1
|
Sato Y, Narasaki I, Kunimoto T, Moriyama Y, Hashimoto C. The complete dorsal structure is formed from only the blastocoel roof of Xenopus blastula: insight into the gastrulation movement evolutionarily conserved among chordates. Dev Genes Evol 2023:10.1007/s00427-023-00701-1. [PMID: 36933042 DOI: 10.1007/s00427-023-00701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Gastrulation is a critical event whose molecular mechanisms are thought to be conserved among vertebrates. However, the morphological movement during gastrulation appears to be divergent across species, making it difficult to discuss the evolution of the process. Previously, we proposed a novel amphibian gastrulation model, the "subduction and zippering (S&Z) model". In this model, the organizer and the prospective neuroectoderm are originally localized in the blastula's blastocoel roof, and these embryonic regions move downward to make physical contact of their inner surfaces with each other at the dorsal marginal zone. The developmental stage when contact between the head organizer and the anterior-most neuroectoderm is established is called "anterior contact establishment (ACE)." After ACE, the A-P body axis elongates posteriorly. According to this model, the body axis is derived from limited regions of the dorsal marginal zone at ACE. To investigate this possibility, we conducted stepwise tissue deletions using Xenopus laevis embryos and revealed that the dorsal one-third of the marginal zone had the ability to form the complete dorsal structure by itself. Furthermore, a blastocoel roof explant of the blastula, which should contain the organizer and the prospective neuroectoderm in the S&Z model, autonomously underwent gastrulation and formed the complete dorsal structure. Collectively, these results are consistent with the S&Z gastrulation model and identify the embryonic region sufficient for construction of the complete dorsal structure. Finally, by comparing amphibian gastrulation to gastrulation of protochordates and amniotes, we discuss the gastrulation movement evolutionarily conserved among chordates.
Collapse
Affiliation(s)
- Yuki Sato
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan
| | - Izumi Narasaki
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan.,Department of Biology, Graduate School of Science, Osaka University, Suita, Japan
| | - Takuya Kunimoto
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan.,Department of Biology, Graduate School of Science, Osaka University, Suita, Japan
| | - Yuki Moriyama
- Faculty of Science and Engineering, Chuo University, Hachioji, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan. .,Department of Biology, Graduate School of Science, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Bredov DV, Volodyaev IV, Luchinskaya NN. Spatio-Temporal Dynamics of Embryonic Tissue Deformations during Gastrulation in Xenopus laevis: Morphometric Analysis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Lesko AC, Keller R, Chen P, Sutherland A. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure. Dev Biol 2021; 478:59-75. [PMID: 34029538 DOI: 10.1016/j.ydbio.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.
Collapse
Affiliation(s)
- Alyssa C Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Ping Chen
- Otogenetics Corporation, Atlanta, GA, 30360, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| |
Collapse
|
4
|
Thompson BJ. From genes to shape during metamorphosis: a history. CURRENT OPINION IN INSECT SCIENCE 2021; 43:1-10. [PMID: 32898719 DOI: 10.1016/j.cois.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis (Greek for a state of transcending-form or change-in-shape) refers to a dramatic transformation of an animal's body structure that occurs after development of the embryo or larva in many species. The development of a fly (or butterfly) from a crawling larva (or caterpillar) that forms a pupa (or chrysalis) before eclosing as a flying adult is a classic example of metamorphosis that captures the imagination and has been immortalized in children's books. Powerful genetic experiments in the fruit fly Drosophila melanogaster have revealed how genes can instruct the behaviour of individual cells to control patterns of tissue growth, mechanical force, cell-cell adhesion and cell-matrix adhesion drive morphogenetic change in epithelial tissues. Together, the distribution of mass, force and resistance determines cell shape changes, cell-cell rearrangements, and/or the orientation of cell divisions to generate the final form of the tissue. In organising tissue shape, genes harness the power of self-organisation to determine the collective behaviour of molecules and cells, which can often be reproduced in computer simulations of cell polarity and/or tissue mechanics. This review highlights fundamental discoveries in epithelial morphogenesis made by pioneers who were fascinated by metamorphosis, including D'Arcy Thompson, Conrad Waddington, Dianne Fristrom and Antonio Garcia-Bellido.
Collapse
Affiliation(s)
- Barry J Thompson
- John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Canberra, Australian Capital Territory (ACT), 2601, Australia.
| |
Collapse
|
5
|
|
6
|
Abstract
This review is a comprehensive analysis of the cell biology and biomechanics of Convergent Extension in Xenopus.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | - Ann Sutherland
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
8
|
|
9
|
Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch. Nat Commun 2019; 10:1703. [PMID: 30979871 PMCID: PMC6461694 DOI: 10.1038/s41467-019-09540-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/15/2019] [Indexed: 01/10/2023] Open
Abstract
Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium.
Collapse
|
10
|
Cherdantsev VG, Korvin-Pavlovskaya EG. Fluid model of epithelial morphogenesis: Oscillations and structuring. Biosystems 2018; 173:83-99. [DOI: 10.1016/j.biosystems.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
|
11
|
Evstifeeva AY, Luchinskaia NN, Beloussov LV. Stress-generating tissue deformations in Xenopus embryos: Long-range gradients and local cell displacements. Biosystems 2018; 173:52-64. [PMID: 30273637 DOI: 10.1016/j.biosystems.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Although the role of endogenous mechanical stresses in regulating morphogenetic movements and cell differentiation is now well established, many aspects of mechanical stress generation and transmission in developing embryos remain unclear and require quantitative studies. RESULTS By measuring stress-bearing linear deformations (caused by differences in cell movement rates) in the outer cell layer of blastula - early tail-bud Xenopus embryos, we revealed a set of long-term tension-generating gradients of cell movement rates, modulated by short-term cell-cell displacements much increasing the rates of local deformations. Experimental relaxation of tensions distorted the gradients but preserved and even enhanced local cell-cell displacements. During development, an incoherent mode of cell behavior, characterized by extensive cell-cell displacements and poorly correlated cell trajectories, was exchanged for a more coherent regime with the opposite characteristics. In particular, cell shifts became more synchronous and acquired a periodicity of several dozen minutes. CONCLUSIONS Morphogenetic movements in Xenopus embryos are mediated by mechanically stressed dynamic structures of two different levels: extended gradients and short-term cell-cell displacements. As development proceeds, the latter component decreases and cell trajectories become more correlated. In particular, they acquire common periodicities, making morphogenesis more coherent.
Collapse
Affiliation(s)
- A Yu Evstifeeva
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia.
| | - N N Luchinskaia
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia
| | - L V Beloussov
- Department of Embryology, Faculty of Biology Moscow State University, Moscow, 119899, Russia
| |
Collapse
|
12
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Wen JWH, Winklbauer R. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula. eLife 2017; 6:e27190. [PMID: 28826499 PMCID: PMC5589415 DOI: 10.7554/elife.27190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022] Open
Abstract
During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration.
Collapse
Affiliation(s)
- Jason WH Wen
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Rudolf Winklbauer
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
14
|
Wen J, Tao H, Lau K, Liu H, Simmons CA, Sun Y, Hopyan S. Cell and Tissue Scale Forces Coregulate Fgfr2-Dependent Tetrads and Rosettes in the Mouse Embryo. Biophys J 2017; 112:2209-2218. [PMID: 28538157 DOI: 10.1016/j.bpj.2017.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 01/28/2023] Open
Abstract
What motivates animal cells to intercalate is a longstanding question that is fundamental to morphogenesis. A basic mode of cell rearrangement involves dynamic multicellular structures called tetrads and rosettes. The contribution of cell-intrinsic and tissue-scale forces to the formation and resolution of these structures remains unclear, especially in vertebrates. Here, we show that Fgfr2 regulates both the formation and resolution of tetrads and rosettes in the mouse embryo, possibly in part by spatially restricting atypical protein kinase C, a negative regulator of non-muscle myosin IIB. We employ micropipette aspiration to show that anisotropic tension is sufficient to rescue the resolution, but not the formation, of tetrads and rosettes in Fgfr2 mutant limb-bud ectoderm. The findings underscore the importance of cell contractility and tissue stress to multicellular vertex formation and resolution, respectively.
Collapse
MESH Headings
- Animals
- Ectoderm/embryology
- Ectoderm/metabolism
- Elastic Modulus
- Finite Element Analysis
- Fluorescent Antibody Technique
- Forelimb/embryology
- Forelimb/metabolism
- Mice, Transgenic
- Microscopy, Atomic Force
- Microscopy, Confocal
- Mutation
- Nonmuscle Myosin Type IIB/metabolism
- Pressure
- Protein Kinase C/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/chemistry
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Stress, Physiological
- Tomography, Optical
Collapse
Affiliation(s)
- Jun Wen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development. Dev Cell 2017; 37:213-25. [PMID: 27165554 PMCID: PMC4865533 DOI: 10.1016/j.devcel.2016.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023]
Abstract
Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events.
Collapse
|
16
|
Wray GA, Raff RA. RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE. Evolution 2017; 45:1741-1750. [DOI: 10.1111/j.1558-5646.1991.tb02684.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1990] [Accepted: 04/08/1991] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory A. Wray
- Department of Biology; Indiana University; Bloomington IN 47405 USA
| | - Rudolf A. Raff
- Department of Biology; Indiana University; Bloomington IN 47405 USA
| |
Collapse
|
17
|
Eroshkin FM, Zaraisky AG. Mechano-sensitive regulation of gene expression during the embryonic development. Genesis 2017; 55. [PMID: 28236362 DOI: 10.1002/dvg.23026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Cell movements during embryogenesis produce mechanical tensions that shape the embryo and can also regulate gene expression, thereby affecting cell differentiation. Increasing evidence indicates that mechanosensitive regulation of gene expression plays important roles during embryogenesis by coupling the processes of morphogenesis and differentiation. However, the molecular mechanisms of this phenomenon remain poorly understood. This review focuses on the molecular mechanisms that "translate" mechanical stimuli into gene expression.
Collapse
Affiliation(s)
- Fedor M Eroshkin
- Laboratory of Molecular Bases of Embryogenesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey G Zaraisky
- Laboratory of Molecular Bases of Embryogenesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Morita H, Grigolon S, Bock M, Krens SFG, Salbreux G, Heisenberg CP. The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation. Dev Cell 2017; 40:354-366.e4. [PMID: 28216382 PMCID: PMC5364273 DOI: 10.1016/j.devcel.2017.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/18/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022]
Abstract
Embryo morphogenesis relies on highly coordinated movements of different tissues. However, remarkably little is known about how tissues coordinate their movements to shape the embryo. In zebrafish embryogenesis, coordinated tissue movements first become apparent during "doming," when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and mesenchymal deep cell intercalations. Here, we find that active surface cell expansion represents the key process coordinating tissue movements during doming. By using a combination of theory and experiments, we show that epithelial surface cells not only trigger blastoderm expansion by reducing tissue surface tension, but also drive blastoderm thinning by inducing tissue contraction through radial deep cell intercalations. Thus, coordinated tissue expansion and thinning during doming relies on surface cells simultaneously controlling tissue surface tension and radial tissue contraction.
Collapse
Affiliation(s)
- Hitoshi Morita
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin Bock
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - S F Gabriel Krens
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
| | | |
Collapse
|
19
|
Cooperation Between T-Box Factors Regulates the Continuous Segregation of Germ Layers During Vertebrate Embryogenesis. Curr Top Dev Biol 2017; 122:117-159. [DOI: 10.1016/bs.ctdb.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Panousopoulou E, Hobbs C, Mason I, Green JBA, Formstone CJ. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci 2016; 129:1915-27. [PMID: 26989131 PMCID: PMC4893800 DOI: 10.1242/jcs.180703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Epiboly is a morphogenetic process that is employed in the surface ectoderm of anamniotes during gastrulation to cover the entire embryo. We propose here that mammals also utilise this process to expand the epidermis and enclose the body cavity and spinal cord with a protective surface covering. Our data supports a model whereby epidermal spreading is driven by the primary establishment of the epidermal basal progenitor monolayer through radial cell intercalation of a multi-layered epithelium towards the basal lamina. By using a suspension organotypic culture strategy, we find that this process is fibronectin-dependent and autonomous to the skin. The radial cell rearrangements that drive epidermal spreading also require ROCK activity but are driven by cell protrusions and not myosin II contractility. Epidermal progenitor monolayer formation and epidermal spreading are delayed in Crash mice, which possess a dominant mutation in Celsr1, an orthologue of the core planar cell polarity (PCP) Drosophila protein Flamingo (also known as Stan). We observe a failure of ventral enclosure in Crash mutants suggesting that defective epidermal spreading might underlie some ventral wall birth defects. Summary: The nascent mammalian epidermis spreads to enclose the embryo trunk through a process akin to epiboly, which has important implications for human birth defects of the abdominal wall.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Carl Hobbs
- Wolfson-CARD, Kings College London, London SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| |
Collapse
|
21
|
Gordon R. Google Embryo for Building Quantitative Understanding of an Embryo As It Builds Itself. II. Progress Toward an Embryo Surface Microscope. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot_a_00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Eagleson G, Pfister K, Knowlton AL, Skoglund P, Keller R, Stukenberg PT. Kif2a depletion generates chromosome segregation and pole coalescence defects in animal caps and inhibits gastrulation of the Xenopus embryo. Mol Biol Cell 2015; 26:924-37. [PMID: 25568341 PMCID: PMC4342028 DOI: 10.1091/mbc.e13-12-0721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Characterization of Kif2a in Xenopus embryos identifies new roles for the Kif2a microtubule depolymerase in coordinating cytokinesis and centrosome coalescence. In addition, defects in mitosis can inhibit large-scale developmental movements in vertebrate tissues. Kif2a is a member of the kinesin-13 microtubule depolymerases, which tightly regulate microtubule dynamics for many cellular processes. We characterized Kif2a depletion in Xenopus animal caps and embryos. Kif2a depletion generates defects in blastopore closure. These defects are rescued by removing the animal cap, suggesting that Kif2a-depleted animal caps are not compliant enough to allow gastrulation movements. Gastrulation defects are not rescued by a Kif2a mutated in an Aurora kinase phosphorylation site, suggesting that the phenotypes are caused by problems in mitosis. During animal cap mitoses, Kif2a localizes to the spindle poles and centromeres. Depletion of Kif2a generated multipolar spindles in stage 12 embryos. Kif2a-depleted animal caps have anaphase lagging chromosomes in stage 9 and 10 embryos and subsequent cytokinesis failure. Later divisions have greater than two centrosomes, generating extra spindle poles. Kif2a-depleted embryos are also defective at coalescing extra spindle poles into a bipolar spindle. The gastrulation and mitotic phenotypes can be rescued by either human Kif2a or Kif2b, which suggests that the two homologues redundantly regulate mitosis in mammals. These studies demonstrate that defects in mitosis can inhibit large-scale developmental movements in vertebrate tissues.
Collapse
Affiliation(s)
- Gerald Eagleson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Katherine Pfister
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Anne L Knowlton
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Paul Skoglund
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
23
|
Hamilton PW, Henry JJ. Prolonged in vivo imaging of Xenopus laevis. Dev Dyn 2014; 243:1011-9. [PMID: 24723337 PMCID: PMC6709579 DOI: 10.1002/dvdy.24136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND While live imaging of embryonic development over long periods of time is a well established method for embryos of the frog Xenopus laevis, once development has progressed to the swimming stages, continuous live imaging becomes more challenging because the tadpoles must be immobilized. Current imaging techniques for these advanced stages generally require bringing the tadpoles in and out of anesthesia for short imaging sessions at selected time points, severely limiting the resolution of the data. RESULTS Here we demonstrate that creating a constant flow of diluted tricaine methanesulfonate (MS-222) over a tadpole greatly improves their survival under anesthesia. Based on this result, we describe a new method for imaging stage 48 to 65 X. laevis, by circulating the anesthetic using a peristaltic pump. This supports the animal during continuous live imaging sessions for at least 48 hr. The addition of a stable optical window allows for high quality imaging through the anesthetic solution. CONCLUSIONS This automated imaging system provides for the first time a method for continuous observations of developmental and regenerative processes in advanced stages of Xenopus over 2 days. Developmental Dynamics 243:1011-1019, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul W. Hamilton
- Department of Cell & Developmental Biology, University of Illinois, Urbana, Illinois
| | - Jonathan J. Henry
- Department of Cell & Developmental Biology, University of Illinois, Urbana, Illinois
| |
Collapse
|
24
|
Fritz AE, Ikmi A, Seidel C, Paulson A, Gibson MC. Mechanisms of tentacle morphogenesis in the sea anemone Nematostella vectensis. Development 2013; 140:2212-23. [DOI: 10.1242/dev.088260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Evolution of the capacity to form secondary outgrowths from the principal embryonic axes was a crucial innovation that potentiated the diversification of animal body plans. Precisely how such outgrowths develop in early-branching metazoan species remains poorly understood. Here we demonstrate that three fundamental processes contribute to embryonic tentacle development in the cnidarian Nematostella vectensis. First, a pseudostratified ectodermal placode forms at the oral pole of developing larvae and is transcriptionally patterned into four tentacle buds. Subsequently, Notch signaling-dependent changes in apicobasal epithelial thickness drive elongation of these primordia. In parallel, oriented cell rearrangements revealed by clonal analysis correlate with shaping of the elongating tentacles. Taken together, our results define the mechanism of embryonic appendage development in an early-branching metazoan, and thereby provide a novel foundation for understanding the diversification of body plans during animal evolution.
Collapse
Affiliation(s)
- Ashleigh E. Fritz
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Aissam Ikmi
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Christopher Seidel
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Matthew C. Gibson
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
25
|
Julier A, Goll C, Korte B, Knöchel W, Wacker SA. Pou-V factor Oct25 regulates early morphogenesis inXenopus laevis. Dev Growth Differ 2012; 54:702-16. [DOI: 10.1111/j.1440-169x.2012.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/16/2012] [Accepted: 07/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra Julier
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Claudio Goll
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Brigitte Korte
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Walter Knöchel
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | | |
Collapse
|
26
|
Elinson RP, del Pino EM. Developmental diversity of amphibians. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:345-69. [PMID: 22662314 PMCID: PMC3364608 DOI: 10.1002/wdev.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother's back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| | | |
Collapse
|
27
|
Abstract
Xenopus gastrulation consists of the orderly deformation of a single, multilayered cell sheet that resembles a multilayered epithelium, and flexible cell-cell adhesion has to provide tissue cohesion while allowing for cell rearrangements that drive gastrulation. A few classic cadherins are expressed in the Xenopus early embryo. The prominent C-cadherin is essential for the cohesion of the animal part of the gastrula including ectoderm and chordamesoderm, and it contributes to the adhesion of endoderm and anterior mesoderm in the vegetal moiety. The cadherin/catenin complex is expressed in a graded pattern which is stable during early development. Regional differences in cell adhesion conform to the graded cadherin/catenin expression pattern. However, although the cadherin/catenin pattern seems to be actively maintained, and cadherin function is modulated to reinforce differential adhesiveness, it is not clear how regional differences in tissue cohesion affect gastrulation. Manipulating cadherin expression or function does not induce cell sorting or boundary formation in the embryo. Moreover, known boundary formation mechanisms in the gastrula are based on active cell repulsion. Cell rearrangement is also compatible with variable tissue cohesion. Thus, identifying roles for differential adhesion in the Xenopus gastrula remains a challenge.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada,
| |
Collapse
|
28
|
Winklbauer R, Damm EW. Internalizing the vegetal cell mass before and during amphibian gastrulation: vegetal rotation and related movements. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:301-6. [PMID: 23801444 DOI: 10.1002/wdev.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The movement of the prospective mesoderm and endoderm to the interior of the amphibian embryo starts in the vegetal cell mass well before the onset of overt gastrulation. By an animally directed movement of cells, the vegetal mass constricts its outer part and expands its inner region including the blastocoel floor, in a process of pregastrulation emboly. Further internalization of the vegetal region has been studied in the Xenopus embryo. At the onset of gastrulation, vegetal rotation sets in at the periphery of the vegetal cell mass, first dorsally and then spreading laterally and ventrally. It consists of an intense inward surging of cells due to active cell rearrangements that can be observed in explants of the vegetal cell mass. In its course, the blastocoel floor expands further and becomes apposed to the blastocoel roof. The boundary between apposed floor and roof forms Brachet's cleft. Another effect of vegetal rotation is the downward and inward movement of the mesodermal marginal zone, constituting the first phase of involution. Together, the upward and outward movement of the peripheral vegetal mass and the downward and inward translocation of the marginal zone lead to an apparent rotation of the whole peripheral region of the gastrula. Vegetal rotation continues to contribute to endoderm internalization to near the end of gastrulation.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
29
|
Efremov Y, Pukhlyakova E, Bagrov D, Shaitan K. Atomic force microscopy of living and fixed Xenopus laevis embryos. Micron 2011; 42:840-52. [DOI: 10.1016/j.micron.2011.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022]
|
30
|
Abstract
Epithelia are planar tissues that undergo major morphogenetic movements during development. These movements must work in the context of the mechanical properties of epithelia. Surprisingly little is known about these mechanical properties at the time and length scales of morphogenetic processes. We show that at a time scale of hours, Xenopus gastrula ectodermal epithelium mimics an elastic solid when stretched isometrically; strikingly, its area increases twofold in the embryo by such pseudoelastic expansion. At the same time, the basal side of the epithelium behaves like a liquid and exhibits tissue surface tension that minimizes its exposed area. We measure epithelial stiffness (~1 mN/m), surface tension (~0.6 mJ/m(2)), and epithelium-mesenchyme interfacial tensions and relate these to the folding of isolated epithelia and to the extent of epithelial spreading on various tissues. We propose that pseudoelasticity and tissue surface tension are main determinants of epithelial behavior at the scale of morphogenetic processes.
Collapse
|
31
|
Abstract
Cortical forces drive a variety of cell shape changes and cell movements during tissue morphogenesis. While the molecular components underlying these forces have been largely identified, how they assemble and spatially and temporally organize at cell surfaces to promote cell shape changes in developing tissues are open questions. We present here different key aspects of cortical forces: their physical nature, some rules governing their emergence, and how their deployment at cell surfaces drives important morphogenetic movements in epithelia. We review a wide range of literature combining genetic/molecular, biophysical and modeling approaches, which explore essential features of cortical force generation and transmission in tissues.
Collapse
Affiliation(s)
- Matteo Rauzi
- IBDML, UMR6216 CNRS-Université de Méditerraneé, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
32
|
Wallingford JB. Low-magnification live imaging of Xenopus embryos for cell and developmental biology. Cold Spring Harb Protoc 2010; 2010:pdb.prot5425. [PMID: 20439412 DOI: 10.1101/pdb.prot5425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biological processes occur dynamically, so dynamic analyses are essential to further our understanding of them. Embryos of the frog Xenopus laevis are an ideal model system for time-lapse imaging of biological processes. Xenopus embryos are especially amenable to in vivo imaging of whole embryos, individual cells, and subcellular processes. Low-magnification imaging of intact Xenopus embryos can be combined effectively with manipulations of gene function and has provided key insights into the control of morphogenetic movements during gastrulation and neural tube closure. The utility of this approach is not limited to tissue movements, but rather extends to studies of cytokinesis, wound healing, and other dynamic events. This protocol describes methods for low-magnification time-lapse imaging of intact Xenopus embryos.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute and Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
33
|
Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol 2009; 327:386-98. [PMID: 19138684 PMCID: PMC2829434 DOI: 10.1016/j.ydbio.2008.12.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/01/2008] [Accepted: 12/19/2008] [Indexed: 01/16/2023]
Abstract
This study demonstrates that proper spatiotemporal expression and the physical assembly state of fibronectin (FN) matrix play key roles in the regulation of morphogenetic cell movements in vivo. We examine the progressive assembly and 3D fibrillar organization of FN and its role in regulating cell and tissue movements in Xenopus embryos. Expression of the 70 kD N-terminal fragment of FN blocks FN fibril assembly at gastrulation but not initial FN binding to integrins at the cell surface. We find that fibrillar FN is necessary to maintain cell polarity through oriented cell division and to promote epiboly, possibly through maintenance of tissue-surface tension. In contrast, FN fibrils are dispensable for convergence and extension movements required for axis elongation. Closure of the migratory mesendodermal mantle was accelerated in the absence of a fibrillar matrix. Thus, the macromolecular assembly of FN matrices may constitute a general regulatory mechanism for coordination of distinct morphogenetic movements.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| | - Bette Dzamba
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| | - Gregory F. Weber
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Bioscience Tower 3-5059, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Douglas W. DeSimone
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
34
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
35
|
Mietchen D, Manz B, Volke F, Storey K. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLoS One 2008; 3:e3826. [PMID: 19057644 PMCID: PMC2586655 DOI: 10.1371/journal.pone.0003826] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/04/2008] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. METHODOLOGY Given that non-destructive techniques like (1)H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. RESULTS In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. CONCLUSIONS These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.
Collapse
Affiliation(s)
- Daniel Mietchen
- Magnetic Resonance Group, Fraunhofer Institute for Biomedical Engineering, IBMT, St Ingbert, Germany.
| | | | | | | |
Collapse
|
36
|
Experimental embryological methods for analysis of neural induction in the amphibian. Methods Mol Biol 2008. [PMID: 19030815 DOI: 10.1007/978-1-60327-483-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Keller R, Shook D. Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore. Philos Trans R Soc Lond B Biol Sci 2008; 363:1317-32. [PMID: 18192174 DOI: 10.1098/rstb.2007.2250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
38
|
Keller R, Shook D, Skoglund P. The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 2008; 5:015007. [PMID: 18403829 DOI: 10.1088/1478-3975/5/1/015007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
39
|
Shook DR, Keller R. Morphogenic machines evolve more rapidly than the signals that pattern them: lessons from amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:111-35. [PMID: 18041048 DOI: 10.1002/jez.b.21204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The induction of mesoderm and the patterning of its dorsal-ventral and anterior-posterior axes seems to be relatively conserved throughout the chordates, as do the morphogenic movements that produce a phylotypic stage embryo. What is not conserved is the initial embryonic architecture of the fertilized egg, and the specific cell behaviors used to drive mesoderm morphogenesis. How then do conserved patterning pathways adapt to diverse architectures and where do they diverge to direct the different cell behaviors used to shape the phylotypic body plan? Amphibians in particular, probably because of their broad range of reproductive strategies, show diverse embryonic architectures across their class and use diverse cell behaviors during their early morphogenesis, making them an interesting comparative group. We examine three examples from our work on amphibians that show variations in the use of cell behaviors to drive the morphogenesis of the same tissues. We also consider possible points where the conserved patterning pathways might diverge to produce different cell behaviors.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
40
|
del Pino EM, Venegas-Ferrín M, Romero-Carvajal A, Montenegro-Larrea P, Sáenz-Ponce N, Moya IM, Alarcón I, Sudou N, Yamamoto S, Taira M. A comparative analysis of frog early development. Proc Natl Acad Sci U S A 2007; 104:11882-8. [PMID: 17606898 PMCID: PMC1924569 DOI: 10.1073/pnas.0705092104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Indexed: 11/18/2022] Open
Abstract
The current understanding of Xenopus laevis development provides a comparative background for the analysis of frog developmental modes. Our analysis of development in various frogs reveals that the mode of gastrulation is associated with developmental rate and is unrelated to egg size. In the gastrula of the rapidly developing embryos of the foam-nesting frogs Engystomops coloradorum and Engystomops randi, archenteron and notochord elongation overlapped with involution at the blastopore lip, as in X. laevis embryos. In embryos of dendrobatid frogs and in the frog without tadpoles Eleutherodactylus coqui, which develop somewhat more slowly than X. laevis, involution and archenteron elongation concomitantly occurred during gastrulation; whereas elongation of the notochord and, therefore, dorsal convergence and extension, occurred in the postgastrula. In contrast, in the slow developing embryos of the marsupial frog Gastrotheca riobambae, only involution occurred during gastrulation. The processes of archenteron and notochord elongation and convergence and extension were postgastrulation events. We produced an Ab against the homeodomain protein Lim1 from X. laevis as a tool for the comparative analysis of development. By the expression of Lim1, we were able to identify the dorsal side of the G. riobambae early gastrula, which otherwise was difficult to detect. Moreover, the Lim1 expression in the dorsal lip of the blastopore and notochord differed among the studied frogs, indicating variation in the timing of developmental events. The variation encountered gives evidence of the modular character of frog gastrulation.
Collapse
Affiliation(s)
- Eugenia M del Pino
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre 1076 y Roca, Quito, Ecuador.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Papan C, Boulat B, Velan SS, Fraser SE, Jacobs RE. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging. Dev Biol 2007; 305:161-71. [PMID: 17368611 DOI: 10.1016/j.ydbio.2007.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/16/2007] [Accepted: 02/05/2007] [Indexed: 11/23/2022]
Abstract
The dorsal marginal zone (DMZ) of the amphibian embryo is a key embryonic region involved in body axis organization and neural induction. Using time-lapse microscopic magnetic resonance imaging (MRI), we follow the pregastrula movements that lead to the formation of the DMZ of the stage 10 Xenopus embryo. 2D and 3D MRI time-lapse series reveal that pregastrular movements change the tissue architecture of the DMZ at earlier stages and in a different fashion than previously appreciated. Beginning at stage 9, epiboly of the animal cap moves tissue into the dorsal but not into the ventral marginal zone, resulting in an asymmetry between the dorsal and the ventral sides. Time-lapse imaging of labeled blastomeres shows that the animal cap tissue moves into the superficial DMZ overlying the deeper mesendoderm of the DMZ. The shearing of superficial tissue over the deeper mesendoderm creates the radial/vertical arrangement of ectoderm outside of mesendoderm within the DMZ, which is independent of involution and prior to the formation of the dorsal blastoporal lip. This tilting of the DMZ is distinct from, but occurs synchronously with, the vegetal rotation of the vegetal cell mass [R., Winklbauer, M., Schürfeld (1999). "Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus." Development. 126, 3703-3713.]. We present a revised model of gastrulation movements in Xenopus laevis.
Collapse
Affiliation(s)
- Cyrus Papan
- Beckman Institute, California Institute of Technology, 1200 California Blvd., Pasadena, CA 90124, USA.
| | | | | | | | | |
Collapse
|
42
|
Iles PJW, Brodland GW, Clausi DA, Puddister SM. Estimation of cellular fabric in embryonic epithelia. Comput Methods Biomech Biomed Engin 2007; 10:75-84. [DOI: 10.1080/10255840601066848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Moya IM, Alarcón I, del Pino EM. Gastrulation of Gastrotheca riobambae in comparison with other frogs. Dev Biol 2006; 304:467-78. [PMID: 17306246 DOI: 10.1016/j.ydbio.2006.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 12/07/2006] [Accepted: 12/15/2006] [Indexed: 11/28/2022]
Abstract
Blastopore formation, the embryonic disk, archenteron and notochord elongation, and Brachyury expression in the marsupial frog Gastrotheca riobambae was compared with embryos of Xenopus laevis and of the dendrobatids Colostethus machalilla and Epipedobates anthonyi. In contrast with X. laevis embryos, the blastopore closes before elongation of the archenteron and notochord in the embryos of G. riobambae and of the dendrobatid frogs. Moreover, the circumblastoporal collar (CBC) thickens due to the accumulation of involuted cells. An embryonic disk, however, is formed only in the G. riobambae gastrula. We differentiate three gastrulation patterns according to the speed of development: In X. laevis, elongation of the archenteron and notochord begin in the early to mid gastrula, whereas in the dendrobatids C. machalilla and E. anthonyi the archenteron elongates at mid gastrula and the notochord elongates after gastrulation. In G. riobambae, only involution takes place during gastrulation. Archenteron and notochord elongation occur in the post gastrula. In the non-aquatic reproducing frogs, the margin of the archenteron expands anisotropically, resulting in an apparent displacement of the CBC from a medial to a posterior location, resembling the displacement of Hensen's node in the chick and mouse. The differences detected indicate that amphibian gastrulation is modular.
Collapse
Affiliation(s)
- Iván M Moya
- Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Biológicas, Apartado 17-01-2184, Avenida 12 de Octubre y Robles, Quito, Ecuador
| | | | | |
Collapse
|
44
|
Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KWY, Papalopulu N. Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis. Mech Dev 2006; 123:702-18. [PMID: 16916602 DOI: 10.1016/j.mod.2006.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 04/28/2006] [Accepted: 04/28/2006] [Indexed: 11/27/2022]
Abstract
The Xenopus ectoderm consists of two populations of cells, superficial polarised epithelial cells and deep, non-epithelial cells. These two cell types differ in their developmental fate. In the neural ectoderm, primary neurons are derived only from the deep cells. In the epidermal ectoderm, superficial cells express high levels of differentiation markers, while most of the deep cells do not differentiate until later when they produce the stratified adult epidermis. However, few molecular differences are known between the deep and superficial cells. Here, we have undertaken a systematic approach to identify genes that show layer-restricted expression by microarray analysis of deep and superficial cells at the gastrula stage, followed by wholemount in situ hybridisation. We have identified 32 differentially expressed genes, of which 26 show higher expression in the superficial layer and 6 in the deep layer and describe their expression at the gastrula and neurula stage. One of the identified genes is the transcription factor Grhl3, which we found to be expressed in the superficial layer of the gastrula ectoderm and the neurula epidermis. By using markers identified in this work, we show that Grlh3 promotes superficial gene expression in the deep layer of the epidermis. Concomitantly, deep layer specific genes are switched off, showing that Grlh3 can promote deep cells to take on a superficial cell identity in the embryonic epidermis.
Collapse
Affiliation(s)
- Andrew D Chalmers
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Veldhuis JH, Brodland GW, Wiebe CJ, Bootsma GJ. Multiview Robotic Microscope Reveals the In-plane Kinematics of Amphibian Neurulation. Ann Biomed Eng 2005; 33:821-8. [PMID: 16078621 DOI: 10.1007/s10439-005-3309-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new robotic microscope system, called the Frogatron 3000, was developed to collect time-lapse images from arbitrary viewing angles over the surface of live embryos. Embryos are mounted at the center of a horizontal, fluid-filled, cylindrical glass chamber around which a camera with special optics traverses. To hold them at the center of the chamber and revolve them about a vertical axis, the embryos are placed on the end of a small vertical glass tube that is rotated under computer control. To demonstrate operation of the system, it was used to capture time-lapse images of developing axolotl (amphibian) embryos from 63 viewing angles during the process of neurulation and the in-plane kinematics of the epithelia visible at the center of each view was calculated. The motions of points on the surface of the embryo were determined by digital tracking of their natural surface texture, and a least-squares algorithm was developed to calculate the deformation-rate tensor from the motions of these surface points. Principal strain rates and directions were extracted from this tensor using decomposition and eigenvector techniques. The highest observed principal true strain rate was 28 +/- 5% per hour, along the midline of the neural plate during developmental stage 14, while the greatest contractile true strain rate was--35 +/- 5% per hour, normal to the embryo midline during stage 15.
Collapse
Affiliation(s)
- Jim H Veldhuis
- Department of Civil Engineering, University of Waterloo, Waterloo, Ontario
| | | | | | | |
Collapse
|
46
|
Longo D, Peirce SM, Skalak TC, Davidson L, Marsden M, Dzamba B, DeSimone DW. Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Dev Biol 2004; 271:210-22. [PMID: 15196962 DOI: 10.1016/j.ydbio.2004.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Revised: 02/18/2004] [Accepted: 03/09/2004] [Indexed: 11/20/2022]
Abstract
In the blastocoel roof (BCR) of the Xenopus laevis embryo, epibolic movements are driven by the radial intercalation of deep cell layers and the coordinate spreading of the overlying superficial cell layer. Thinning of the lateral margins of the BCR by radial intercalation requires fibronectin (FN), which is produced and assembled into fibrils by the inner deep cell layer of the BCR. A cellular automata (CA) computer model was developed to analyze the spatial and temporal movements of BCR cells during epiboly. Simulation parameters were defined based on published data and independent results detailing initial tissue geometry, cell numbers, cell intercalation rates, and migration rates. Hypotheses regarding differential cell adhesion and FN assembly were also considered in setting system parameters. A 2-dimensional model simulation was developed that predicts BCR thinning time of 4.8 h, which closely approximates the time required for the completion of gastrulation in vivo. Additionally, the model predicts a temporal increase in FN matrix assembly that parallels fibrillogenesis in the embryo. The model is capable of independent predictions of cell rearrangements during epiboly, and here was used to predict successfully the lateral dispersion of a patch of cells implanted in the BCR, and increased assembly of FN matrix following inhibition of radial intercalation by N-cadherin over-expression.
Collapse
Affiliation(s)
- Diane Longo
- Department of Biomedical Engineering, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2004; 120:1351-83. [PMID: 14623443 DOI: 10.1016/j.mod.2003.06.005] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transitions (EMTs) are an important mechanism for reorganizing germ layers and tissues during embryonic development. They have both a morphogenic function in shaping the embryo and a patterning function in bringing about new juxtapositions of tissues, which allow further inductive patterning events to occur [Genesis 28 (2000) 23]. Whereas the mechanics of EMT in cultured cells is relatively well understood [reviewed in Biochem. Pharmacol. 60 (2000) 1091; Cell 105 (2001) 425; Bioessays 23 (2001) 912], surprisingly little is known about EMTs during embryonic development [reviewed in Acta Anat. 154 (1995) 8], and nowhere is the entire process well characterized within a single species. Embryonic (developmental) EMTs have properties that are not seen or are not obvious in culture systems or cancer cells. Developmental EMTs are part of a specific differentiative path and occur at a particular time and place. In some types of embryos, a relatively intact epithelium must be maintained while some of its cells de-epithelialize during EMT. In most cases de-epithelialization (loss of apical junctions) must occur in an orderly, patterned fashion in order that the proper morphogenesis results. Interestingly, we find that de-epithelialization is not always necessarily tightly coupled to the expression of mesenchymal phenotypes.Developmental EMTs are multi-step processes, though the interdependence and obligate order of the steps is not clear. The particulars of the process vary between tissues, species, and specific embryonic context. We will focus on 'primary' developmental EMTs, which are those occurring in the initial epiblast or embryonic epithelium. 'Secondary' developmental EMT events are those occurring in epithelial tissues that have reassembled within the embryo from mesenchymal cells. We will review and compare a number of primary EMT events from across the metazoans, and point out some of the many open questions that remain in this field.
Collapse
Affiliation(s)
- David Shook
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA.
| | | |
Collapse
|
48
|
Shook DR, Majer C, Keller R. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Dev Biol 2004; 270:163-85. [PMID: 15136148 DOI: 10.1016/j.ydbio.2004.02.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 11/26/2022]
Abstract
The mesoderm, comprising the tissues that come to lie entirely in the deep layer, originates in both the superficial epithelial and the deep mesenchymal layers of the early amphibian embryo. Here, we characterize the mechanisms by which the superficial component of the presumptive mesoderm ingresses into the underlying deep mesenchymal layer in Xenopus tropicalis and extend our previous findings for Xenopus laevis. Fate mapping the superficial epithelium of pregastrula stage embryos demonstrates ingression of surface cells into both paraxial and axial mesoderm (including hypochord), in similar patterns and amounts in both species. Superficial presumptive notochord lies medially, flanked by presumptive hypochord and both overlie the deep region of the presumptive notochord. These tissues are flanked laterally by superficial presumptive somitic mesoderm, the anterior tip of which also appears to overlay the presumptive deep notochord. Time-lapse recordings show that presumptive somitic and notochordal cells move out of the roof of the gastrocoel and into the deep region during neurulation, whereas hypochordal cells ingress after neurulation. Scanning electron microscopy at the stage and position where ingression occurs suggests that superficial presumptive somitic cells in X. laevis ingress into the deep region as bottle cells whereas those in X. tropicalis ingress by "relamination" (e.g., [Dev. Biol. 174 (1996) 92]). In both species, the superficially derived presumptive somitic cells come to lie in the medial region of the presumptive somites during neurulation. By the early tailbud stages, these cells lie at the horizontal myoseptum of the somites. The morphogenic pathway of these cells strongly resembles that of the primary slow muscle pioneer cells of the zebrafish. We present a revised fate map of Xenopus, and we discuss the conservation of superficial mesoderm within amphibians and across the chordates and its implications for the role of this tissue in patterning the mesoderm.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
49
|
Chalmers AD, Strauss B, Papalopulu N. Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo. Development 2003; 130:2657-68. [PMID: 12736210 DOI: 10.1242/dev.00490] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A key feature of early vertebrate development is the formation of superficial, epithelial cells that overlie non-epithelial deep cells. In Xenopus, deep and superficial cells show a range of differences, including a different competence for primary neurogenesis. We show that the two cell populations are generated during the blastula stages by perpendicularly oriented divisions. These take place during several cell divisions, in a variable pattern, but at a percentage that varies little between embryos and from one division to the next. The orientation of division correlates with cell shape suggesting that simple geometric rules may control the orientation of division in this system. We show that dividing cells are molecularly polarised such that aPKC is localised to the external, apical, membrane. Membrane localised aPKC can be seen as early as the one-cell stage and during the blastula divisions, it is preferentially inherited by superficial cells. Finally, we show that when 64-cell stage isolated blastomeres divide perpendicularly and the daughters are cultured separately, only the progeny of the cells that inherit the apical membrane turn on the bHLH gene, ESR6e. We conclude that oriented cell divisions generate the superficial and deep cells and establish cell fate diversity between them.
Collapse
Affiliation(s)
- Andrew D Chalmers
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | |
Collapse
|
50
|
Barreto G, Reintsch W, Kaufmann C, Dreyer C. The function of Xenopus germ cell nuclear factor (xGCNF) in morphogenetic movements during neurulation. Dev Biol 2003; 257:329-42. [PMID: 12729562 DOI: 10.1016/s0012-1606(03)00109-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor first described in the mouse testis and subsequently identified as an essential transcription factor in vertebrate embryogenesis. Here, we analyze the phenotype of Xenopus embryos after depletion of embryonic GCNF (xEmGCNF) protein using a specific morpholino antisense oligonucleotide. Morphological defects after xEmGCNF knockdown became obvious from neurulation onward. Among the abnormalities observed, defective formation of the neural tube and a short and curved main body axis were the most remarkable traits. Histological analysis, lineage tracing of injected blastomeres, and Keller sandwich explants revealed that xEmGCNF function is required for different patterns of cell intercalation during neurulation and consequently for the sequence of morphogenetic movements leading to formation of the neural tube. Further characterization of the phenotype at the molecular level showed an abnormal distribution of the extracellular matrix protein fibronectin and a reduction in the expression level of the integrin subunits alpha5 and alpha6, the limiting components of the laminin and fibronectin receptors, respectively. We propose integrin-mediated cell-matrix interaction as a process that requires xEmGCNF function and provides, in concert with cadherins-mediated cell-cell interactions, a molecular basis for morphogenetic cell movements during neurulation.
Collapse
Affiliation(s)
- Guillermo Barreto
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/V, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|