1
|
Kovács L. From Peptide Nucleic Acids to Supramolecular Structures of Nucleic Acid Derivatives. CHEM REC 2023; 23:e202200203. [PMID: 36251934 DOI: 10.1002/tcr.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Nucleic acids play a pivotal role in life processes. The endeavours to shed light on the essential properties of these intriguing building blocks led us to the synthesis of different analogues and the investigation of their properties. First various peptide nucleic acid monomers and oligomers have been synthesized, using an Fmoc/acyl protecting group strategy, and their properties studied. The serendipitous discovery of a side reaction of coupling agents led us to the elaboration of a peptide sequencing method. The capricious behaviour of guanine derivatives spurred the determination of their substitution pattern using 13 C, 15 N NMR, and mass spectrometric methods. The properties of guanines initiated the logical transition to the study of supramolecular systems composed of purine analogues. Thus, xanthine and uracil derivatives have been obtained and their supramolecular self-assembly properties scrutinized in gas, solid, and liquid states and at solid-liquid interfaces.
Collapse
Affiliation(s)
- Lajos Kovács
- University of Szeged, Albert Szent-Györgyi Medical School, Department of Medicinal Chemistry, H-6720, Szeged, Dóm tér 8, Hungary
| |
Collapse
|
2
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
3
|
Alex C, Demchenko AV. Recent Advances in Stereocontrolled Mannosylation: Focus on Glycans Comprising Acidic and/or Amino Sugars. CHEM REC 2021; 21:3278-3294. [PMID: 34661961 DOI: 10.1002/tcr.202100201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
The main focus of this review is to describe accomplishments made in the stereoselective synthesis of β-linked mannosides functionalized with carboxyls or amines/amides. These ManNAc, ManA and ManNAcA residues found in many glycoconjugates, bacterial polysaccharides, and alginates have consistently captured interest of the glycoscience community both due to synthetic challenge and therapeutic potential.
Collapse
Affiliation(s)
- Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA.,Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
4
|
Synthesis, Modification and Biological Activity of Diosgenyl β-d-Glycosaminosides: An Overview. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225433. [PMID: 33233558 PMCID: PMC7699689 DOI: 10.3390/molecules25225433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023]
Abstract
Saponins are a structurally diverse class of natural glycosides that possess a broad spectrum of biological activities. They are composed of hydrophilic carbohydrate moiety and hydrophobic triterpenoid or steroid aglycon. Naturally occurring diosgenyl glycosides are the most abundant steroid saponins, and many of them exhibit various pharmacological properties. Herein, we present an overview of semisynthetic saponins syntheses-diosgenyl β-d-glycosaminosides (d-gluco and d-galacto). These glycosides possess a 2-amino group, which creates great possibilities for further modifications. A wide group of glycosyl donors, different N-protecting groups and various reaction conditions used for their synthesis are presented. In addition, this paper demonstrates the possibilities of chemical modifications of diosgenyl β-d-glycosaminosides, associated with functionalisation of the amino group. These provide N-acyl, N-alkyl, N,N-dialkyl, N-cinnamoyl, 2-ureido and 2-thiosemicarbazonyl derivatives of diosgenyl β-d-glycosaminosides, for which the results of biological activity tests (antifungal, antibacterial, anti-cancer and hemolytic) are presented.
Collapse
|
5
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
6
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
7
|
Skarbek K, Milewska MJ. Biosynthetic and synthetic access to amino sugars. Carbohydr Res 2016; 434:44-71. [PMID: 27592039 DOI: 10.1016/j.carres.2016.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 12/01/2022]
Abstract
Amino sugars are important constituents of a number of biomacromolecules and products of microbial secondary metabolism, including antibiotics. For most of them, the amino group is located at the positions C1, C2 or C3 of the hexose or pentose ring. In biological systems, amino sugars are formed due to the catalytic activity of specific aminotransferases or amidotransferases by introducing an amino functionality derived from L-glutamate or L-glutamine to the keto forms of sugar phosphates or sugar nucleotides. The synthetic introduction of amino functionalities in a regio- and stereoselective manner onto sugar scaffolds represents a substantial challenge. Most of the modern methods of for the preparation of 1-, 2- and 3-amino sugars are those starting from "an active ester" of carbohydrate derivatives, glycals, alcohols, carbonyl compounds and amino acids. A substantial progress in the development of region- and stereoselective methods of amino sugar synthesis has been made in the recent years, due to the application of metal-based catalysts and tethered approaches. A comprehensive review on the current state of knowledge on biosynthesis and chemical synthesis of amino sugars is presented.
Collapse
Affiliation(s)
- Kornelia Skarbek
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
8
|
Ali SP, Jalsa NK. Synthesis of a 2-N,N-dibenzylamino glucopyranosyl trichloroacetimidate glycosyl donor and evaluation of its utility in stereoselective glycosylation. Carbohydr Res 2016; 420:13-22. [DOI: 10.1016/j.carres.2015.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/27/2022]
|
9
|
Aly MRES, El Ashry ESH. Recent Advances Toward Robust N-Protecting Groups for Glucosamine as Required for Glycosylation Strategies. Adv Carbohydr Chem Biochem 2016; 73:117-224. [PMID: 27816106 DOI: 10.1016/bs.accb.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
2-Amino-2-deoxy-d-glucose (d-glucosamine) is among the most abundant monosaccharides found in natural products. This constituent, recognized for its ubiquity, is presented in most instances as its N-acetyl derivative 2-acetamido-2-deoxy-d-glucopyranose (N-acetylglucosamine, GlcNAc, NAG). It occurs as the β-linked pyranosyl group in polysaccharides and oligosaccharides, and sometimes as the monosaccharide itself, either in its native state or as a glycoconjugate. The compound's acylation profile and other aspects of its structure are important elements in determining the variety of reactivities and functions of the molecule as a whole. Methods elaborated to investigate these challenges have been intensively reviewed; however, a relatively more comprehensive reviewing of this subject is introduced here to cover some aspects that have not been sufficiently covered. This might enable those who are beginners in this field to be aware of the subject in a more comprehensive context. 2-Amino-2-deoxy-d-glucosylation strategies demand robust amino-protecting groups that survive under a variety of chemical conditions, yet provide groups that can be deprotected under relatively mild conditions. At the end of this review, a table that includes all the N-protecting groups that have been used for glucosamine is provided to introduce them at a glance to aid in constructing building blocks that will act as useful 2-amino-2-deoxy-d-glucosyl donors.
Collapse
Affiliation(s)
- Mohamed Ramadan El Sayed Aly
- Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia; Faculty of Science, Port Said University, Port Said, Egypt
| | - El Sayed H El Ashry
- Faculty of Science, Alexandria University, Alexandria, Egypt; Universität Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Wipf P, Eyer BR, Yamaguchi Y, Zhang F, Neal MD, Sodhi CP, Good M, Branca M, Prindle T, Lu P, Brodsky JL, Hackam DJ. Synthesis of anti-inflammatory α-and β-linked acetamidopyranosides as inhibitors of toll-like receptor 4 (TLR4). Tetrahedron Lett 2015; 56:3097-3100. [PMID: 26236050 DOI: 10.1016/j.tetlet.2014.11.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The low-molecular weight isopropyl 2-acetamido-α-glucoside 16 (C34) inhibits toll-like receptor 4 (TLR4) in enterocytes and macrophages in vitro, and reduces systemic inflammation in mouse models of endotoxemia and necrotizing enterocolitis. We used a copper(II)-mediated solvolysis of anomeric oxazolines and an acid-mediated conversion of β-glucosamine and β-galactosamine pentaacetates to generate analogs of 16 at the anomeric carbon and at C-4 of the pyranose ring. These compounds were evaluated for their influence on TLR4-mediated inflammatory signaling in cultured enterocytes and monocytes. Their efficacy was confirmed using a NF-kB-luciferase reporter mouse, thus establishing the first structure-activity relationship (SAR) study in this series and identifying the more efficacious isopropyl 2-acetamido-α-galactoside 17.
Collapse
Affiliation(s)
- Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Benjamin R Eyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yukihiro Yamaguchi
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA ; Division of Pediatric Surgery, Bloomberg Children's Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew D Neal
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA ; Division of Pediatric Surgery, Bloomberg Children's Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Maria Branca
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA
| | - Thomas Prindle
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA
| | - Peng Lu
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA ; Division of Pediatric Surgery, Bloomberg Children's Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David J Hackam
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15224, USA ; Division of Pediatric Surgery, Bloomberg Children's Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Arihara R, Kakita K, Suzuki N, Nakamura S, Hashimoto S. Glycosylation with 2-Acetamido-2-deoxyglycosyl Donors at a Low Temperature: Scope of the Non-Oxazoline Method. J Org Chem 2015; 80:4259-77. [DOI: 10.1021/acs.joc.5b00138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryoichi Arihara
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kosuke Kakita
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Noritoshi Suzuki
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Seiichi Nakamura
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shunichi Hashimoto
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
12
|
Ali SP, Jalsa NK. Order of Reactivity of OH/NH Groups of Glucosamine Hydrochloride and N-Acetyl Glucosamine Toward Benzylation Using NaH/BnBr in DMF. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.907907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Stacy P. Ali
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nigel Kevin Jalsa
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
13
|
|
14
|
Emmadi M, Kulkarni SS. Orthogonally protected d-galactosamine thioglycoside building blocks via highly regioselective, double serial and double parallel inversions of β-d-thiomannoside. Org Biomol Chem 2013; 11:4825-30. [DOI: 10.1039/c3ob40935j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Pertel SS, Kononov LO, Zinin AI, Chirva VJ, Kakayan ES. Synthesis of some 2-alkoxy glyco-[2,1-d]-2-oxazolines and evaluation of their glycosylation reactivity. Carbohydr Res 2012; 356:172-9. [DOI: 10.1016/j.carres.2012.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
16
|
Gampe CM, Tsukamoto H, Wang TSA, Walker S, Kahne D. Modular synthesis of diphospholipid oligosaccharide fragments of the bacterial cell wall and their use to study the mechanism of moenomycin and other antibiotics. Tetrahedron 2011; 67:9771-9778. [PMID: 22505780 PMCID: PMC3322638 DOI: 10.1016/j.tet.2011.09.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a flexible, modular route to GlcNAc-MurNAc-oligosaccharides that can be readily converted into peptidoglycan (PG) fragments to serve as reagents for the study of bacterial enzymes that are targets for antibiotics. Demonstrating the utility of these synthetic PG substrates, we show that the tetrasaccharide substrate lipid IV (3), but not the disaccharide substrate lipid II (2), significantly increases the concentration of moenomycin A required to inhibit a prototypical PG-glycosyltransferase (PGT). These results imply that lipid IV and moenomycin A bind to the same site on the enzyme. We also show the moenomycin A inhibits the formation of elongated polysaccharide product but does not affect length distribution. We conclude that moenomycin A blocks PG-strand initiation rather than elongation or chain termination. Synthetic access to diphospholipid oligosaccharides will enable further studies of bacterial cell wall synthesis with the long-term goal of identifying novel antibiotics.
Collapse
Affiliation(s)
- Christian M. Gampe
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Hirokazu Tsukamoto
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Tsung-Shing Andrew Wang
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Suzanne Walker
- Harvard Medical School, Department of Microbiology and Molecular Genetics, Boston, Massachusetts 02115, USA
| | - Daniel Kahne
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
17
|
Xiang S, Ma J, Gorityala BK, Liu XW. Stereoselective synthesis of β-N-glycosides through 2-deoxy-2-nitroglycal. Carbohydr Res 2011; 346:2957-9. [DOI: 10.1016/j.carres.2011.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 11/24/2022]
|
18
|
Emmadi M, Kulkarni SS. Rapid transformation of D-mannose into orthogonally protected D-glucosamine and D-galactosamine thioglycosides. J Org Chem 2011; 76:4703-9. [PMID: 21510706 DOI: 10.1021/jo200342v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An expedient protocol for synthesis of orthogonally protected 2-azido-2-deoxy-D-glucosamine and 2-azido-2-deoxy-D-galactosamine donors from D-mannose is described. Readily available phenyl β-D-thiomannoside is rapidly transformed into D-GlcN(3) thioglycosides via a highly regioselective 3-O-acylation followed by 4,6-O-benzylidenation and azide displacement of C2-OTf, which is further converted into D-GalN(3) thioglycosides through Lattrell-Dax inversion of the C4 hydroxy group and its Boc protection. The reaction sequence may be completed in 2 days and involves simple workups and minimal column chromatography.
Collapse
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | | |
Collapse
|
19
|
Xue W, Sun J, Yu B. An Efficient Route toward 2-Amino-β-d-galacto- and -glucopyranosides via Stereoselective Michael-Type Addition of 2-Nitroglycals. J Org Chem 2009; 74:5079-82. [DOI: 10.1021/jo900609s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weihua Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Jiansong Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
20
|
Efficient route to orthogonally protected precursors of 2-acylamino-2-deoxy-3-O-substituted-β-d-glucopyranose derivatives and use thereof. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Geng Y, Zhang LH, Ye XS. Stereoselectivity investigation on glycosylation of oxazolidinone protected 2-amino-2-deoxy-d-glucose donors based on pre-activation protocol. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.03.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Welzel P. A long research story culminates in the first total synthesis of moenomycin A. Angew Chem Int Ed Engl 2007; 46:4825-9. [PMID: 17549780 DOI: 10.1002/anie.200700765] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Welzel
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
23
|
Yang Y, Yu B. N-Dimethylphosphoryl-protection in the efficient synthesis of glucosamine-containing oligosaccharides with alternate N-acyl substitutions. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.07.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Grann Hansen S, Skrydstrup T. Studies Directed to the Synthesis of Oligochitosans – Preparation of Building Blocks and Their Evaluation in Glycosylation Studies. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
|
26
|
N-Dimethylphosphoryl-protected glucosamine trichloroacetimidate as an effective glycosylation donor. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.04.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Bongat AFG, Demchenko AV. Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. Carbohydr Res 2007; 342:374-406. [PMID: 17125757 DOI: 10.1016/j.carres.2006.10.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/13/2006] [Accepted: 10/20/2006] [Indexed: 11/23/2022]
Abstract
The discovery of new methods for stereoselective glycoside synthesis and convergent oligosaccharide assembly has been critical for the area of glycosciences. At the heart of this account is the discussion of the approaches for stereoselective synthesis of glycosides of 2-amino-2-deoxysugars that have emerged during the past two decades. The introductory part provides general background information and describes the key features and challenges for the synthesis of this class of compounds. Subsequently, major approaches to the synthesis of 2-amino-2-deoxyglycosides are categorized and discussed. Each subsection elaborates on the introduction (or protection) of the amino functionality, synthesis of glycosyl donors by introduction of a suitable leaving group, and glycosidation. Wherever applicable, the deprotection of a temporary amino group substituent and the conversion onto the natural acetamido functionality is described. The conclusions part evaluates the current standing in the field and provides a perspective for future developments.
Collapse
Affiliation(s)
- Aileen F G Bongat
- Department of Chemistry and Biochemistry, University of Missouri--St. Louis, One University Blvd., St. Louis, MO 63121, USA
| | | |
Collapse
|
28
|
Abstract
The structural diversity as well as the biological significance of N-acetylglucosamine-containing glycans are exemplified. The problem of forming the respective glycosidic bonds of synthetic targets is addressed. Special emphasis has been given to human milk oligosaccharides (HMOs), in view of their biological relevance, and synthetic approaches of selected examples are reported.
Collapse
|
29
|
Bohn ML, Colombo MI, Stortz CA, Rúveda EA. A comparative study of the influence of some protecting groups on the reactivity of d-glucosamine acceptors with a galactofuranosyl donor. Carbohydr Res 2006; 341:1096-104. [PMID: 16630599 DOI: 10.1016/j.carres.2006.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/13/2006] [Accepted: 03/22/2006] [Indexed: 11/30/2022]
Abstract
Competitive glycosylation experiments with a galactofuranosyl trichloroacetimidate donor were performed with glucosamine acceptors having a free 4-OH group and carrying different protecting groups at N-2, O-3, and O-6. The most reactive acceptor is the N-dimethylmaleimido 3,6-di-O-benzylated derivative (6c), which reacts even faster than the oxazolidinone 1a. Molecular orbital calculations have helped to rationalize these experimental facts in terms of a hard-hard reaction occurring between the donor and the acceptor.
Collapse
Affiliation(s)
- María L Bohn
- Instituto de Química Orgánica y de Síntesis (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | |
Collapse
|
30
|
|
31
|
Szumigala RH, Onofiok E, Karady S, Armstrong JD, Miller RA. Mild non-transition metal catalyzed deprotection of N-allyloxycarbonyl amines. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.04.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Crich D, Vinod AU. 6-O-Benzyl- and 6-O-silyl-N-acetyl-2-amino-2-N,3-O-carbonyl-2-deoxyglucosides: effective glycosyl acceptors in the glucosamine 4-OH Series. effect of anomeric stereochemistry on the removal of the oxazolidinone group. J Org Chem 2005; 70:1291-6. [PMID: 15704963 DOI: 10.1021/jo0482559] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] The 4-OH groups of both alpha- and beta-methyl glycosides of N-acetylglucosamine, protected with an oxazolidinone spanning the nitrogen and O-3, and bearing benzyl or silyl protection on O-6, show excellent reactivity as acceptors in couplings to a range of glycosyl donors. The enhanced reactivity of these acceptors is attributed in part to the tied back nature of the oxazolidinone, which reduces hindrance around the nucleophilic oxygen. The N-acetyloxazolidinone function also reduces the tendency seen in simple N-acetylglucosamines toward amide glycosylation, and removes the possibility of problematic hydrogen bonding networks. In the beta-, but not the alpha-, series selective hydrolysis of the N-acetyloxazolidinone directly to the N-acetylglucosamine was possible with barium hydroxide, a feature attributed to chelate formation between the acetamide carbonyl group and the glycosidic oxygen in the beta-series.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
33
|
Tsuda T, Nakamura S, Hashimoto S. A highly stereoselective construction of 1,2-trans-β-glycosidic linkages capitalizing on 2-azido-2-deoxy-d-glycosyl diphenyl phosphates as glycosyl donors. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.08.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Meng XB, Li H, Lou QH, Cai MS, Li ZJ. Unexpected reductions of glycosyl spacer-armed phthalimides. Carbohydr Res 2004; 339:1497-501. [PMID: 15178393 DOI: 10.1016/j.carres.2004.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 03/10/2004] [Indexed: 11/30/2022]
Abstract
An unusual reductive ring-opening reaction in the title compounds, of the phthalimide group with sodium hydride in anhydrous DMF is observed for the first time and the presumed mechanism is described in detail. An unexpected hydrogenation of the phthalimide group was also observed.
Collapse
Affiliation(s)
- Xiang-Bao Meng
- Department of Chemical Biology, School of Pharmaceutical Sciences, National Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
35
|
Crasto CF, Jones GB. A Practical method for preparation of β-glycosides of N-acetylglucosamine. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.04.127] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
A stereocontrolled construction of 2-azido-2-deoxy-1,2-trans-β-glycosidic linkages utilizing 2-azido-2-deoxyglycopyranosyl diphenyl phosphates. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01557-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Yan F, Mehta S, Eichler E, Wakarchuk WW, Gilbert M, Schur MJ, Whitfield DM. Simplifying oligosaccharide synthesis: efficient synthesis of lactosamine and siaylated lactosamine oligosaccharide donors. J Org Chem 2003; 68:2426-31. [PMID: 12636412 DOI: 10.1021/jo026569v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical sequence is described for converting d-glucosamine into peracetylated Gal(beta-1,4)GlcNTroc(beta1-S)Ph and Neu5Ac(alpha-2,3)Gal(beta-1,4)GlcNTroc(beta1-S)Ph building blocks using a synthetic strategy based on chemoenzymatic oligosaccharide synthesis. The known trichloroethoxycarbonyl, N-Troc, protecting group was selected as a suitable protecting group for both enzymatic and chemical reaction conditions. These oligosaccharide building blocks proved effective donors for the beta-selective glycosylation of the unreactive OH-3 of a polymeric PEG-bound acceptor and for the axial OH-2 of a mannose acceptor in good yields. The resulting complex oligosaccharides are useful for vaccine and pharmaceutical applications.
Collapse
Affiliation(s)
- Fengyang Yan
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Room 3024, Ottawa, Ontario, K1A 0R6, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Khiar N, Fernández I, Araújo CS, Rodríguez JA, Suárez B, Alvarez E. Highly diastereoselective oxidation of 2-amino-2-deoxy-1-thio-beta-D-glucopyranosides: synthesis of imino sulfinylglycosides. J Org Chem 2003; 68:1433-42. [PMID: 12585884 DOI: 10.1021/jo026519q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic route to imino thioglycosides and to imino sulfinylglycosides has been developed. A detailed study on the diastereoselective oxidation of 2-amino-2-deoxy-1-thio-beta-D-glucopyranosides is reported. It has been shown that the stereochemical outcome of the oxidation is highly dependent on the protective group of the amine function. While the oxidation of iminothioglycosides is slightly diastereoselective (up to 30% de in favor of the R(S) sulfoxide), a single isomer is obtained in the case of tetrachlorophthalimido derivatives. The absolute configuration of the sulfinyl glycoside was ascertained by NMR analysis using our recent model on the basis of the exo-anomeric effect corroborated by X-ray crystallography.
Collapse
Affiliation(s)
- Noureddine Khiar
- Instituto de Investigaciones Químicas, C.S.I.C.-Universidad de Sevilla, c/. Américo Vespucio, s/n., Isla de la Cartuja, 41092 Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Melean LG, Love KR, Seeberger PH. Toward the automated solid-phase synthesis of oligoglucosamines: systematic evaluation of glycosyl phosphate and glycosyl trichloroacetimidate building blocks. Carbohydr Res 2002; 337:1893-916. [PMID: 12433456 DOI: 10.1016/s0008-6215(02)00299-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glucosamines are common components of many biologically important oligosaccharides. Reported is a systematic evaluation of glucosamine phosphates and trichloroacetimidates as glycosylating agents for the efficient construction of beta-(1 --> 6) glucosamine linkages. A set of differentially protected glucosamine donors incorporating a host of amine protecting groups, including 2-phthaloyl, benzyloxycarbonyl (Z), trichloroetheoxycarbonyl (Troc) and trichloroacetyl (TCA) protective groups, were prepared. Donors were initially evaluated for reactivity and protecting group compatibility in a solution-phase study with a model 6-hydroxyl galactose acceptor. Based on these results, glucosamine donor 10 was selected for the solution-phase synthesis of a beta-(1 --> 6)-glucosamine pentasaccharide. Finally, building block 10 proved well suited for use in the automated solid-phase synthesis of a repeating unit trisaccharide. An assessment of glucosamine phosphate donors as potential glycosylating agents for a variety of glucosamine linkages is also discussed.
Collapse
Affiliation(s)
- Luis G Melean
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
40
|
Wittmann V, Lennartz D. Copper(II)‐Mediated Activation of Sugar Oxazolines: Mild and Efficient Synthesis of β‐Glycosides of
N
‐Acetylglucosamine. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200204)2002:8<1363::aid-ejoc1363>3.0.co;2-#] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valentin Wittmann
- Institut für Organische Chemie, Johann Wolfgang Goethe‐Universität, Marie‐Curie‐Str. 11, 60439 Frankfurt am Main, Germany, Fax: (internat.) + 49‐(0)69/798‐29148
| | - Dirk Lennartz
- Institut für Organische Chemie, Johann Wolfgang Goethe‐Universität, Marie‐Curie‐Str. 11, 60439 Frankfurt am Main, Germany, Fax: (internat.) + 49‐(0)69/798‐29148
| |
Collapse
|
41
|
Cros E, Planas M, Mejı́as X, Bardajı́ E. Solid-phase synthesis of C-terminal peptide amides from N-tetrachlorophthaloyl protected amino acids. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)01193-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Plante OJ, Palmacci ER, Seeberger PH. Formation of beta-glucosamine and beta-mannose linkages using glycosyl phosphates. Org Lett 2000; 2:3841-3. [PMID: 11101433 DOI: 10.1021/ol006566+] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Glycosyl phosphates were examined for their utility in the synthesis of challenging glycosidic linkages. beta-Glucosamine glycosides were formed preferentially and in good yield. beta-Mannosides were constructed in high overall yield with modest anomeric selectivity. Interesting solvent and conformational influences on the stereochemical outcome of the coupling reactions were observed.
Collapse
Affiliation(s)
- O J Plante
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
43
|
E. Aly MR, Ibrahim ESI, El-Ashry ESHE, Schmidt RR. Synthesis of Lacto-N-neohexaose and Lacto-N-neooctaose Using the Dimethylmaleoyl Moiety as an Amino Protective Group. European J Org Chem 2000. [DOI: 10.1002/(sici)1099-0690(200001)2000:2<319::aid-ejoc319>3.0.co;2-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
|
45
|
Medgyes A, Bajza I, Farkas E, Pozsgay V, Lipták A. Synthetic Studies Towards theO-Specific Polysaccharide ofShigella Sonnei. J Carbohydr Chem 2000. [DOI: 10.1080/07328300008544079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Bai Y, Boons GJ, Burton A, Johnson M, Haller M. Vinyl Glycosides in Oligosaccharide Synthesis (Part 6): 3-Buten-2-YL 2-Azido-2-Deoxy Glycosides and 3-Buten-2-YL 2-Phthalimido-2-Deoxy Glycosides as Novel Glycosyl Donors. J Carbohydr Chem 2000. [DOI: 10.1080/07328300008544127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Murakami T, Taguchi K. Stereocontrolled synthesis of novel phytosphingosine-type glucosaminocerebrosides. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(98)01104-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Olsson L, Kelberlau S, Jia ZJ, Fraser-Reid B. Access to tetrachlorophthalimide-protected ethyl 2-amino-2-deoxy-1-thio-beta-D-glucopyranosides. Carbohydr Res 1998; 314:273-6. [PMID: 10335593 DOI: 10.1016/s0008-6215(98)00309-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ethyl 2-deoxy-2-tetrachlorophthalimido-1-thio-beta-D-glucopyranoside (7) was prepared from glucosamine hydrochloride in four steps with a 20-25% overall yield. Formation of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-tetrachlorophthalimido-beta-D- glucopyranoside (5) was found to be crucial for this reaction sequence since the corresponding alpha-1-acetate did not react in Lewis-acid-catalyzed ethylthio glycosidations. Formation of the beta-1-acetate (5) was achieved by treatment of 3,4,6-tri-O-acetyl-2-deoxy-2-tetrachlorophthalimido-alpha-D-glucop yranosyl bromide (4) with acetic acid under silver zeolite promotion. This was necessary because conditions normally used for beta-1-acetate formation were not tolerated by the tetrachlorophthalimido (TCP) group.
Collapse
Affiliation(s)
- L Olsson
- Natural Products and Glycotechnology Research Institute, Durham, NC 27707, USA
| | | | | | | |
Collapse
|
49
|
E. Aly MR, Castro-Palomino JC, I. Ibrahim ES, El-Ashry ESH, Schmidt RR. The Dimethylmaleoyl Group as Amino Protective Group – Application to the Synthesis of Glucosamine-Containing Oligosaccharides. European J Org Chem 1998. [DOI: 10.1002/(sici)1099-0690(199811)1998:11<2305::aid-ejoc2305>3.0.co;2-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Lay L, Manzoni L, Schmidt RR. Synthesis of N-acetylglucosamine containing Lewis A and Lewis X building blocks based on N-tetrachlorophthaloyl protection--synthesis of Lewis X pentasaccharide. Carbohydr Res 1998; 310:157-71. [PMID: 9809410 DOI: 10.1016/s0008-6215(98)00148-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phenyl 6-O-benzyl-2-deoxy-2-tetrachlorophthalimido-1-thio-beta-D- glucopyranoside (5a) and thexyldimethylsilyl 6-O-benzyl-2-deoxy-2-tetrachlorophthalimido-beta-D- glucopyranoside (5b) gave with O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl)trichloroacetimida te (8) in the presence of BF3.Et2O as catalyst exclusively lactosamine derivatives 7a and 7b, respectively, in high yields. Ensuing reaction with O-(3, 4-di-O-acetyl-2-O-benzyl-alpha-L-fucopyranosyl) trichloroacetimidate (9) in the presence of TMSOTf as catalyst afforded Le(x) trisaccharide intermediates 10a,b. With fucosyl donor 9 and 5a,b as acceptors in the presence of TMSOTf as catalyst glycosylation either at the 3-O or the 4-O was observed, thus leading to mixtures of disaccharides 11a/12a and 11b/12b, respectively; their reaction with 8 furnished Le(x) trisaccharide intermediates 10a,b and Le(a) trisaccharide intermediates 14a,b. Transformation of 10b into the corresponding trichloroacetimidate 17 and reaction with lactose acceptor 19 in the presence of Zn(OTf)2 as catalyst gave protected Le(x) pentasaccahride intermediate 21, which on deprotection led to unprotected Le(x) pentasaccharide 1.
Collapse
Affiliation(s)
- L Lay
- Fakultät Chemie, Universität Konstanz, Germany
| | | | | |
Collapse
|