1
|
Skurska E, Olczak M. GDP-fucose transporter SLC35C1: a potential regulatory role in cytosolic GDP-fucose and fucosylated glycan synthesis. FEBS Open Bio 2025. [PMID: 40421778 DOI: 10.1002/2211-5463.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/22/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
Glycosylation occurs mainly in the Golgi apparatus, whereas the synthesis of nucleotide sugars occurs in the cytoplasm or nucleus. GDP-fucose in mammalian cells could be produced via de novo and salvage pathways in the cytoplasm; the first one is responsible for about 90% of GDP-fucose in the total pool of this nucleotide sugar in the cell. SLC35C1 (C1) is the primary transporter of GDP-fucose to the Golgi apparatus. In the absence of this transporter, it was proposed that nucleotide sugar could still reach the Golgi apparatus via a SLC35C2, the homologue of SLC35C1. However, simultaneous inactivation of the two transporters did not influence GDP-fucose transport across the Golgi apparatus membranes after external fucose supplementation. In this study, we combined the inactivation of SLC35C1 and enzymes of the GDP-fucose biosynthesis pathways (FCSK, GMDS and TSTA3) to study the impact of double inactivation on the production of nucleotide sugar and fucosylated glycans. We found that a lack of SLC35C1 changed the level of enzymes of both de novo and salvage pathways. Upon fucose supplementation, stimulation of the salvage pathway was remarkably high in the absence of the TSTA3 protein, and the concentration of GDP-fucose increased to millimolar values. In this work, we discovered that simultaneous deficiency of the SLC35C1 protein and TSTA3 enzyme increased GDP-fucose production via the salvage pathway to an even higher level. Finally, we found that nucleotide sugar still accessed the Golgi apparatus and had differential effects on N- and O-glycans.
Collapse
Affiliation(s)
- Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Poland
| | | |
Collapse
|
2
|
Klepper J. Glut1 Deficiency Syndrome: Novel Pathomechanisms, Current Concepts, and Challenges. J Inherit Metab Dis 2025; 48:e70044. [PMID: 40405536 PMCID: PMC12099281 DOI: 10.1002/jimd.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Glut1 Deficiency Syndrome (Glut1DS) has emerged as a treatable, but complex entity. Increasing data on pathogenic mechanisms, phenotype, genotype, and ketogenic dietary therapies (KDT) are available, as summarized in this review. Many challenges remain: novel symptoms emerge and vary with age. In Glut1DS, KDT in pregnancy and the clinical features in neonates and adults are poorly understood. KDT are ineffective in some patients for reasons yet unknown. Research reaches beyond the concept of brain energy depletion by impaired GLUT1-mediated glucose transfer across the blood-brain barrier. Novel concepts investigate alternative substrates, transport mechanisms, and metabolic interactions of different brain cell types. Future, yet currently unavailable prospects are neonatal screening for Glut1DS, reliable biomarkers, predictors for outcome, and alternative therapies, along with and beyond KDT.
Collapse
Affiliation(s)
- Joerg Klepper
- Department of Pediatrics and NeuropediatricsChildrens' Hospital AschaffenburgAschaffenburgGermany
| |
Collapse
|
3
|
Wei K, Zhang J, Qu W, Zhu J, Zhu Q, Yi W, Zou C, Ma D, Li X. FUT8 Regulates Cerebellar Neurogenesis and Development Through Maintaining the Level of Neural Cell Adhesion Molecule Cntn2. Mol Neurobiol 2025; 62:5679-5694. [PMID: 39604780 DOI: 10.1007/s12035-024-04620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Core fucosylation at N-glycans, which is uniquely catalyzed by fucosyltransferase FUT8, plays essential roles in post-translational regulation of protein function. Aberrant core fucosylation leads to neurological disorders in individuals with congenital glycosylation disorders (CDG). However, the underlying mechanisms for these neurological defects remain largely unknown. In this study, we have showed that FUT8 and fucosylation are abundant in cerebellum. Specific deletion of Fut8 in cerebellar granule neuron progenitors (GNPs) results in the impaired proliferation and differentiation of GNPs, as well as the compromised neuronal development, synaptic physiology and motor coordination. Mechanistically, we have showed that Fut8 deficiency reduced Contactin 2 (Cntn2) expression, a member of neural cell adhesion molecules (NCAMs). Furthermore, ectopic Cntn2 can rescue the neuronal defects induced by Fut8 deficiency. Collectively, our study has revealed the important roles of FUT8 and core fucosylation in regulating cerebellar development and function through modulating Cntn2 expression.
Collapse
Affiliation(s)
- Kaiyan Wei
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
| | - Jinpiao Zhu
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaochun Zou
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China.
| | - Daqing Ma
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China.
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Xuekun Li
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China.
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Wada Y. Mass Spectrometry as a First-Line Diagnostic Aid for Congenital Disorders of Glycosylation. Mass Spectrom (Tokyo) 2025; 14:A0169. [PMID: 39931184 PMCID: PMC11808201 DOI: 10.5702/massspectrometry.a0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Congenital disorders of glycosylation (CDG) constitute a group of rare inherited metabolic disorders resulting from mutations in genes involved in the biosynthesis of glycan chains that are covalently attached to proteins or lipids. To date, nearly 200 genes have been identified as responsible for these disorders, with approximately half implicated in N-glycosylation defects. Diagnosis of CDG is primarily achieved through genetic analysis and the identification of glycan abnormalities, referred to as molecular phenotypes. With the increasing use of whole exome and genome sequencing in the investigation of diseases with unknown etiology, the number of cases suspected of CDG is increasing, highlighting the necessity for glycan analysis. Molecular phenotyping in CDG typically targets glycoproteins, with transferrin and apolipoprotein CIII being key representatives of N- and mucin-type O-glycosylation, respectively. Mass spectrometry (MS) provides rapid analysis and yields moderately detailed information, establishing it as a first-line molecular diagnostic tool that complements genetic analysis. Structural anomalies detected by MS can be classified into distinct patterns, which may indicate specific defects within the glycosylation pathway. In cases of CDG types that lack clear molecular phenotypes, characteristic metabolites can often be identified and quantified by MS, further aiding in the diagnostic process. Molecular diagnosis of CDG using MS can be performed with a standard mass spectrometer and a dried blood spot on filter paper, enabling its application in population-based mass screening.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Obstetric Medicine, Osaka Women’s and Children’s Hospital, 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
| |
Collapse
|
6
|
Skurska E, Olczak M. Interplay between de novo and salvage pathways of GDP-fucose synthesis. PLoS One 2024; 19:e0309450. [PMID: 39446915 PMCID: PMC11501016 DOI: 10.1371/journal.pone.0309450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
GDP-fucose is synthesised via two pathways: de novo and salvage. The first uses GDP-mannose as a substrate, and the second uses free fucose. To date, these pathways have been considered to work separately and not to have an influence on each other. We report the mutual response of the de novo and salvage pathways to the lack of enzymes from a particular route of GDP-fucose synthesis. We detected different efficiencies of GDP-fucose and fucosylated structure synthesis after a single inactivation of enzymes of the de novo pathway. Our study demonstrated the unequal influence of the salvage enzymes on the production of GDP-fucose by enzymes of the de novo biosynthesis pathway. Simultaneously, we detected an elevated level of one of the enzymes of the de novo pathway in the cell line lacking the enzyme of the salvage biosynthesis pathway. Additionally, we identified dissimilarities in fucose uptake between cells lacking TSTA3 and GMDS proteins.
Collapse
Affiliation(s)
- Edyta Skurska
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
7
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Skurska E, Szulc B, Kreczko K, Olczak M. Mutations in the SLC35C1 gene, contributing to significant differences in fucosylation patterns, may underlie the diverse phenotypic manifestations observed in leukocyte adhesion deficiency type II patients. Int J Biochem Cell Biol 2024; 173:106602. [PMID: 38843991 DOI: 10.1016/j.biocel.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the SLC35C1 gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the cis-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1-6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients' state.
Collapse
Affiliation(s)
- E Skurska
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - B Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - K Kreczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - M Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
9
|
Eslamian G, Jamee M, Momen T, Rohani P, Ebrahimi S, Mesdaghi M, Ghadimi S, Mansouri M, Mahdaviani SA, Sadeghi-shabestari M, Fallahpour M, Shamsian BS, Eslami N, Sharafian S, Dara N, Nasri P, Amini N, Enayat J, Fallahi M, Ghasemi Hashtrodi L, Shojaei M, Guevara Becerra M, Uhlig HH, Chavoshzadeh Z. Genomic testing identifies monogenic causes in patients with very early-onset inflammatory bowel disease: a multicenter survey in an Iranian cohort. Clin Exp Immunol 2024; 217:1-11. [PMID: 38651248 PMCID: PMC11188541 DOI: 10.1093/cei/uxae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024] Open
Abstract
Patients with very early-onset inflammatory bowel disease (VEO-IBD) may present because of underlying monogenic inborn errors of immunity (IEI). Strong differences have been observed in the causes of monogenic IBD among ethnic populations. This multicenter study was carried out on 16 Iranian patients with VEO-IBD. We reviewed clinical and basic immunologic evaluation including flow cytometry and immunoglobulin levels. All patients underwent clinical whole exome sequencing (WES). Sixteen patients (8 females and 8 males) with a median age of 43.5 months were enrolled. The median age at the onset of symptoms was 4 months. Most patients (12, 75%) had consanguineous parents. Chronic non-bloody diarrhea (13, 81.3%) and perianal diseases including perianal abscess (6, 37.5%), anal fissure (6, 37.5%), or anal fistula (2, 12.5%) were the most common manifestations. WES identified a spectrum of genetic variants in 13 patients (81.3%): IL10RB (6, 37.5%), MVK (3, 18.8%), and CASP8, SLC35C1, G6PC3, and IKBKB in 1 patient, respectively. In 3 patients (18.7%), no variant was identified. Flow cytometry identified a spectrum of abnormalities that helped to assess the evidence of genetic diagnosis. At the end of the survey, 3 (18.8%) patients were deceased. This high rate of monogenic defects with a broad spectrum of genes reiterates the importance of investigating IEI in patients with infantile-onset IBD.
Collapse
Affiliation(s)
- Golnaz Eslamian
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Ghadimi
- School of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mansouri
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi-shabestari
- Immunology Research Center, TB and Lung Research Center, Children Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Fallahpour
- Allergy Department, Rasoul Akram Complex, Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghi Dara
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peiman Nasri
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Amini
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Enayat
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazdak Fallahi
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ghasemi Hashtrodi
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Ghods Hospital, Qazvin, Iran
| | - Mohammad Shojaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Martha Guevara Becerra
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Starosta RT, Lee AJ, Toolan ER, He M, Wongkittichote P, Daniel EJP, Radenkovic S, Budhraja R, Pandey A, Sharma J, Morava E, Nguyen H, Dickson PI. D-mannose as a new therapy for fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG). Mol Genet Metab 2024; 142:108488. [PMID: 38735264 DOI: 10.1016/j.ymgme.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION D-mannose is a promising new treatment for FCSK-CDG.
Collapse
Affiliation(s)
- Rodrigo Tzovenos Starosta
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA; Division of Clinical Genetics and Metabolism, University of Colorado Anschutz, Aurora, CO, USA; Graduate Program in Science: Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Angela J Lee
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth R Toolan
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Parith Wongkittichote
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Rohit Budhraja
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaiprakash Sharma
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Hoanh Nguyen
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia I Dickson
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Fazelzadeh Haghighi M, Jafari Khamirani H, Fallahi J, Monfared AA, Ashrafi Dehkordi K, Tabei SMB. Novel insight into FCSK-congenital disorder of glycosylation through a CRISPR-generated cell model. Mol Genet Genomic Med 2024; 12:e2445. [PMID: 38722107 PMCID: PMC11080630 DOI: 10.1002/mgg3.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.
Collapse
Affiliation(s)
- Maryam Fazelzadeh Haghighi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | | | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Arabi Monfared
- Central Research LaboratoryShiraz University of Medical SciencesShirazIran
| | - Korosh Ashrafi Dehkordi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical GeneticsShiraz University of Medical SciencesShirazIran
- Maternal‐Fetal Medicine Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
12
|
Nunes MJ, Carvalho AN, Rosa AI, Videira PA, Gama MJ, Rodrigues E, Castro-Caldas M. Altered expression of Sialyl Lewis X in experimental models of Parkinson's disease. J Mol Med (Berl) 2024; 102:365-377. [PMID: 38197965 PMCID: PMC10879467 DOI: 10.1007/s00109-023-02415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
The mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal. Sialyl Lewis X (sLeX) is a sialylated and fucosylated tetrasaccharide with essential roles in cell-to-cell recognition processes. Pathological conditions and pro-inflammatory mediators can up-regulate sLeX expression on cell surfaces, which has important consequences in intracellular signalling and immune function. Here, we investigated the expression of this glycan using in vivo and in vitro models of PD. We show the activation of deleterious glycation-related pathways in mouse striatum upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin-based model of PD. Importantly, our results show that MPTP triggers the presentation of more proteins decorated with sLeX in mouse cortex and striatum in a time-dependent manner, as well as increased mRNA expression of its rate-limiting enzyme fucosyltransferase 7. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. Although the underlying mechanism that drives increased sLeX epitopes, the nature of the protein scaffolds and their functional importance in PD remain unknown, our data suggest for the first time that sLeX in the brain may have a role in neuronal signalling and immunomodulation in pathological conditions. KEY MESSAGES: MPTP triggers the presentation of proteins decorated with sLeX in mouse brain. MPTP triggers the expression of sLeX rate-limiting enzyme FUT 7 in striatum. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. sLeX in the brain may have a role in neuronal signalling and immunomodulation.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Alexandra I Rosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Paula A Videira
- Department of Life Sciences, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
- Department of Life Sciences, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
13
|
Francisco R, Brasil S, Poejo J, Jaeken J, Pascoal C, Videira PA, Dos Reis Ferreira V. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet J Rare Dis 2023; 18:329. [PMID: 37858231 PMCID: PMC10585812 DOI: 10.1186/s13023-023-02879-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a complex and heterogeneous family of rare metabolic diseases. With a clinical history that dates back over 40 years, it was the recent multi-omics advances that mainly contributed to the fast-paced and encouraging developments in the field. However, much remains to be understood, with targeted therapies' discovery and approval being the most urgent unmet need. In this paper, we present the 2022 state of the art of CDG, including glycosylation pathways, phenotypes, genotypes, inheritance patterns, biomarkers, disease models, and treatments. In light of our current knowledge, it is not always clear whether a specific disease should be classified as a CDG. This can create ambiguity among professionals leading to confusion and misguidance, consequently affecting the patients and their families. This review aims to provide the CDG community with a comprehensive overview of the recent progress made in this field.
Collapse
Affiliation(s)
- Rita Francisco
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Sandra Brasil
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Joana Poejo
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Jaak Jaeken
- Center for Metabolic Diseases, Department of Pediatrics, KU Leuven, 3000, Louvain, Belgium
| | - Carlota Pascoal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Paula A Videira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| |
Collapse
|
14
|
Ng BG, Sosicka P, Xia Z, Freeze HH. GLUT1 is a highly efficient L-fucose transporter. J Biol Chem 2023; 299:102738. [PMID: 36423686 PMCID: PMC9758431 DOI: 10.1016/j.jbc.2022.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding L-fucose metabolism is important because it is used as a therapy for several congenital disorders of glycosylation. Exogenous L-fucose can be activated and incorporated directly into multiple N- and O-glycans via the fucose salvage/recycling pathway. However, unlike for other monosaccharides, no mammalian L-fucose transporter has been identified. Here, we functionally screened nearly 140 annotated transporters and identified GLUT1 (SLC2A1) as an L-fucose transporter. We confirmed this assignment using multiple approaches to alter GLUT1 function, including chemical inhibition, siRNA knockdown, and gene KO. Collectively, all methods demonstrate that GLUT1 contributes significantly to L-fucose uptake and its utilization at low micromolar levels. Surprisingly, millimolar levels of D-glucose do not compete with L-fucose uptake. We also show macropinocytosis, but not other endocytic pathways, can contribute to L-fucose uptake and utilization. In conclusion, we determined that GLUT1 functions as the previously missing transporter component in mammalian L-fucose metabolism.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zhijie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
15
|
Skurska E, Szulc B, Maszczak-Seneczko D, Wiktor M, Wiertelak W, Makowiecka A, Olczak M. Incorporation of fucose into glycans independent of the GDP-fucose transporter SLC35C1 preferentially utilizes salvaged over de novo GDP-fucose. J Biol Chem 2022; 298:102206. [PMID: 35772493 PMCID: PMC9304781 DOI: 10.1016/j.jbc.2022.102206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Mutations in the SLC35C1 gene encoding the Golgi GDP-fucose transporter are known to cause leukocyte adhesion deficiency II. However, improvement of fucosylation in leukocyte adhesion deficiency II patients treated with exogenous fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which remains a mystery. To investigate this phenomenon, we developed and characterized a human cell–based model deficient in SLC35C1 activity. The resulting cells were cultured in the presence/absence of exogenous fucose and mannose, followed by examination of fucosylation potential and nucleotide sugar levels. We found that cells displayed low but detectable levels of fucosylation in the absence of SLC35C1. Strikingly, we show that defects in fucosylation were almost completely reversed upon treatment with millimolar concentrations of fucose. Furthermore, we show that even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by these knockout cells. We also found that the SLC35C1-independent transport preferentially utilized GDP-fucose from the salvage pathway over the de novo biogenesis pathway as a source of this substrate. Taken together, our results imply that the Golgi systems of GDP-fucose transport discriminate between substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthases.
Collapse
Affiliation(s)
- Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Bożena Szulc
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Maciej Wiktor
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Wojciech Wiertelak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland.
| |
Collapse
|
16
|
Boyer SW, Johnsen C, Morava E. Nutrition interventions in congenital disorders of glycosylation. Trends Mol Med 2022; 28:463-481. [PMID: 35562242 DOI: 10.1016/j.molmed.2022.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a group of more than 160 inborn errors of metabolism affecting multiple pathways of protein and lipid glycosylation. Patients present with a wide range of symptoms and therapies are only available for very few subtypes. Specific nutritional treatment options for certain CDG types include oral supplementation of monosaccharide sugars, manganese, uridine, or pyridoxine. Additional management includes specific diets (i.e., complex carbohydrate or ketogenic diet), iron supplementation, and albumin infusions. We review the dietary management in CDG with a focus on two subgroups: N-linked glycosylation defects and GPI-anchor disorders.
Collapse
Affiliation(s)
- Suzanne W Boyer
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Özgün N, Şahin Y. A case with congenital disorder of glycosylation with defective fucosylation 2 and new mutation in FUK gene. Brain Dev 2022; 44:239-243. [PMID: 34802815 DOI: 10.1016/j.braindev.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Congenital disorders of glycosylation (CDG) is a group of rare, hereditary, multisystem disorders, predominantly affecting nervous system. There are N- and O- types of glycosylation. Fucosylation, a form of N-glycosylation, involves many enzymes. Until today, type 1 and type 2 fucosylation defects were identified, having pathogenic variants in genes encoding α-1,6-fucosyltransferase and fucokinase enzymes, respectively. In this article, a patient with type 2 fucosylation defect will be presented, with hypotonia, developmental delay and blindness and a pathogenic variant that was previously described in two patients. METHOD Whole exome sequencing (WES) was performed, since the patient had no time to implement diagnostic algorithm for hypotonia etiology. RESULTS WES revealed a new pathogenic variant of homozygous c.993_1011del (p.Glu335Hisfs*55) frameshift variant of the FUK gene NM_145059 transcript. She had milder clinical manifestation than reported two patients. CONCLUSION Congenital Defect of Glycosylation should be considered when the clinical findings cannot be explained by other known diseases, particularly in patients with multisystemic, predominantly neurological involvement.
Collapse
Affiliation(s)
- Nezir Özgün
- Division of Child Neurology, ISU Liv Hospital, İstinye University Faculty of Medicine, İstanbul, Turkey.
| | | |
Collapse
|