence, Italy; (S.G.); (D.B.)
| | - Damiano Barbato
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, Via Santo Spirito, 14-50125 Florence, Italy; (S.G.); (D.B.)
| | - Gianni Vallesi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Via San Bonaventura, 13-50145 Florence, Italy; (V.G.); (G.V.); (L.G.)
| | - Lisa Granchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Via San Bonaventura, 13-50145 Florence, Italy; (V.G.); (G.V.); (L.G.)
| |
Collapse
|
30
|
Vladić J, Kovačević S, Rebocho S, Paiva A, Jokić S, Duarte AR, Jerković I. A new green approach for Lavandula stoechas aroma recovery and stabilization coupling supercritical CO 2 and natural deep eutectic solvents. Sci Rep 2023; 13:12443. [PMID: 37528110 PMCID: PMC10394027 DOI: 10.1038/s41598-023-39516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
This work investigated a green approach to obtain and stabilize Lavandula stoechas L. volatile organic compounds with sensory aroma characteristics by using alternative solvents, namely supercritical carbon dioxide (scCO2) and deep eutectic solvents (DES). The CO2 extracts were dispersed in different DES mixtures (betaine:ethylene glycol (1:3), betaine:glycerol (1:2), and glycerol:glucose (4:1)) and their stability was monitored during 6 months of storage at room temperature by monitoring the headspace (HS) profile. The CO2 extract was used as the control. It was initially determined that there was a dominant presence of oxygenated monoterpenes (67.33-77.50%) in the extracts. During storage, significant changes occurred in the samples' HS, such as the decrease in terpene hydrocarbons which also affected the presence of oxygenated terpenes, which increased in certain cases. Moreover, the highest formation of new components was recorded in the control which could be an indicator of decreased stability. The DESs-CO2 were more stable than the CO2 control and among them, betaine:ethylene glycol stood out as the most adequate systems for maintaining the stability of L. stoechas HS components. For the visual estimation of similarities and dissimilarities among the samples, chemometric pattern recognition approaches were applied including the hierarchical cluster analysis, principal component analysis, and sum of ranking differences.
Collapse
Affiliation(s)
- Jelena Vladić
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
- Faculty of Technology, University of Novi Sad, Novi Sad, 21000, Serbia
| | | | - Silvia Rebocho
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Alexandre Paiva
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Stela Jokić
- Faculty of Food Technology Osijek, University of Josip Juraj Strossmayer of Osijek, 31000, Osijek, Croatia
| | - Ana Rita Duarte
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia.
| |
Collapse
|
31
|
Palombi L, Tufariello M, Durante M, Fiore A, Baiano A, Grieco F. Assessment of the impact of unmalted cereals, hops, and yeast strains on volatolomic and olfactory profiles of Blanche craft beers: A chemometric approach. Food Chem 2023; 416:135783. [PMID: 36871508 DOI: 10.1016/j.foodchem.2023.135783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
This study investigated the impact of changes in craft beer formulation, by modifying the unmalted cereal [(durum (Da) and soft (Ri) wheat), emmer (Em)], hops [Cascade (Ca) and Columbus (Co)], and yeast strains [M21 (Wi) - M02 (Ci)], on volatolomic, acidic, and olfactory profiles. Olfactory attributes were evaluated by the trained panel. Volatolomic and acidic profiles were determined by GC-MS. The sensory analysis detected significant differences for 5 attributes, including olfactory intensity and finesse, malty, herbaceous, and floral notes. Multivariate analysis of volatiles data, showed significant differences among the samples (p < 0.05). DaCaWi, DaCoWi, and RiCoCi beers differ from the others by their higher concentrations of esters, alcohols, and terpenes. A PLSC analysis was carried out between volatiles and odour attributes. As far as we know, this is the first investigation that shed light on the impact of 3-factors interaction on the sensory-volatolomic profile of craft beers, through a comprehensive multivariate approach.
Collapse
Affiliation(s)
- Lorenzo Palombi
- CNR - Institute for Applied Physics "Nello Carrara" (IFAC), Via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019, Italy
| | - Maria Tufariello
- CNR - Institute of Sciences of Food Production (ISPA), via Prov. Lecce-Monteroni, 73100 Lecce, Italy.
| | - Miriana Durante
- CNR - Institute of Sciences of Food Production (ISPA), via Prov. Lecce-Monteroni, 73100 Lecce, Italy
| | - Anna Fiore
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Napoli Street 25, Foggia 71122, Italy
| | - Antonietta Baiano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Napoli Street 25, Foggia 71122, Italy
| | - Francesco Grieco
- CNR - Institute of Sciences of Food Production (ISPA), via Prov. Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
32
|
Díaz AB, Durán-Guerrero E, Valiente S, Castro R, Lasanta C. Development and Characterization of Probiotic Beers with Saccharomyces boulardii as an Alternative to Conventional Brewer's Yeast. Foods 2023; 12:2912. [PMID: 37569181 PMCID: PMC10418778 DOI: 10.3390/foods12152912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The development of new non-dairy probiotic foods is interesting, given lactose intolerance, milk allergies, and the growing trend of vegetarianism. In this paper, beer has been used as a probiotic delivery matrix, using Saccharomyces boulardii as an alternative to conventional brewer's yeast. The strain was able to grow in worts prepared with hops containing different alpha-acid concentrations, attaining in all cases a final cell concentration above 1·108 cells mL-1. Some differences were found in the physicochemical parameters of beers brewed with S. boulardii compared to those brewed with a standard brewer's yeast. Probiotic beers turned out to be less cloudy, which could help with a possible filtering step; less alcoholic in some cases; a healthier alternative; and with a slightly lower pH, interesting for the reduction of spoilage risk. Thirty volatile compounds were determined in the samples, and, in general, the beers brewed with the probiotic yeast presented significantly higher concentrations for the majority of the studied volatile compounds. In addition, multivariate statistical analysis was successfully performed to differentiate the beers obtained in terms of their volatile composition. Probiotic and standard beers were also subjected to sensory analysis, and they presented similar results in their overall impression.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain;
| | - Sergio Valiente
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain;
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| |
Collapse
|
33
|
Pietrafesa R, Siesto G, Tufariello M, Palombi L, Baiano A, Gerardi C, Braghieri A, Genovese F, Grieco F, Capece A. A multivariate approach to explore the volatolomic and sensory profiles of craft Italian Grape Ale beers produced with novel Saccharomyces cerevisiae strains. Front Microbiol 2023; 14:1234884. [PMID: 37577427 PMCID: PMC10414987 DOI: 10.3389/fmicb.2023.1234884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
This study investigated the influence of three Saccharomyces cerevisiae strains, selected from different matrices - CHE-3 (cherry), P4 (sourdough) and TA4-10 (grape must) - on characteristics of Italian Grape Ale (IGA) beers obtained at microbrewery scale. A multidisciplinary approach, combining results from analysis of chemical, volatile and organoleptic profiles of the beers, was adopted to underline the relationships between yeast starter and the quality of final products. Detection volatile organic compounds (VOCs) by Gas-Chromatography coupled with Mass Spectrometry (GC-MS) after extraction carried out by head-space micro-extraction (HS-SPME) revealed that the beer obtained by P4 strain differed from the others for its higher concentrations of esters, alcohols, and terpenes as confirmed by PCA (principal component analysis) and Cluster heatmap. Furthermore, sensorial analysis and consumer test showed that this sample differed from others by more pronounced notes of "fruity smell and floral" and "olfactory finesse," and it was the most appreciated beer for smell, taste, and overall quality. Conversely, CHE-3 was the sample with the lowest concentrations of the identified volatiles and, together TA4-10, showed the highest scores for smoked, yeast, malt, and hop notes. As far as we know, these are the first results on the application of indigenous S. cerevisiae strains in the production of craft IGA beers analyzed through a complex multivariate approach.
Collapse
Affiliation(s)
- Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff StarFInn S.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Maria Tufariello
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari (ISPA), Lecce, Italy
| | - Lorenzo Palombi
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata “Nello Carrara”, Firenze, Italy
| | - Antonietta Baiano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Carmela Gerardi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari (ISPA), Lecce, Italy
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Francesco Genovese
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Francesco Grieco
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari (ISPA), Lecce, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff StarFInn S.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
34
|
Park J, Park HY, Chung HJ, Oh SK. Starch Structure of Raw Materials with Different Amylose Contents and the Brewing Quality Characteristics of Korean Rice Beer. Foods 2023; 12:2544. [PMID: 37444283 DOI: 10.3390/foods12132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to explore suitable processing materials for rice beer (RB) production by analyzing the starch structure of the raw materials utilized for brewing beer and the quality characteristics of RB. We used malt, employing the Heugho cultivar as the main ingredient, and produced beer containing 30% rice. The regular amylose-containing cultivars Samgwang (SA) and Hangaru (HA) and the high-amylose-containing cultivar Dodamssal (DO) were used as adjuncts. Distribution of the short molecular chains of the starch amylopectin was the highest for SA and malt at 29.3% and 27.1%, respectively. Glucose content was the highest in the wort prepared with 100% malt and 30% SA + 70% malt. The alcohol content in SA RB and HA RB was higher than that in beer prepared with 100% malt. DO RB had the least bitterness and volatile components, such as acetaldehyde and ethyl acetate. The three rice cultivars tested in this study are suitable as starch adjuncts for RB production. The characteristics of RBs varied depending on the molecular structure of the ingredients, irrespective of their amylose contents. SA could be considered a craft beer with quality characteristics and rich flavor components, similar to 100% malt beer, compared to other RBs.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Chuncheon 24219, Republic of Korea
| |
Collapse
|
35
|
Zhao X, Yin Y, Fang W, Yang Z. What happens when fruit married with beer? Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Paszkot J, Gasiński A, Kawa-Rygielska J. Evaluation of volatile compound profiles and sensory properties of dark and pale beers fermented by different strains of brewing yeast. Sci Rep 2023; 13:6725. [PMID: 37185768 PMCID: PMC10130024 DOI: 10.1038/s41598-023-33246-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
To evaluate the differences in the volatile compound profile of dark and pale beers fermented by different strains of brewer's yeast, gas chromatography with flame ionization detection and gas chromatography mass spectrometry analysis of eight beers was carried out. The prevalent group of compounds in all the beers analysed were alcohols (56.41-72.17%), followed by esters (14.58-20.82%), aldehydes (8.35-20.52%), terpenes and terpenoids (1.22-6.57%) and ketones (0.42-1.00%). The dominant higher alcohols were 2-methylpropan-1-ol, 3-methylbutanol, phenethyl alcohol, among aldehydes furfural, decanal, nonanal, and among esters ethyl acetate, phenylethyl acetate and isoamyl acetate. Beers fermented by the top-fermenting yeast Saccharomyces cerevisiae var. diastaticus had the highest volatile content. The addition of dark malt in wort production process had no effect on the total content of volatiles, but for some beers it caused changes in the total content of esters, terpenes and terpenoids. Variations in the total volatile content between beers fermented by different yeast strains are mainly due to esters and alcohols identified. Sensory analysis of beers allowed us to identify the characteristics affected by the addition of dark speciality malts in the production of wort and yeast strains used in the fermentation process.
Collapse
Affiliation(s)
- Justyna Paszkot
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland.
| | - Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| |
Collapse
|
37
|
de Lima AC, Aceña L, Mestres M, Boqué R. Monitoring the Evolution of the Aroma Profile of Lager Beer in Aluminium Cans and Glass Bottles during the Natural Ageing Process by Means of HS-SPME/GC-MS and Multivariate Analysis. Molecules 2023; 28:molecules28062807. [PMID: 36985778 PMCID: PMC10055024 DOI: 10.3390/molecules28062807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS), sensory evaluation, and multivariate analysis were applied to monitor and compare the evolution of the aromatic profile of a lager beer in different types of containers (aluminum cans and glass bottles) during the natural ageing process. Samples were aged naturally for a year in the absence of light with a controlled temperature of around 14 °C +/- 0.5 °C. The sensory evaluation applied was a blind olfactometric triangle test between canned and bottled samples at different periods of aging: fresh, 6 months, and 11 months. The sensory evaluation showed that the panelists were able to differentiate between samples, except for the fresh samples from the brewery. A total of 34 volatile compounds were identified using the HS-SPME/GC-MS technique for both packaging types in this experiment. The application of multivariate analysis to the GC-MS data showed that the samples could not be differentiated according to the type of packaging but could be differentiated by the ageing time. The results showed that the combination of sensory, HS-SPME-GC-MS, and multivariate analysis seemed to be a valuable tool for monitoring and identifying possible changes in the aroma profile of a beer during its shelf life. Furthermore, the results showed that storing beer under optimal conditions helped preserve its quality during its shelf life, regardless of the type of packaging (aluminum can and glass bottle).
Collapse
Affiliation(s)
- Ana Carolina de Lima
- Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain
| | - Laura Aceña
- Instrumental Sensometry Group (iSens), Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain
| | - Montserrat Mestres
- Instrumental Sensometry Group (iSens), Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain
| | - Ricard Boqué
- Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
38
|
Kumar A, Warburton A, Silcock P, Bremer PJ, Eyres GT. Yeast Strain Influences the Hop-Derived Sensory Properties and Volatile Composition of Beer. Foods 2023; 12:foods12051064. [PMID: 36900579 PMCID: PMC10000826 DOI: 10.3390/foods12051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The perception of hop-derived flavour in beer is not well understood, particularly regarding the effect that different yeast strains and fermentation parameters have on perceived hop aroma and the mechanisms responsible for these changes. To evaluate the influence of yeast strain on the sensory properties and volatile composition of beer, a standard wort, late-hopped with New Zealand Motueka hops (5 g·L-1), was fermented with one of twelve yeast strains under constant conditions (temperature and yeast inoculation rate). The bottled beers were evaluated using a free sorting sensory methodology, and their volatile organic compounds (VOC) were assessed using gas chromatography mass spectrometry (GC/MS) with headspace solid-phase microextraction (SPME) sampling. Beer fermented with SafLager W-34/70 yeast was associated with a hoppy flavour attribute, whereas WY1272 and OTA79 beers were sulfury, and WY1272 was also metallic. WB06 and WLP730 beers were perceived to be spicy, with WB06 beer also perceived as estery, whereas VIN13 beer was sour, and the WLP001 beer was astringent. Beers fermented using the twelve yeast strains had clearly distinct VOC profiles. Beer made with WLP730, OTA29, SPH, and WB06 yeasts had the highest 4-vinylguaiacol levels, which contributed to their spicy attribute. Beer made with W3470 had high levels of nerol, geraniol, and citronellol, which supported its sensory characterisation as being 'hoppy'. This research has illustrated the important role that yeast strain has on modulating hop flavour in beer.
Collapse
|
39
|
Medina K, Giannone N, Dellacassa E, Schinca C, Carrau F, Boido E. Commercial craft beers produced in Uruguay: Volatile profile and physicochemical composition. Food Res Int 2023; 164:112349. [PMID: 36737939 DOI: 10.1016/j.foodres.2022.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Even beer being the most consumed alcoholic beverage around the world, there is not enough information generated for craft beers produced in Latin America, for either volatile profiles or physicochemical studies. In this work, the chemical and volatile components of ten commercial Blond Ale and nine Indian Pale Ale (IPA) beers from the Uruguayan market were studied using GC-MS. Principal component analysis applied to the data allowed differentiation among the two groups of samples while the volatile compounds and physicochemical parameters responsible for these differences were identified. The physicochemical properties revealed a great diversity between all beer samples even within the same beer style. The main significant differences were obtained for alcohol, polyphenols, bitterness, colour, and pH. Most Blond Ale beer samples were differentiated from IPA ones by raw fermentation aroma compounds such as 1-pentanol, 1-hexanol, hexanoic and isobutyric acids, 4-vinyl guaiacol, and 5,5-dimethyl-2(5H)-furanone. This is the first work that contributes to the knowledge of Uruguayan craft beers. The study also showed the ability of most of the Uruguayan microbreweries to brew Blond Ale and IPA craft beer styles that meet international standards for physicochemical quality.
Collapse
Affiliation(s)
- Karina Medina
- Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800-Montevideo, Uruguay
| | - Nicolas Giannone
- Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800-Montevideo, Uruguay
| | - Eduardo Dellacassa
- Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800-Montevideo, Uruguay
| | - Cecilia Schinca
- Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800-Montevideo, Uruguay
| | - Francisco Carrau
- Área de Enología y Biotecnología de Fermentaciones, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800-Montevideo, Uruguay
| | - Eduardo Boido
- Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800-Montevideo, Uruguay.
| |
Collapse
|
40
|
Siesto G, Pietrafesa R, Tufariello M, Gerardi C, Grieco F, Capece A. Application of microbial cross-over for the production of Italian grape ale (IGA), a fruit beer obtained by grape must addition. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
41
|
Simões J, Coelho E, Magalhães P, Brandão T, Rodrigues P, Teixeira JA, Domingues L. Exploiting Non-Conventional Yeasts for Low-Alcohol Beer Production. Microorganisms 2023; 11:microorganisms11020316. [PMID: 36838280 PMCID: PMC9961705 DOI: 10.3390/microorganisms11020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Non-Saccharomyces yeasts represent a very appealing alternative to producing beers with zero or low ethanol content. The current study explores the potential of seven non-Saccharomyces yeasts to produce low-alcohol or non-alcoholic beer, in addition to engineered/selected Saccharomyces yeasts for low-alcohol production. The yeasts were first screened for their sugar consumption and ethanol production profiles, leading to the selection of strains with absent or inefficient maltose consumption and consequently with low-to-null ethanol production. The selected yeasts were then used in larger-scale fermentations for volatile and sensory evaluation. Overall, the yeasts produced beers with ethanol concentrations below 1.2% in which fusel alcohols and esters were also detected, making them eligible to produce low-alcohol beers. Among the lager beers produced in this study, beers produced using Saccharomyces yeast demonstrated a higher acceptance by taster panelists. This study demonstrates the suitability of non-conventional yeasts for producing low-alcohol or non-alcoholic beers and opens perspectives for the development of non-conventional beers.
Collapse
Affiliation(s)
- João Simões
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga, 4835-198 Guimarães, Portugal
| | - Eduardo Coelho
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga, 4835-198 Guimarães, Portugal
| | - Paulo Magalhães
- Super Bock Group, SGPS, SA, 4466-955 Leça do Balio, Portugal
| | - Tiago Brandão
- Super Bock Group, SGPS, SA, 4466-955 Leça do Balio, Portugal
| | - Pedro Rodrigues
- Super Bock Group, SGPS, SA, 4466-955 Leça do Balio, Portugal
| | - José António Teixeira
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga, 4835-198 Guimarães, Portugal
| | - Lucília Domingues
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga, 4835-198 Guimarães, Portugal
- Correspondence:
| |
Collapse
|
42
|
Clare SJ, Çelik Oğuz A, Effertz K, Karakaya A, Azamparsa MR, Brueggeman RS. Wild barley (Hordeum spontaneum) and landraces (Hordeum vulgare) from Turkey contain an abundance of novel Rhynchosporium commune resistance loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:15. [PMID: 36662256 DOI: 10.1007/s00122-023-04245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Rhynchosporium commune is a globally devastating pathogen of barley. Wild and landrace barley are underutilized, however, contain an abundance of loci that can be used as potential sources of resistance. Rhynchosporium commune, the causal agent of the disease scald or leaf blotch of barley, is a hemibiotrophic fungal pathogen of global importance, responsible for yield losses ranging from 30 to 40% on susceptible varieties. To date, over 150 resistance loci have been characterized in barley. However, due to the suspected location of the R. commune host jump in Europe, European germplasm has been the primary source used to screen for R. commune resistance leaving wild (Hordeum spontaneum) and landrace (H. vulgare) barley populations from the center of origin largely underutilized. A diverse population consisting of 94 wild and 188 barley landraces from Turkey were genotyped using PCR-GBS amplicon sequencing and screened with six Turkish R. commune isolates. The isolates were collected from distinct geographic regions of Turkey with two from the Aegean region, two from central Turkey and two from the Fertile Crescent region. The data set was utilized for association mapping analysis with a total of 21 loci identified, of which 12 were novel, indicating that these diverse primary barley gene pools contain an abundance of novel R. commune resistances that could be utilized for resistance breeding.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Mohammad Reza Azamparsa
- Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
43
|
Chen DQ, Zou C, Huang YB, Zhu X, Contursi P, Yin JF, Xu YQ. Adding functional properties to beer with jasmine tea extract. Front Nutr 2023; 10:1109109. [PMID: 36937349 PMCID: PMC10020177 DOI: 10.3389/fnut.2023.1109109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Hops provide the characteristic bitter taste and attractive aroma to beer; in this study, hops were replaced by jasmine tea extract (JTE) during late-hopping. The addition of JTE improved the beer foam stability 1.52-fold, and increased the polyphenol and organic acid contents. Linalool was the most important aroma compound in hopped (HOPB) and jasmine tea beer (JTB), but other flavor components were markedly different, including dimeric catechins, flavone/flavonol glycosides, and bitter acids and derivatives. Sensory evaluation indicated that addition of JTE increased the floral and fresh-scent aromas, reduced bitterness and improved the organoleptic quality of the beer. The antioxidant capacity of JTB was much higher than that of HOPB. The inhibition of amylase activity by JTB was 30.5% higher than that of HOPB. Functional properties to beer were added by substituting jasmine tea extract for hops during late hopping.
Collapse
Affiliation(s)
- De-Quan Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun Zou
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Chun Zou
| | - Yi-Bin Huang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Xuan Zhu
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- *Correspondence: Yong-Quan Xu
| |
Collapse
|
44
|
Van den Mooter PR, De Grave K, Vankelecom IF. Preparation of cellulose tri-acetate membranes for high-alcohol beverages via genetic algorithms and high throughput experimentation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
SANTOS DCD, SOUSA TLD, SANTANA JFDS, ALMEIDA ABD, SILVA FG, EGEA MB. Commercial craft beers of midwest Brazil: biochemical and physicochemical properties and their relationship with its sensory profile. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
46
|
Ribeiro-Filho N, Linforth R, Bora N, Powell CD, Fisk ID. The role of inorganic-phosphate, potassium and magnesium in yeast-flavour formation. Food Res Int 2022; 162:112044. [DOI: 10.1016/j.foodres.2022.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
|
47
|
Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production. Processes (Basel) 2022. [DOI: 10.3390/pr10122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Craft breweries tend to use special raw materials and also special ingredients (spices, herbs, fruits) to typify beers, but the metabolic activities of yeasts play a primary role in defining the sensory characteristics of this beverage. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeast species usually used for ale and lager beer production. The selection and use of new yeast starters with peculiar technological and enzymatic characteristics could represent the key point for the production of beers with good and distinctive organoleptic properties. In this study, the fermentative performance of S. cerevisiae 41CM yeast isolated from the vineyard environment for ale and lager craft beer production on a laboratory scale was evaluated. The commercial yeast S. cerevisiae Fermentis S-04 and S. pastorianus Weihenstephan 34/70 were used as reference strains. S. cerevisiae 41CM showed fermentative kinetics similar to commercial starters, both in lager (12 °C) and ale (20 °C) brewing. In all beers brewed, the largest percentage of volatile compounds synthesized during the fermentation were alcohols, followed by esters, terpenes, and aldehydes. In particular, S. cerevisiae 41CM starter contributed a higher relative percentage of esters in the ale beer than that detected in the lager beer, without ever synthesizing unwanted volatile compounds.
Collapse
|
48
|
Moreira MTG, Pereira PR, Aquino A, Conte-Junior CA, Paschoalin VMF. Aldehyde Accumulation in Aged Alcoholic Beer: Addressing Acetaldehyde Impacts on Upper Aerodigestive Tract Cancer Risks. Int J Mol Sci 2022; 23:14147. [PMID: 36430619 PMCID: PMC9698545 DOI: 10.3390/ijms232214147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Aldehydes, particularly acetaldehyde, are carcinogenic molecules and their concentrations in foodstuffs should be controlled to avoid upper aerodigestive tract (UADT) and liver cancers. Highly reactive, acetaldehyde forms DNA and protein adducts, impairing physiological functions and leading to the development of pathological conditions. The consumption of aged beer, outside of the ethanol metabolism, exposes habitual drinkers to this carcinogen, whose concentrations can be over-increased due to post-brewing chemical and biochemical reactions. Storage-related changes are a challenge faced by the brewing industry, impacting volatile compound formation and triggering flavor instability. Aldehydes are among the volatile compounds formed during beer aging, recognized as off-flavor compounds. To track and understand aldehyde formation through multiple pathways during beer storage, consequent changes in flavor but particularly quality losses and harmful compound formation, this systematic review reunited data on volatile compound profiles through gas chromatography analyses from 2011 to 2021. Conditions to avoid flavor instability and successful methods for reducing beer staling, and consequent acetaldehyde accumulation, were raised by exploring the dynamic conversion between free and bound-state aldehydes. Future research should focus on implementing sensory analyses to investigate whether adding aldehyde-binding agents, e.g., cysteine and bisulfite, would contribute to consumer acceptance, restore beer flavor, and minimize acetaldehyde-related health damage.
Collapse
Affiliation(s)
- Mariana Toledo Gonçalves Moreira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Adriano Aquino
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
49
|
Schizosaccharomyces pombe in the Brewing Process: Mixed-Culture Fermentation for More Complete Attenuation of High-Gravity Wort. FERMENTATION 2022. [DOI: 10.3390/fermentation8110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-gravity brewing is a method that maximises brewhouse capacity and reduces energy consumption per unit of beer produced. The fermentation of wort with high sugar content is known to impact the fermentation characteristics and production of aroma-active volatiles, and as such, cultures that are adapted to this method are industrially valuable. Mixed-culture fermentation offers brewers the opportunity to combine desirable features from multiple strains of yeast and to take advantage of the interactions between those strains. In this study, a highly attenuative strain of Schizosaccharomyces pombe is paired with a fast-fermenting brewing strain of Saccharomyces cerevisiae in the fermentation of wort at both standard and high gravity at centilitre scale. Mixed cultures were found to produce several esters and higher alcohols in higher concentration than in either of the parent monocultures at both standard and high gravity. The mixed culture also represented a compromise between fermentation length (modelled by the logistic equation), which was extended by the inclusion of S. pombe, and ethanol yield, which was increased. The application of mixed-culture strategies to high-gravity brewing practices may allow brewers greater flexibility in achieving desired flavour profiles whilst increasing brewhouse efficiency.
Collapse
|
50
|
Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The microalgae Chlorella vulgaris is a cheap source of nutrients and bioactive compounds, and thus is used in many interventional studies. This study evaluated the potential effects of C. vulgaris powder on fermentation parameters; sensory, phytochemical, and antioxidant activity; and the abundance of volatile organic compounds (VOCs) of treated versus control beers. A German Pilsner-style lager beer (GPB) was brewed and supplemented with C. vulgaris at various levels (3.3, 5, and 10 g/L) after primary fermentation. The apparent °Brix and pH was used to monitor the progress of fermentation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) was used to measure the antioxidant activity of beers. Addition of C. vulgaris increased the concentration of total polyphenols, total flavonoids, and antioxidant activity of treated beers (CGB) compared to the control (GPB). Treatment had no effects (p > 0.05) on higher alcohols such as 3-methyl-1-butanol, 2-hexanol, and phenylethyl alcohol. An increase in the concentration of C. vulgaris had no significant effects on sensory perception of enriched beers. The results showed that C. vulgaris could be used as a potential ingredient for designing functional beer with improved health benefits.
Collapse
|