1
|
Biny L, Gerasimovich E, Karaulov A, Sukhanova A, Nabiev I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics 2024; 16:653. [PMID: 38794315 PMCID: PMC11124899 DOI: 10.3390/pharmaceutics16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.
Collapse
Affiliation(s)
- Lara Biny
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Igor Nabiev
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| |
Collapse
|
2
|
Akhmetova DR, Mitusova KA, Postovalova AS, Ivkina AS, Muslimov AR, Zyuzin MV, Shipilovskikh SA, Timin AS. Size-dependent therapeutic efficiency of 223Ra-labeled calcium carbonate carriers for internal radionuclide therapy of breast cancer. Biomater Sci 2024; 12:453-467. [PMID: 38059526 DOI: 10.1039/d3bm01651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The size of drug carriers strongly affects their biodistribution, tissue penetration, and cellular uptake in vivo. As a result, when such carriers are loaded with therapeutic compounds, their size can influence the treatment outcomes. For internal α-radionuclide therapy, the carrier size is particularly important, because short-range α-emitters should be delivered to tumor volumes at a high dose rate without any side effects, i.e. off-target irradiation and toxicity. In this work, we aim to evaluate and compare the therapeutic efficiency of calcium carbonate (CaCO3) microparticles (MPs, >2 μm) and nanoparticles (NPs, <100 nm) labeled with radium-223 (223Ra) for internal α-radionuclide therapy against 4T1 breast cancer. To do this, we comprehensively study the internalization and penetration efficiency of these MPs and NPs, using 2D and 3D cell cultures. For further therapeutic tests, we develop and modify a chelator-free method for radiolabeling of CaCO3 MPs and NPs with 223Ra, improving their radiolabeling efficiency (>97%) and radiochemical stability (>97%). After intratumoral injection of 223Ra-labeled MPs and NPs, we demonstrate their different therapeutic efficiencies against a 4T1 tumor. In particular, 223Ra-labeled NPs show a tumor inhibition of approximately 85%, which is higher compared to 60% for 223Ra-labeled MPs. As a result, we can conclude that 223Ra-labeled NPs have a more suitable biodistribution within 4T1 tumors compared to 223Ra-labeled MPs. Thus, our study reveals that 223Ra-labeled CaCO3 NPs are highly promising for internal α-radionuclide therapy.
Collapse
Affiliation(s)
- Darya R Akhmetova
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Kseniya A Mitusova
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Alisa S Postovalova
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya 70, St. Petersburg 197758, Russian Federation
| | - Arina S Ivkina
- Saint-Petersburg State Chemical-Pharmaceutical University, Professora Popova street 14, St. Petersburg 197376, Russian Federation
| | - Albert R Muslimov
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, Sirius 354340, Russian Federation
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russia
- RM Gorbacheva Research Institute, Pavlov University, L'va Tolstogo 6-8, St. Petersburg 197022, Russia
| | - Mikhail V Zyuzin
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | | | - Alexander S Timin
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| |
Collapse
|
3
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
4
|
Franchi S, Asti M, Di Marco V, Tosato M. The Curies' element: state of the art and perspectives on the use of radium in nuclear medicine. EJNMMI Radiopharm Chem 2023; 8:38. [PMID: 37947909 PMCID: PMC10638329 DOI: 10.1186/s41181-023-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The alpha-emitter radium-223 (223Ra) is presently used in nuclear medicine for the palliative treatment of bone metastases from castration-resistant prostate cancer. This application arises from its advantageous decay properties and its intrinsic ability to accumulate in regions of high bone turnover when injected as a simple chloride salt. The commercial availability of [223Ra]RaCl2 as a registered drug (Xofigo®) is a further additional asset. MAIN BODY The prospect of extending the utility of 223Ra to targeted α-therapy of non-osseous cancers has garnered significant interest. Different methods, such as the use of bifunctional chelators and nanoparticles, have been explored to incorporate 223Ra in proper carriers designed to precisely target tumor sites. Nevertheless, the search for a suitable scaffold remains an ongoing challenge, impeding the diffusion of 223Ra-based radiopharmaceuticals. CONCLUSION This review offers a comprehensive overview of the current role of radium radioisotopes in nuclear medicine, with a specific focus on 223Ra. It also critically examines the endeavors conducted so far to develop constructs capable of incorporating 223Ra into cancer-targeting drugs. Particular emphasis is given to the chemical aspects aimed at providing molecular scaffolds for the bifunctional chelator approach.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
5
|
Hoseini-Ghahfarokhi M, Kamio Y, Mondor J, Jabbari K, Carrier JF. Development of a stand-alone precalculated Monte Carlo code to calculate the dose by alpha and beta emitters from the Ra-224 decay chain. Med Phys 2023; 50:5176-5188. [PMID: 37161766 DOI: 10.1002/mp.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Recent developments in alpha and beta emitting radionuclide therapy highlight the importance of developing efficient methods for patient-specific dosimetry. Traditional tabulated methods such as Medical Internal Radiation Dose (MIRD) estimate the dose at the organ level while more recent numerical methods based on Monte Carlo (MC) simulations are able to calculate dose at the voxel level. A precalculated MC (PMC) approach was developed in this work as an alternative to time-consuming fully simulated MC. Once the spatial distribution of alpha and beta emitters is determined using imaging and/or numerical methods, the PMC code can be used to achieve an accurate voxelized 3D distribution of the deposited energy without relying on full MC calculations. PURPOSE To implement the PMC method to calculate energy deposited by alpha and beta particles emitted from the Ra-224 decay chain. METHODS The GEANT4 (version 10.7) MC toolkit was used to generate databases of precalculated tracks to be integrated in the PMC code as well as to benchmark its output. In this regard, energy spectra of alpha and beta particles emitted by the Ra-224 decay chain were generated using GAMOS (version 6.2.0) and imported into GEANT4 macro files. Either alpha or beta emitting sources were defined at the center of a homogeneous phantom filled with various materials such as soft tissue, bone, and lung where particles were emitted either mono-directionally (for database generation) or isotropically (for benchmarking). Two heterogeneous phantoms were used to demonstrate PMC code compatibility with boundary crossing events. Each precalculated database was generated step-by-step by storing particle track information from GEANT4 simulations followed by its integration in a PMC code developed in MATLAB. For a user-defined number of histories, one of the tracks in a given database was selected randomly and rotated randomly to reflect an isotropic emission. Afterward, deposited energy was divided between voxels based on step length in each voxel using a ray-tracing approach. The radial distribution of deposited energy was benchmarked against fully simulated MC calculations using GEANT4. The effect of the GEANT4 parameter StepMax on the accuracy and speed of the code was also investigated. RESULTS In the case of alpha decay, primary alpha particles show the highest contribution (>99%) in deposited energy compared to their secondary particles. In most cases, protons act as the main secondary particles in the deposition of energy. However, for a lung phantom, using a range cutoff parameter of 10 µm on primary alpha particles yields a higher contribution of secondary electrons than protons. Differences between deposited energy calculated by PMC and fully simulated MC are within 2% for all alpha and beta emitters in homogeneous and heterogeneous phantoms. Additionally, statistical uncertainties are less than 1% for voxels with doses higher than 5% of the maximum dose. Moreover, optimization of the parameter StepMax is necessary to achieve the best tradeoff between code accuracy and speed. CONCLUSIONS The PMC code shows good performance for dose calculations deposited by alpha and beta emitters. As a stand-alone algorithm, it is suitable to be integrated into clinical treatment planning systems.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Physique, Université de Montréal, Montréal, Quebec, Canada
| | - Yuji Kamio
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Julien Mondor
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Physique, Université de Montréal, Montréal, Quebec, Canada
| | - Keyvan Jabbari
- Department of Radiation Oncology, Champlain Valley Physicians Hospital, Plattsburgh, New York, USA
| | - Jean-François Carrier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Physique, Université de Montréal, Montréal, Quebec, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
6
|
Mikalsen LTG, Kvassheim M, Stokke C. Optimized SPECT Imaging of 224Ra α-Particle Therapy by 212Pb Photon Emissions. J Nucl Med 2023:jnumed.122.264455. [PMID: 37268424 DOI: 10.2967/jnumed.122.264455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/10/2023] [Indexed: 06/04/2023] Open
Abstract
In preparation for an α-particle therapy trial using 1-7 MBq of 224Ra, the feasibility of tomographic SPECT/CT imaging was of interest. The nuclide decays in 6 steps to stable 208Pb, with 212Pb as the principle photon-emitting nuclide. 212Bi and 208Tl emit high-energy photons up to 2,615 keV. A phantom study was conducted to determine the optimal acquisition and reconstruction protocol. Methods: The spheres of a body phantom were filled with a 224Ra-RaCl2 solution, and the background compartment was filled with water. Images were acquired on a SPECT/CT system. In addition, 30-min scans were acquired for 80- and 240-keV emissions, using triple-energy windows, with both medium-energy and high-energy collimators. Images were acquired at 90-95 and 29-30 kBq/mL, plus an explorative 3-min acquisition at 20 kBq/mL (using only the optimal protocol). Reconstructions were performed with attenuation correction only, attenuation plus scatter correction, 3 levels of postfiltering, and 24 levels of iterative updates. Acquisitions and reconstructions were compared using the maximum value and signal-to-scatter peak ratio for each sphere. Monte Carlo simulations were performed to examine the contributions of key emissions. Results: Secondary photons of the 2,615-keV 208Tl emission produced in the collimators make up most of the acquired energy spectrum, as revealed by Monte Carlo simulations, with only a small fraction (3%-6%) of photons in each window providing useful information for imaging. Still, decent image quality is possible at 30 kBq/mL, and nuclide concentrations are imageable down to approximately 2-5 kBq/mL. The overall best results were obtained with the 240-keV window, medium-energy collimator, attenuation and scatter correction, 30 iterations and 2 subsets, and a 12-mm gaussian postprocessing filter. However, all combinations of the applied collimators and energy windows were capable of producing adequate results, even though some failed to reconstruct the 2 smallest spheres. Conclusion: SPECT/CT imaging of 224Ra in equilibrium with daughters is possible, with sufficient image quality to provide clinical utility for the current trial of intraperitoneally administrated activity. A systematic scheme for optimization was designed to select acquisition and reconstruction settings.
Collapse
Affiliation(s)
- Lars Tore Gyland Mikalsen
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway;
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Monika Kvassheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway; and
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Grønningsæter SR, Blakkisrud J, Selboe S, Revheim ME, Bruland ØS, Bønsdorff TB, Larsen SG, Stokke C. Radiation safety considerations for the use of radium-224-calciumcarbonate-microparticles in patients with peritoneal metastasis. Front Med (Lausanne) 2023; 10:1058914. [PMID: 36844217 PMCID: PMC9945525 DOI: 10.3389/fmed.2023.1058914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Aim Two ongoing phase I studies are investigating the use of radium-224 adsorbed to calcium carbonate micro particles (224Ra-CaCO3-MP) to treat peritoneal metastasis originating from colorectal or ovarian cancer. The aim of this work was to study the level of radiation exposure from the patients to workers at the hospital, carers and members of the public. Method Six patients from the phase 1 trial in patients with colorectal cancer were included in this study. Two days after cytoreductive surgery, they were injected with 7 MBq of 224Ra-CaCO3-MP. At approximately 3, 24 and 120 h after injection, the patients underwent measurements with an ionization chamber and a scintillator-based iodide detector, and whole body gamma camera imaging. The patient was modelled as a planar source to calculate dose rate as a function of distance. Scenarios varying in duration and distance from the patient were created to estimate the potential effective doses from external exposure. Urine and blood samples were collected at approximately 3, 6, 24, 48 and 120 h after injection of 224Ra-CaCO3-MP, to estimate the activity concentration of 224Ra and 212Pb. Results The patients' median effective whole-body half-life of 224Ra-CaCO3-MP ranged from 2.6 to 3.5 days, with a mean value of 3.0 days. In the scenarios with exposure at the hospital (first 8 days), sporadic patient contact resulted in a range of 3.9-6.8 μSv per patient, and daily contact resulted in 4.3-31.3 μSv depending on the scenario. After discharge from the hospital, at day 8, the highest effective dose was received by those with close daily contact; 18.7-83.0 μSv. The highest activity concentrations of 224Ra and 212Pb in urine and blood were found within 6 h, with maximum values of 70 Bq/g for 224Ra and 628 Bq/g for 212Pb. Conclusion The number of patients treated with 224Ra-CaCO3-MP that a single hospital worker - involved in extensive care - can receive per year, before effective doses of 6 mSv from external exposure is exceeded, is in the order of 200-400. Members of the public and family members are expected to receive well below 0.25 mSv, and therefore, no restrictions to reduce external exposure should be required.
Collapse
Affiliation(s)
| | - Johan Blakkisrud
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Silje Selboe
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Sverre Bruland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Wouters R, Westrøm S, Berckmans Y, Riva M, Ceusters J, Bønsdorff TB, Vergote I, Coosemans A. Intraperitoneal alpha therapy with 224Ra-labeled microparticles combined with chemotherapy in an ovarian cancer mouse model. Front Med (Lausanne) 2022; 9:995325. [PMID: 36300186 PMCID: PMC9588927 DOI: 10.3389/fmed.2022.995325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
A novel alpha-therapy consisting of 224Ra-labeled calcium carbonate microparticles (224Ra-CaCO3-MP) has been designed to treat micrometastatic peritoneal disease via intraperitoneal (IP) administration. This preclinical study aimed to evaluate its efficacy and tolerability when given as a single treatment or in combination with standard of care chemotherapy regimens, in a syngeneic model of ovarian cancer in immune competent mice. Female C57BL/6 mice bearing ID8-fLuc ovarian cancer were treated with 224Ra-CaCO3-MP 1 day after IP tumor cell inoculation. The activity dosages of 224Ra ranged from 14 to 39 kBq/mouse. Additionally, 224Ra-CaCO3-MP treatment was followed by either carboplatin (80 mg/kg)-pegylated liposomal doxorubicin (PLD, 1.6 mg/kg) or carboplatin (60 mg/kg)-paclitaxel (10 mg/kg) on day 14 post tumor cell inoculation. All treatments were administered via IP injections. Readouts included survival, clinical signs, and body weight development over time. There was a slight therapeutic benefit after single treatment with 224Ra-CaCO3-MP compared to the vehicle control, with median survival ratios (MSRs) ranging between 1.1 and 1.3. The sequential administration of 224Ra-CaCO3-MP with either carboplatin-paclitaxel or carboplatin-PLD indicated a synergistic effect on overall survival at certain 224Ra activities. Moreover, the combinations tested appeared well tolerated in terms of weight assessment in the first 4 weeks after treatment. Overall, this research supports the further evaluation of 224Ra-CaCO3-MP in patients with ovarian cancer. However, the most optimal chemotherapy regimen to combine with 224Ra-CaCO3-MP should be identified to fully exploit its therapeutic potential.
Collapse
Affiliation(s)
- Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium,Oncoinvent AS, Oslo, Norway,*Correspondence: Roxanne Wouters
| | | | - Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium,Department of Neurosurgery, Mont-Godinne Hospital, UCL Namur, Yvoir, Belgium
| | | | | | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium,Department of Oncology, Gynecological Oncology, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Percutaneous delivery of self-propelling hemostatic powder for managing non-compressible abdominal hemorrhage: a proof-of-concept study in swine. Injury 2022; 53:1603-1609. [PMID: 35067343 DOI: 10.1016/j.injury.2022.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Non-compressible intra-abdominal hemorrhage (NCIAH) is a major cause of preventable death on the battlefield and in civilian trauma. Currently, it can only be definitively managed with surgery, as there are limited strategies for controlling ongoing NCIAH in the prehospital environment. We hypothesized that a self-propelling thrombin-containing powder (SPTP) could increase survival in a swine model of NCIAH when delivered percutaneously into the closed abdomen using an engineered spray system. MATERIALS AND METHODS Nineteen swine underwent surgical laparotomy followed by a Grade V liver injury that created massive hemorrhage, before closing the abdomen with sutures. Animals either received treatment with standard of care fluid resuscitation (n=9) or the SPTP spray system (n=10), which consisted of a spray device and a 14 Fr catheter. Using the spray system, SPTP was delivered into a hemoperitoneum identified using a focused assessment with sonography in trauma (FAST) exam. Lactated Ringer's solution was administered to all animals to maintain a mean arterial pressure (MAP) of >50 mmHg. The primary outcome was percentage of animals surviving at three hours following injury. RESULTS In the swine model of NCIAH, a greater percentage of animals receiving SPTP survived to three hours, although differences were not significant. The SPTP spray system increased the median survival of animals from 1.6 hr in the fluid resuscitation group to 4.3 hr. The SPTP spray system delivered a total mass of 18.5 ± 1.0 g of SPTP. The mean change in intra-abdominal pressure following SPTP delivery was 5.2 ± 1.8 mmHg (mean ± SEM). The intervention time was 6.7 ± 1.7 min. No adverse effects related to the SPTP formulation or the spray system were observed. SPTP was especially beneficial in animals that had either severely elevated lactate concentrations or low mean arterial pressure of <35 mmHg shortly after injury. CONCLUSIONS This demonstrates proof-of-concept for use of a new minimally invasive procedure for managing NCIAH, which could extend survival time to enable patients to reach definitive surgical care.
Collapse
|
10
|
Wouters R, Westrøm S, Vankerckhoven A, Thirion G, Ceusters J, Claes S, Schols D, Bønsdorff TB, Vergote I, Coosemans A. Effect of Particle Carriers for Intraperitoneal Drug Delivery on the Course of Ovarian Cancer and Its Immune Microenvironment in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14040687. [PMID: 35456521 PMCID: PMC9031420 DOI: 10.3390/pharmaceutics14040687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Novel treatment strategies are needed to provide a better prognosis for ovarian cancer. For this purpose, the current study was designed to evaluate the effects of different types of particle drug carriers on tumor response and on the tumor immune microenvironment (TME) after intraperitoneal (IP) administration in a murine tumor model. Mice with ID8-fLuc ovarian cancer were injected IP with pegylated liposomes, hydroxyapatite, polystyrene, poly(lactic-co-glycolic acid) (PLGA) and calcium carbonate (CaCO3) microparticles to evaluate the effect of the candidate carriers without drugs. Our results show that several types of microparticle drug carriers caused hyperproliferation of the tumor when injected IP, as reflected in a reduced survival or an accelerated onset of ascites. Alterations of the product formulation of CaCO3 microparticles could result in less hyperproliferation. The hyperproliferation caused by CaCO3 and PLGA was largely driven by a strong innate immune suppression. A combination with chemotherapy was not able to sufficiently counteract the tumor progression caused by the drug carriers. This research points towards the importance of evaluating a drug carrier before using it in a therapeutic setting, since drug carriers themselves can detrimentally influence tumor progression and immune status of the TME. However, it remains to be determined whether the hyperproliferation in this model will be of relevance in other cancer models or in humans.
Collapse
Affiliation(s)
- Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
- Correspondence:
| | - Sara Westrøm
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Gitte Thirion
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Jolien Ceusters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | | | - Ignace Vergote
- Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| |
Collapse
|
11
|
Gajewska A, Wang JTW, Klippstein R, Martincic M, Pach E, Feldman R, Saccavini JC, Tobias G, Ballesteros B, Al-Jamal KT, Da Ros T. Functionalization of filled radioactive multi-walled carbon nanocapsules by arylation reaction for in vivo delivery of radio-therapy. J Mater Chem B 2021; 10:47-56. [PMID: 34843615 DOI: 10.1039/d1tb02195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (152SmCl3), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated 152Sm is neutron activated to radioactive 153Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs. The organ biodistribution profiles of the nanocapsules up to 24 h are assessed in naïve mice and different tumor models in vivo. By quantitative γ-counting, 153SmCl3@MWCNTs-NH2 exhibite high accumulation in organs without leakage of the internal radioactive material to the bloodstream. In the treated mice, highest uptake is detected in the lung followed by the liver and spleen. Presence of tumors in brain or lung does not increase percentage accumulation of 153SmCl3@MWCNTs-NH2 in the respective organs, suggesting the absence of the enhanced permeation and retention effect. This study presents a chemical functionalization protocol that is rapid (∼one hour) and can be applied to filled radioactive multi-walled carbon nanocapsules to improve their water dispersibility for systemic administration for their use in targeted radiotherapy.
Collapse
Affiliation(s)
- Agnieszka Gajewska
- INSTM, Trieste Unit & Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Julie T-W Wang
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| | - Rebecca Klippstein
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Robert Feldman
- Cis Bio International Ion Beam Applications SA (IBA), 91400 Saclay, France
| | | | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Khuloud T Al-Jamal
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| | - Tatiana Da Ros
- INSTM, Trieste Unit & Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
12
|
A Novel Single-Step-Labeled 212Pb-CaCO 3 Microparticle for Internal Alpha Therapy: Preparation, Stability, and Preclinical Data from Mice. MATERIALS 2021; 14:ma14237130. [PMID: 34885283 PMCID: PMC8658347 DOI: 10.3390/ma14237130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Lead-212 is recognized as a promising radionuclide for targeted alpha therapy for tumors. Many studies of 212Pb-labeling of various biomolecules through bifunctional chelators have been conducted. Another approach to exploiting the cytotoxic effect is coupling the radionuclide to a microparticle acting as a carrier vehicle, which could be used for treating disseminated cancers in body cavities. Calcium carbonate may represent a suitable material, as it is biocompatible, biodegradable, and easy to synthesize. In this work, we explored 212Pb-labeling of various CaCO3 microparticles and developed a protocol that can be straightforwardly implemented by clinicians. Vaterite microparticles stabilized by pamidronate were effective as 212Pb carriers; labeling yields of ≥98% were achieved, and 212Pb was strongly retained by the particles in an in vitro stability assessment. Moreover, the amounts of 212Pb reaching the kidneys, liver, spleen, and skeleton of mice following intraperitoneal (i.p.) administration were very low compared to i.p. injection of unbound 212Pb2+, indicating that CaCO3-bound 212Pb exhibited stability when administered intraperitoneally. Therapeutic efficacy was observed in a model of i.p. ovarian cancer for all the tested doses, ranging from 63 to 430 kBq per mouse. Lead-212-labeled CaCO3 microparticles represent a promising candidate for treating intracavitary cancers.
Collapse
|
13
|
Li RG, Napoli E, Jorstad IS, Bønsdorff TB, Juzeniene A, Bruland ØS, Larsen RH, Westrøm S. Calcium Carbonate Microparticles as Carriers of 224Ra: Impact of Specific Activity in Mice with Intraperitoneal Ovarian Cancer. Curr Radiopharm 2021; 14:145-153. [PMID: 33261548 DOI: 10.2174/1874471013666201201102056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients with advanced-stage ovarian cancer face a poor prognosis because of recurrent peritoneal cavity metastases following surgery and chemotherapy. Alpha-emitters may enable the efficient treatment of such disseminated diseases because of their short range and highly energetic radiation. Radium-224 is a candidate α-emitter due to its convenient 3.6-day half-life, with more than 90% of the decay energy originating from α-particles. However, its inherent skeletal accumulation must be overcome to facilitate intraperitoneal delivery of the radiation dose. Therefore, 224Ra-labeled CaCO3 microparticles have been developed. OBJECTIVE The antitumor effect of CaCO3 microparticles as a carrier for 224Ra was investigated, with an emphasis on the ratio of activity to mass dose of CaCO3, that is, specific activity. METHODS Nude athymic mice were inoculated intraperitoneally with human ovarian cancer cells (ES-2) and treated with a single intraperitoneal injection of 224Ra-labeled CaCO3 microparticles with varying combinations of mass and activity dose, or cationic 224Ra in solution. Survival and ascites volume at sacrifice were evaluated. RESULTS Significant therapeutic effect was achieved for all tested specific activities ranging from 0.4 to 4.6 kBq/mg. Although treatment with a mean activity dose of 1305 kBq/kg of cationic 224Ra prolonged the survival compared with the control, equivalent median survival could be achieved with 224Ra-labeled microparticles with a mean dose of only 420 kBq/kg. The best outcome was achieved with the highest specific activities (2.6 and 4.6 kBq/mg). CONCLUSION Radium-224-labeled CaCO3 microparticles present a promising therapy against cancer dissemination in body cavities.
Collapse
Affiliation(s)
| | | | | | | | - Asta Juzeniene
- Department of Radiation Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
14
|
Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021; 13:1123. [PMID: 34452084 PMCID: PMC8398190 DOI: 10.3390/pharmaceutics13081123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Pedro Cruz-Nova
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| | - Kattesh V. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA;
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| |
Collapse
|
15
|
Eychenne R, Chérel M, Haddad F, Guérard F, Gestin JF. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight". Pharmaceutics 2021; 13:pharmaceutics13060906. [PMID: 34207408 PMCID: PMC8234975 DOI: 10.3390/pharmaceutics13060906] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.
Collapse
Affiliation(s)
- Romain Eychenne
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Férid Haddad
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Laboratoire Subatech, UMR 6457, Université de Nantes, IMT Atlantique, CNRS, Subatech, F-44000 Nantes, France
| | - François Guérard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Jean-François Gestin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| |
Collapse
|
16
|
Muslimov AR, Antuganov DO, Tarakanchikova YV, Zhukov MV, Nadporojskii MA, Zyuzin MV, Timin AS. Calcium Carbonate Core-Shell Particles for Incorporation of 225Ac and Their Application in Local α-Radionuclide Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25599-25610. [PMID: 34028266 DOI: 10.1021/acsami.1c02155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Actinium-225 (225Ac) radiolabeled submicrometric core-shell particles (SPs) made of calcium carbonate (CaCO3) coated with biocompatible polymers [tannic acid-human serum albumin (TA/HSA)] have been developed to improve the efficiency of local α-radionuclide therapy in melanoma models (B16-F10 tumor-bearing mice). The developed 225Ac-SPs possess radiochemical stability and demonstrate effective retention of 225Ac and its daughter isotopes. The SPs have been additionally labeled with zirconium-89 (89Zr) to perform the biodistribution studies using positron emission tomography-computerized tomography (PET/CT) imaging for 14 days after intratumoral injection. According to the PET/CT analysis, a significant accumulation of 89Zr-SPs in the tumor area is revealed for the whole investigation period, which correlates with the direct radiometry analysis after intratumoral administration of 225Ac-SPs. The histological analysis has revealed no abnormal changes in healthy tissue organs after treatment with 225Ac-SPs (e.g., no acute pathologic findings are detected in the liver and kidneys). At the same time, the inhibition of tumor growth has been observed as compared with control samples [nonradiolabeled SPs and phosphate-buffered saline (PBS)]. The treatment of mice with 225Ac-SPs has resulted in prolonged survival compared to the control samples. Thus, our study validates the application of 225Ac-doped core-shell submicron CaCO3 particles for local α-radionuclide therapy.
Collapse
Affiliation(s)
- Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
| | - Mikhail V Zhukov
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Michail A Nadporojskii
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| |
Collapse
|
17
|
Lankoff A, Czerwińska M, Walczak R, Karczmarczyk U, Tomczyk K, Brzóska K, Fracasso G, Garnuszek P, Mikołajczak R, Kruszewski M. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part II. Toxicity, Pharmacokinetics and Biodistribution. Int J Mol Sci 2021; 22:5702. [PMID: 34071854 PMCID: PMC8198605 DOI: 10.3390/ijms22115702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a progressive and incurable disease with poor prognosis for patients. Despite introduction of novel therapies, the mortality rate remains high. An attractive alternative for extension of the life of mCRPC patients is PSMA-based targeted radioimmunotherapy. In this paper, we extended our in vitro study of 223Ra-labeled and PSMA-targeted NaA nanozeolites [223RaA-silane-PEG-D2B] by undertaking comprehensive preclinical in vitro and in vivo research. The toxicity of the new compound was evaluated in LNCaP C4-2, DU-145, RWPE-1 and HPrEC prostate cells and in BALB/c mice. The tissue distribution of 133Ba- and 223Ra-labeled conjugates was studied at different time points after injection in BALB/c and LNCaP C4-2 tumor-bearing BALB/c Nude mice. No obvious symptoms of antibody-free and antibody-functionalized nanocarriers cytotoxicity and immunotoxicity was found, while exposure to 223Ra-labeled conjugates resulted in bone marrow fibrosis, decreased the number of WBC and platelets and elevated serum concentrations of ALT and AST enzymes. Biodistribution studies revealed high accumulation of 223Ra-labeled conjugates in the liver, lungs, spleen and bone tissue. Nontargeted and PSMA-targeted radioconjugates exhibited a similar, marginal uptake in tumour lesions. In conclusion, despite the fact that NaA nanozeolites are safe carriers, the intravenous administration of NaA nanozeolite-based radioconjugates is dubious due to its high accumulation in the lungs, liver, spleen and bones.
Collapse
Affiliation(s)
- Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland
| | - Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Kamil Tomczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
| | - Giulio Fracasso
- Department of Medicine, University of Verona, 37129 Verona, Italy;
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
18
|
Borvinskaya E, Gurkov A, Shchapova E, Mutin A, Timofeyev M. Histopathological analysis of zebrafish after introduction of non-biodegradable polyelectrolyte microcapsules into the circulatory system. PeerJ 2021; 9:e11337. [PMID: 33996284 PMCID: PMC8106396 DOI: 10.7717/peerj.11337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Polyelectrolyte microcapsules are among the most promising carriers of various sensing substances for their application inside the bloodstream of vertebrates. The long-term effects of biodegradable microcapsules in mammals are relatively well studied, but this is not the case for non-biodegradable microcapsules, which may be even more generally applicable for physiological measurements. In the current study, we introduced non-biodegradable polyelectrolyte microcapsules coated with polyethylene glycol (PMs-PEG) into the circulatory system of zebrafish to assess their long-term effects on fish internal organs with histopathologic analysis. Implantation of PMs-PEG was not associated with the formation of microclots or thrombi in thin capillaries; thus, the applied microcapsules had a low aggregation capacity. The progression of the immune response to the implant depended on the time and the abundance of microparticles in the tissues. We showed that inflammation originated from recognition and internalization of PMs-PEG by phagocytes. These microcapsule-filled immune cells have been found to migrate through the intestinal wall into the lumen, demonstrating a possible mechanism for partial microparticle elimination from fish. The observed tissue immune response to PMs-PEG was local, without a systemic effect on the fish morphology. The most pronounced chronic severe inflammatory reaction was observed near the injection site in renal parenchyma and within the abdominal cavity since PMs-PEG were administered with kidney injection. Blood clots and granulomatosis were noted at the injection site but were not found in the kidneys outside the injection site. Single microcapsules brought by blood into distal organs did not have a noticeable effect on the surrounding tissues. The severity of noted pathologies of the gills was insufficient to affect respiration. No statistically significant alterations in hepatic morphology were revealed after PMs-PEG introduction into fish body. Overall, our data demonstrate that despite they are immunogenic, non-biodegradable PMs-PEG have low potential to cause systemic effects if applied in the minimal amount necessary for detection of fluorescent signal from the microcapsules.
Collapse
Affiliation(s)
| | - Anton Gurkov
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Ekaterina Shchapova
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Andrei Mutin
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| |
Collapse
|
19
|
Improved Formulation of 224Ra-Labeled Calcium Carbonate Microparticles by Surface Layer Encapsulation and Addition of EDTMP. Pharmaceutics 2021; 13:pharmaceutics13050634. [PMID: 33946852 PMCID: PMC8145685 DOI: 10.3390/pharmaceutics13050634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Radium-224-labeled CaCO3 microparticles have been developed to treat peritoneal carcinomatosis. The microparticles function as carriers of 224Ra, facilitating intraperitoneal retention of the alpha-emitting radionuclide. It was necessary to control the size of microparticles in suspension over time and introduce a sterilization process for the clinical use of the radiopharmaceutical. Ethylenediamine tetra(methylene phosphonic acid) (EDTMP) was investigated as a stabilizing additive. The possibility of encapsulating the radiolabeled microparticles with an outer surface layer of CaCO3 for the improved retention of radioactivity by the carrier was studied. This work evaluated these steps of optimization and their effect on radiochemical purity, the biodistribution of radionuclides, and therapeutic efficacy. An EDTMP concentration of >1% (w/w) relative to CaCO3 stabilized the particle size for at least one week. Without EDTMP, the median particle size increased from ~5 µm to ~25 µm immediately after sterilization by autoclaving, and the larger microparticles sedimented rapidly in suspension. The percentage of adsorbed 224Ra progeny 212Pb increased from 56% to 94% at 2.4-2.5% (w/w) EDTMP when the 224Ra-labeled microparticles were layer-encapsulated. The improved formulation also resulted in a suitable biodistribution of radionuclides in mice, as well as a survival benefit for mice with intraperitoneal ovarian or colorectal tumors.
Collapse
|
20
|
Bergeron DE, Collins SM, Pibida L, Cessna JT, Fitzgerald R, Zimmerman BE, Ivanov P, Keightley JD, Napoli E. Ra-224 activity, half-life, and 241 keV gamma ray absolute emission intensity: A NIST-NPL bilateral comparison. Appl Radiat Isot 2021; 170:109572. [PMID: 33461017 PMCID: PMC8406413 DOI: 10.1016/j.apradiso.2020.109572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
The national metrology institutes for the United Kingdom (UK) and the United States of America (USA) have compared activity standards for 224Ra, an α-particle emitter of interest as the basis for therapeutic radiopharmaceuticals. Solutions of 224RaCl2 were assayed by absolute methods, including digital coincidence counting and triple-to-double coincidence ratio liquid scintillation counting. Ionization chamber and high-purity germanium (HPGe) γ-ray spectrometry calibrations were compared; further, a solution was shipped between laboratories for a direct comparison by HPGe spectrometry. New determinations of the absolute emission intensity for the 241 keV γ ray (Iγ = 4.011(16) per 100 disintegrations of 224Ra) and of the 224Ra half-life (T1/2 = 3.6313(14) d) are presented and discussed in the context of previous measurements and evaluations.
Collapse
Affiliation(s)
- Denis E Bergeron
- Radiation Physics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Sean M Collins
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK; Department of Physics, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK
| | - Leticia Pibida
- Radiation Physics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jeffrey T Cessna
- Radiation Physics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Ryan Fitzgerald
- Radiation Physics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Brian E Zimmerman
- Radiation Physics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Peter Ivanov
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| | - John D Keightley
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| | - Elisa Napoli
- Oncoinvent AS, Oslo, Norway; Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Napoli E, Bønsdorff TB, Jorstad IS, Bruland ØS, Larsen RH, Westrøm S. Radon-220 diffusion from 224Ra-labeled calcium carbonate microparticles: Some implications for radiotherapeutic use. PLoS One 2021; 16:e0248133. [PMID: 33662039 PMCID: PMC7932545 DOI: 10.1371/journal.pone.0248133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/21/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha-particle emitting radionuclides continue to be the subject of medical research because of their high energy and short range of action that facilitate effective cancer therapies. Radium-224 (224Ra) is one such candidate that has been considered for use in combating micrometastatic disease. In our prior studies, a suspension of 224Ra-labeled calcium carbonate (CaCO3) microparticles was designed as a local therapy for disseminated cancers in the peritoneal cavity. The progenies of 224Ra, of which radon-220 (220Rn) is the first, together contribute three of the four alpha particles in the decay chain. The proximity of the progenies to the delivery site at the time of decay of the 224Ra-CaCO3 microparticles can impact its therapeutic efficacy. In this study, we show that the diffusion of 220Rn was reduced in labeled CaCO3 suspensions as compared with cationic 224Ra solutions, both in air and liquid volumes. Furthermore, free-floating lead-212 (212Pb), which is generated from released 220Rn, had the potential to be re-adsorbed onto CaCO3 microparticles. Under conditions mimicking an in vivo environment, more than 70% of the 212Pb was adsorbed onto the CaCO3 at microparticle concentrations above 1 mg/mL. Further, the diffusion of 220Rn seemed to occur whether the microparticles were labeled by the surface adsorption of 224Ra or if the 224Ra was incorporated into the bulk of the microparticles. The therapeutic benefit of differently labeled 224Ra-CaCO3 microparticles after intraperitoneal administration was similar when examined in mice bearing intraperitoneal ovarian cancer xenografts. In conclusion, both the release of 220Rn and re-adsorption of 212Pb are features that have implications for the radiotherapeutic use of 224Ra-labeled CaCO3 microparticles. The release of 220Rn through diffusion may extend the effective range of alpha-particle dose deposition, and the re-adsorption of the longer lived 212Pb onto the CaCO3 microparticles may enhance the retention of this nuclide in the peritoneal cavity.
Collapse
Affiliation(s)
- Elisa Napoli
- Oncoinvent AS, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | | | - Øyvind S. Bruland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
22
|
Pruszyński M, Walczak R, Rodak M, Bruchertseifer F, Morgenstern A, Bilewicz A. Radiochemical separation of 224Ra from 232U and 228Th sources for 224Ra/ 212Pb/ 212Bi generator. Appl Radiat Isot 2021; 172:109655. [PMID: 33657491 DOI: 10.1016/j.apradiso.2021.109655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022]
Abstract
The application of diagnostic and therapeutic radionuclides in nuclear medicine has grown significantly and has translated into the increased interest in radionuclide generators and their development. 224Ra and its shorter-lived daughters, 212Pb and 212Bi, are very interesting radionuclides from Targeted Alpha Therapy point of view for treatment of small cancers or metastatic forms. The purpose of the present work was to develop a simple generator for rapid elution of carrier-free 224Ra from 232U or 228Th sources by radiochemical separation based on extraction chromatography with the utilization of a home-made material. The bis(2-ethylhexyl) hydrogen phosphate (HDEHP) extractant was immobilized on polytetrafluroethylene (PTFE) grains and its ability to selectively adsorb 232U and 228Th, with simultaneous high elution recovery of 224Ra, was checked over few years. The 224Ra was quantitatively eluted with small volume (3-5 mL) of 0.1 M HNO3 with low breakthrough (<0.005%) and was used for further milking of 212Bi and 212Pb from DOWEX 50WX12 by 0.75 M and 2.0 M HCl, respectively. The elaborated here methods allowed high recovery of 224Ra, 212Pb and 212Bi radionuclides and their application in radiolabeling of various biomolecules.
Collapse
Affiliation(s)
- Marek Pruszyński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland.
| | - Magdalena Rodak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland.
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, 76125, Karlsruhe, Germany.
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, 76125, Karlsruhe, Germany.
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland.
| |
Collapse
|
23
|
Muslimov AR, Antuganov D, Tarakanchikova YV, Karpov TE, Zhukov MV, Zyuzin MV, Timin AS. An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: in vitro and in vivo studies. J Control Release 2021; 330:726-737. [DOI: 10.1016/j.jconrel.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
|
24
|
Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2020; 13:pharmaceutics13010049. [PMID: 33396374 PMCID: PMC7824049 DOI: 10.3390/pharmaceutics13010049] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
This review outlines the accomplishments and potential developments of targeted alpha (α) particle therapy (TAT). It discusses the therapeutic advantages of the short and highly ionizing path of α-particle emissions; the ability of TAT to complement and provide superior efficacy over existing forms of radiotherapy; the physical decay properties and radiochemistry of common α-emitters, including 225Ac, 213Bi, 224Ra, 212Pb, 227Th, 223Ra, 211At, and 149Tb; the production techniques and proper handling of α-emitters in a radiopharmacy; recent preclinical developments; ongoing and completed clinical trials; and an outlook on the future of TAT.
Collapse
|
25
|
Toro-González M, Dame AN, Mirzadeh S, Rojas JV. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Unwanted targeting of healthy organs caused by the relocation of radionuclides from the target site has been one of the limiting factors in the widespread application of targeted alpha therapy in patient regimens. GdVO4 nanoparticles (NPs) were developed as platforms to encapsulate α-emitting radionuclides 223Ra, 225Ac, and 227Th, and retain their decay daughters at the target site. Polycrystalline GdVO4 NPs with different morphologies and a zircon-type tetragonal crystal structure were obtained by precipitation of GdCl3 and Na3VO4 in aqueous media at room temperature. The ability of GdVO4 crystals to host multivalent ions was initially assessed using La, Cs, Bi, Ba, and Pb as surrogates of the radionuclides under investigation. A decrease in Ba encapsulation was obtained after increasing the concentration of surrogate ions, whereas the encapsulation of La cations in GdVO4 NPs was quantitative (∼100%). Retention of radionuclides was assessed in vitro by dialyzing the radioactive GdVO4 NPs against deionized water. While 227Th was quantitatively encapsulated (100%), a partial encapsulation of 223Ra (∼75%) and 225Ac (>60%) was observed in GdVO4 NPs. The maximum leakage of 221Fr (1st decay daughter of 225Ac) was 55.4 ± 3.6%, whereas for 223Ra (1st decay daughter of 227Th) the maximum leakage was 73.0 ± 4.0%. These results show the potential of GdVO4 NPs as platforms of α-emitting radionuclides for their application in targeted alpha therapy.
Collapse
Affiliation(s)
- Miguel Toro-González
- Department of Mechanical and Nuclear Engineering , Virginia Commonwealth University , Richmond , VA , USA
- Isotope and Fuel Cycle Technology Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Ashley N. Dame
- Isotope and Fuel Cycle Technology Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Saed Mirzadeh
- Isotope and Fuel Cycle Technology Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Jessika V. Rojas
- Department of Mechanical and Nuclear Engineering , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
26
|
Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, Lankoff A. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3875. [PMID: 32887308 PMCID: PMC7504699 DOI: 10.3390/ma13173875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide. Unfortunately, current therapies often lead to the onset of metastatic castration-resistant prostate cancer (mCRPC), causing significant mortality. Therefore, there is an urgent need for new and targeted therapies that are advantageous over the current ones. Recently, the PSMA-targeted radioligand therapy of mCRPC has shown very promising results. In line with this, we described the synthesis of a new radioimmunoconjugate, 223RaA-silane-PEG-D2B, for targeted mCRPC therapy. The new compound consists of a NaA zeolite nanocarrier loaded with the α-particle emitting Ra-223 radionuclide, functionalized with the anti-PSMA D2B antibody. Physicochemical properties of the synthesized compound were characterized by standard methods (HR-SEM, TEM, XRD, FTIR, EDS, NTA, DLS, BET, TGA). The targeting selectivity, the extent of internalization, and cytotoxicity were determined in LNCaP C4-2 (PSMA+) and DU-145 (PSMA-) cells. Our results supported the 223RaA-silane-PEG-D2B synthesis and revealed that the final product had a diameter ca. 120 nm and specific activity 0.65 MBq/1mg. The product was characterized by a high yield of stability (>95% up to 12 days). The conjugation reaction resulted in approximately 50 antibodies/nanoparticle. The obtained radioimmunoconjugate bound specifically and internalized into PSMA-expressing LNCaP C4-2 cells, but not into PSMA-negative DU-145 cells. 223RaA-silane-PEG-D2B demonstrated also potent cytotoxicity in LNCaP C4-2 cells. These promising results require further in vivo evaluation of 223RaA-silane-PEG-D2B with regard to its toxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Giulio Fracasso
- Department of Medicine, University of Verona, Piazzale LA Scuro 10, 37134 Verona, Italy;
| | - Marek Pruszyński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland
| |
Collapse
|
27
|
Napoli E, Cessna JT, Pibida L, Fitzgerald R, Hjellum GE, Bergeron DE. Radionuclide calibrator responses for 224Ra in solution and adsorbed on calcium carbonate microparticles. Appl Radiat Isot 2020; 164:109265. [PMID: 32763787 DOI: 10.1016/j.apradiso.2020.109265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
A suspension of 224Ra adsorbed onto CaCO3 microparticles shows promise for α-therapy of intracavitary micro-metastatic diseases. To facilitate accurate activity administrations, geometry-specific calibration factors for commercially available reentrant ionization chambers (ICs) have been developed for 224RaCl2 solutions and 224Ra adsorbed onto CaCO3 microparticles in suspension in ampoules, vials, and syringes. Ampoules and vials give IC responses consistent with each other to <1%. Microparticles attenuation leads to a ≈1% to ≈2.5% reduction in response in the geometries studied.
Collapse
Affiliation(s)
- Elisa Napoli
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA; Oncoinvent AS, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jeffrey T Cessna
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA
| | - Leticia Pibida
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA
| | - Ryan Fitzgerald
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA
| | | | - Denis E Bergeron
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA.
| |
Collapse
|
28
|
Toro-González M, Dame AN, Foster CM, Millet LJ, Woodward JD, Rojas JV, Mirzadeh S, Davern SM. Quantitative encapsulation and retention of 227Th and decay daughters in core-shell lanthanum phosphate nanoparticles. NANOSCALE 2020; 12:9744-9755. [PMID: 32324185 DOI: 10.1039/d0nr01172j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Targeted alpha therapy (TAT) offers great promise for treating recalcitrant tumors and micrometastatic cancers. One drawback of TAT is the potential damage to normal tissues and organs due to the relocation of decay daughters from the treatment site. The present study evaluates La(227Th)PO4 core (C) and core +2 shells (C2S) nanoparticles (NPs) as a delivery platform of 227Th to minimize systemic distribution of decay daughters, 223Ra and 211Pb. In vitro retention of decay daughters within La(227Th)PO4 C NPs was influenced by the concentration of reagents used during synthesis, in which the leakage of 223Ra was between 0.4 ± 0.2% and 20.3 ± 1.1% in deionized water. Deposition of two nonradioactive LaPO4 shells onto La(227Th)PO4 C NPs increased the retention of decay daughters to >99.75%. The toxicity of the nonradioactive LaPO4 C and C2S NP delivery platforms was examined in a mammalian breast cancer cell line, BT-474. No significant decrease in cell viability was observed for a monolayer of BT-474 cells for NP concentrations below 233.9 μg mL-1, however cell viability decreased below 60% when BT-474 spheroids were incubated with either LaPO4 C or C2S NPs at concentrations exceeding 29.2 μg mL-1. La(227Th)PO4 C2S NPs exhibit a high encapsulation and in vitro retention of radionuclides with limited contribution to cellular cytotoxicity for TAT applications.
Collapse
Affiliation(s)
- M Toro-González
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, , Richmond 23284, USA. and Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - A N Dame
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - C M Foster
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA
| | - L J Millet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA and Joint Research Activity, The Bredesen Center, University of Tennessee, Knoxville 37996, USA
| | - J D Woodward
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - J V Rojas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, , Richmond 23284, USA.
| | - S Mirzadeh
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - S M Davern
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| |
Collapse
|
29
|
Krug P, Wiktorska K, Kaczyńska K, Ofiara K, Szterk A, Kuśmierz B, Mazur M. Sulforaphane-assisted preparation of tellurium flower-like nanoparticles. NANOTECHNOLOGY 2020; 31:055603. [PMID: 31618725 DOI: 10.1088/1361-6528/ab4e38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new method for the fabrication of flower-like tellurium nanoparticles is reported. It is based on the reduction of tellurite precursor by products generated during decomposition of sulforaphane at elevated temperature in aqueous medium. These species and other organic molecules present in the reaction mixture are being adsorbed on the surface of tellurium nuclei and govern further tellurium growth in the form of nanoflowers. The obtained particles have been characterized by a range of physicochemical techniques. It was shown that the average size of the nanoflower particles is ca. 112 nm, and they are composed of smaller domains which are ca. 30 nm in diameter. The domains are crystalline and consist of trigonal tellurium as shown by x-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy. The tellurium nanoflowers were examined from the perspective of their potential anticancer activity. The in vitro cell viability studies were conducted on breast cancer (MDA-MB-231, MCF-7) and normal cell lines (MCF-10A) employing MTT and CVS assays. It was shown, that the nanoflowers exhibit considerable cytotoxicity against cancer cells which is ca. 3-7 times higher than that observed for reference normal cells. The preliminary in vivo investigations on rats revealed that the nanoflowers accumulate predominantly in pancreas after intraperitoneal administration, without observable negative behavioral effects.
Collapse
Affiliation(s)
- Pamela Krug
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
30
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Collins SM, Shearman R, Ivanov P, Regan PH. The impact of high-energy tailing in high-purity germanium gamma-ray spectrometry on the activity determination of 224Ra using the 241.0 keV emission. Appl Radiat Isot 2019; 157:109021. [PMID: 31889679 DOI: 10.1016/j.apradiso.2019.109021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 02/03/2023]
Abstract
High-energy tailing is an often-overlooked component in high-purity germanium gamma-ray spectrometry when performing the non-linear least squares fit of a full-energy peak. This component comes from the incomplete restoration of the baseline prior to the next pulse being processed and therefore is an issue of increased count rates. In the current work, the impact of this oversight is shown through the dynamics and decay characteristics of 224Ra and its radioactive decay progeny. Multiple measurements of two samples, separated from the decay progeny and at differing activities, have been made. The results of full-energy peak fitting of the convoluted 238.6 keV and 241.0 keV full-energy peaks with and without the high energy tailing component are presented. Trends in the observed activity that approximate the ingrowth of 212Pb have been observed where no high-energy tailing component is used, with maximum relative differences of 2% and 5% determined.
Collapse
Affiliation(s)
- S M Collins
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK; Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | - R Shearman
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
| | - P Ivanov
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
| | - P H Regan
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK; Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
32
|
Primary standardization of 224Ra activity by liquid scintillation counting. Appl Radiat Isot 2019; 155:108933. [PMID: 31654881 DOI: 10.1016/j.apradiso.2019.108933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
A standard for activity of 224Ra in secular equilibrium with its progeny has been developed, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency tracing and 4παβ(LS)-γ(NaI(Tl)) anticoincidence counting, as well as by 4πγ ionization chamber and NaI(Tl) measurements. Secondary standard ionization chambers were calibrated with an expanded uncertainty of 0.62% (k = 2). Calibration settings were also determined for a 5 mL flame-sealed ampoule on several commercial reentrant ionization chambers (dose calibrators).
Collapse
|
33
|
Sun N, Zhao L, Zhu J, Li Y, Song N, Xing Y, Qiao W, Huang H, Zhao J. 131I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy. Int J Nanomedicine 2019; 14:4367-4381. [PMID: 31354266 PMCID: PMC6580422 DOI: 10.2147/ijn.s203259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/14/2019] [Indexed: 01/02/2023] Open
Abstract
Purpose: Polyethylenimine (PEI) has been widely used as a versatile template to develop multifunctional nanosystems for disease diagnosis and treatment. In this study, we manufactured iodine-131 (131I)-labeled PEI-entrapped gold nanoparticles (Au PENPs) as a novel nanoprobe for single-photon emission computed tomography/computed tomography (SPECT/CT) imaging and radionuclide therapy. Materials and methods: PEI was PEGylated and sequentially conjugated with Buthus martensii Karsch chlorotoxin (BmK CT, a tumor-specific ligand which can selectively bind to MMP2), 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO), and fluorescein isothiocyanate to form the multifunctional PEI template for entrapment of Au NPs. Then, the PEI surface was radiolabeled with 131I via HPAO to produce the novel nanoprobe (BmK CT-Au PENPs-131I). Results: The synthesized multifunctional Au PENPs before and after 131I radiolabeling were well-characterized as follows: structure, X-ray attenuation coefficient, colloid stability, cytocompatibility, and radiochemical stability in vitro. Furthermore, BmK CT-Au PENPs-131I were suitable for targeted SPECT/CT imaging and radionuclide therapy of tumor cells in vitro and in a xenograft tumor model in vivo. Conclusion: The developed multifunctional Au PENPs are a promising theranostic platform for targeted imaging and treatment of different MMP2-overexpressing tumors.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Jingyi Zhu
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, People’s Republic of China
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Ningning Song
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Wenli Qiao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, People’s Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| |
Collapse
|
34
|
Severin AV, Vasiliev AN, Gopin AV, Vlasova IE, Chernykh EV. Dynamics of Sorption—Desorption of 223Ra Therapeutic α-Emitter on Granulated Hydroxyapatite. RADIOCHEMISTRY 2019. [DOI: 10.1134/s1066362219030093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Lomora M, Shumate D, Rahman AA, Pandit A. Therapeutic Applications of Phytoplankton, with an Emphasis on Diatoms and Coccolithophores. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mihai Lomora
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - David Shumate
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
- Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Asrizal Abdul Rahman
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| |
Collapse
|
36
|
Schumann S, Eberlein U, Müller J, Scherthan H, Lassmann M. Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224. EJNMMI Res 2018; 8:77. [PMID: 30083998 PMCID: PMC6082247 DOI: 10.1186/s13550-018-0422-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/06/2018] [Indexed: 01/04/2023] Open
Abstract
Background Irradiation with α-particles creates densely packed damage tracks along particle trajectories in exposed cells, including complex DNA damage and closely spaced double-strand breaks (DSBs) in hit nuclei. Here, we investigated the correlation of the absorbed dose to the blood and the number of α-induced DNA damage tracks elicited in human blood leukocytes after ex-vivo in-solution exposure with Ra-224. The aim was to compare the data to previously published data on Ra-223 and to investigate differences in DNA damage induction between the two radium isotopes. Results Blood samples from three healthy volunteers were exposed ex-vivo to six different concentrations of Ra-224 dichloride. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the Ra-224 decay chain, ranging from 0 to 127 mGy. γ-H2AX + 53BP1 DNA damage co-staining and analysis was performed on ethanol-fixed leukocytes isolated from the irradiated blood samples. For damage quantification, α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci were enumerated in the exposed leukocytes. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values. Conclusions Our data provide a first estimation of the DNA damage induced by Ra-224 in peripheral blood mononuclear cells. A comparison with our previously published Ra-223 data suggests that there is no difference in the induction of radiation-induced DNA damage between the two radium isotopes due to their similar decay properties.
Collapse
Affiliation(s)
- Sarah Schumann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jessica Müller
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
37
|
Westrøm S, Malenge M, Jorstad IS, Napoli E, Bruland ØS, Bønsdorff TB, Larsen RH. Ra-224 labeling of calcium carbonate microparticles for internal α-therapy: Preparation, stability, and biodistribution in mice. J Labelled Comp Radiopharm 2018; 61:472-486. [PMID: 29380410 PMCID: PMC6001669 DOI: 10.1002/jlcr.3610] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/16/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Internal therapy with α‐emitters should be well suited for micrometastatic disease. Radium‐224 emits multiple α‐particles through its decay and has a convenient 3.6 days of half‐life. Despite its attractive properties, the use of 224Ra has been limited to bone‐seeking applications because it cannot be stably bound to a targeting molecule. Alternative delivery systems for 224Ra are therefore of considerable interest. In this study, calcium carbonate microparticles are proposed as carriers for 224Ra, designed for local therapy of disseminated cancers in cavitary regions, such as peritoneal carcinomatosis. Calcium carbonate microparticles were radiolabeled by precipitation of 224Ra on the particle surface, resulting in high labeling efficiencies for both 224Ra and daughter 212Pb and retention of more than 95% of these nuclides for up to 1 week in vitro. The biodistribution after intraperitoneal administration of the 224Ra‐labeled CaCO3 microparticles in immunodeficient mice revealed that the radioactivity mainly remained in the peritoneal cavity. In addition, the systemic distribution of 224Ra was found to be strongly dependent on the amount of administered microparticles, with a reduced skeletal uptake of 224Ra with increasing dose. The results altogether suggest that the 224Ra‐labeled CaCO3 microparticles have promising properties for use as a localized internal α‐therapy of cavitary cancers.
Collapse
Affiliation(s)
- Sara Westrøm
- Oncoinvent AS, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital,, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Elisa Napoli
- Oncoinvent AS, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Øyvind S Bruland
- Oncoinvent AS, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
38
|
Westrøm S, Bønsdorff TB, Bruland ØS, Larsen RH. Therapeutic Effect of α-Emitting 224Ra-Labeled Calcium Carbonate Microparticles in Mice with Intraperitoneal Ovarian Cancer. Transl Oncol 2018; 11:259-267. [PMID: 29413758 PMCID: PMC5789152 DOI: 10.1016/j.tranon.2017.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND: Ovarian cancer patients with chemotherapy-resistant residual microscopic disease in the peritoneal cavity have a considerable need for new treatment options. Alpha-emitting radionuclides injected intraperitoneally may be an attractive therapeutic option in this situation as they are highly cytotoxic, while their short range in tissues can spare surrounding radiosensitive organs in the abdomen. Herein we evaluate the therapeutic efficacy of a novel α-emitting compound specifically designed for intracavitary radiation therapy. METHODS: The α-emitter 224Ra was absorbed on calcium carbonate microparticles. Immunodeficient, athymic nude mice with human ovarian cancer cells growing intraperitoneally were treated with different activity levels of 224Ra-microparticles. Tumor growth, survival, and tolerance of the treatment were assessed. Two tumor models based on the cell lines, ES-2 and SKOV3-luc, with different growth patterns were studied. RESULTS: In both models, intraperitoneal treatment with 224Ra-microparticles gave significant antitumor effect with either considerably reduced tumor volume or a survival benefit. An advantageous discovery was that only a few kilobecquerels per mouse were needed to yield therapeutic effects. The treatment was well tolerated up to a dose of 1000 kBq/kg with no signs of acute or subacute toxicity observed. CONCLUSIONS: Intraperitoneal α-therapy with 224Ra-microparticles demonstrated a significant potential for treatment of peritoneal micrometastases in ovarian carcinoma.
Collapse
Affiliation(s)
- Sara Westrøm
- Oncoinvent AS, Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Øyvind S Bruland
- Oncoinvent AS, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|