1
|
Cunningham P, Shankar M, vonHoldt B, Brzeski KE, Kienle SS. Coyotes can do 'puppy dog eyes' too: comparing interspecific variation in Canis facial expression muscles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241046. [PMID: 39359465 PMCID: PMC11444785 DOI: 10.1098/rsos.241046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Facial expressions are critical for non-verbal communication. The Canis genus epitomizes the interplay between behaviour and morphology in the evolution of non-verbal communication. Recent work suggests that the levator anguli oculi medialis (LAOM) muscle is unique to dogs (Canis familiaris) within the Canis genus and evolved due to domestication. The LAOM raises the inner eyebrows, resulting in the 'puppy dog eyes' expression. Here, we test whether the LAOM is a derived trait in dogs by (i) examining the facial expression muscles of a closely related and ancestral wild Canis species, the coyote (C. latrans) and (ii) comparing our results with other Canis and canid taxa. We discover that coyotes have a well-developed LAOM like dogs, which differs from the modified/absent LAOM in grey wolves. Our findings challenge the hypothesis that the LAOM developed due to domestication. We suggest that the LAOM is a basal trait that was lost in grey wolves. Additionally, we find inter- and intraspecific variations in the size of the muscles of the outer ear, forehead, lips and rostrum, indicating potential adaptations related to sensory perception, communication and individual-level functional variations within canids. Together, this research expands our knowledge of facial expressions, their evolution and their role in communication.
Collapse
Affiliation(s)
| | - Mahita Shankar
- Department of Biology, Baylor University, Waco, TX76707, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Kristin E. Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI49931, USA
| | - Sarah S. Kienle
- Department of Biology, Baylor University, Waco, TX76707, USA
| |
Collapse
|
2
|
Wible JR. The ear region of the Philippine flying lemur Cynocephalus volans (Placentalia, Dermoptera). Anat Rec (Hoboken) 2023; 306:2853-2871. [PMID: 36897245 DOI: 10.1002/ar.25174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 03/11/2023]
Abstract
The placental order Dermoptera, which includes two extant species, the Philippine and Sunda flying lemurs, Cynocephalus volans and Galeopterus variegatus, respectively, is generally held to be the sister group of Primates. Yet, little has been reported on their cranial anatomy. Here, the anatomy of the ear region is described and illustrated for a juvenile and adult C. volans based on CT scans. The inclusion of a juvenile is essential as nearly all cranial sutures are fused in the adult. Soft tissues are reconstructed based on sectioned histological pre- and postnatal specimens previously reported by the author. Numerous unusual features are identified, including: a small parasphenoid beneath the basisphenoid, a tensor tympani fossa on the epitympanic wing of the squamosal, a cavum supracochleare for the geniculate ganglion of the facial nerve that is not enclosed in the petrosal bone, a secondary facial foramen between the petrosal and squamosal, a secondary posttemporal foramen leading to the primary one, a subarcuate fossa that is floored in part by a large contribution from the squamosal, a body of the incus larger than the head of the malleus, and a crus longum of the incus that lacks an osseous connection to the lenticular process. Documentation of the anatomy of the Philippine flying lemur ear region is an essential first step in morphological phylogenetic analyses where features of the basicranium are widely sampled.
Collapse
Affiliation(s)
- John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Kienle SS, Cuthbertson RD, Reidenberg JS. Comparative examination of pinniped craniofacial musculature and its role in aquatic feeding. J Anat 2022; 240:226-252. [PMID: 34697793 PMCID: PMC8742965 DOI: 10.1111/joa.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Secondarily aquatic tetrapods have many unique morphologic adaptations for life underwater compared with their terrestrial counterparts. A key innovation during the land-to-water transition was feeding. Pinnipeds, a clade of air-breathing marine carnivorans that include seals, sea lions, and walruses, have evolved multiple strategies for aquatic feeding (e.g., biting, suction feeding). Numerous studies have examined the pinniped skull and dental specializations for underwater feeding. However, data on the pinniped craniofacial musculoskeletal system and its role in aquatic feeding are rare. Therefore, the objectives of this study were to conduct a comparative analysis of pinniped craniofacial musculature and examine the function of the craniofacial musculature in facilitating different aquatic feeding strategies. We performed anatomic dissections of 35 specimens across six pinniped species. We describe 32 pinniped craniofacial muscles-including facial expression, mastication, tongue, hyoid, and soft palate muscles. Pinnipeds broadly conform to mammalian patterns of craniofacial muscle morphology. Pinnipeds also exhibit unique musculoskeletal morphologies-in muscle position, attachments, and size-that likely represent adaptations for different aquatic feeding strategies. Suction feeding specialists (bearded and northern elephant seals) have a significantly larger masseter than biters. Further, northern elephant seals have large and unique tongue and hyoid muscle morphologies compared with other pinniped species. These morphologic changes likely help generate and withstand suction pressures necessary for drawing water and prey into the mouth. In contrast, biting taxa (California sea lions, harbor, ringed, and Weddell seals) do not exhibit consistent craniofacial musculoskeletal adaptations that differentiate them from suction feeders. Generally, we discover that all pinnipeds have well-developed and robust craniofacial musculature. Pinniped head musculature plays an important role in facilitating different aquatic feeding strategies. Together with behavioral and kinematic studies, our data suggest that pinnipeds' robust facial morphology allows animals to switch feeding strategies depending on the environmental context-a critical skill in a heterogeneous and rapidly changing underwater habitat.
Collapse
Affiliation(s)
| | - Roxanne D. Cuthbertson
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Joy S. Reidenberg
- Icahn School of Medicine at Mount SinaiCenter for Anatomy and Functional MorphologyNew YorkNew YorkUSA
| |
Collapse
|
4
|
Iwanaga J, Watanabe K, Kikuta S, Hirasaki E, Yamaki KI, Bohm RP, Dumont AS, Tubbs RS. Anatomical study of the incisivus labii superioris and inferioris muscles in non-human primates. Anat Rec (Hoboken) 2020; 304:366-371. [PMID: 32420698 DOI: 10.1002/ar.24406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 11/11/2022]
Abstract
The facial muscles have significant roles for vocalization, feeding, and facial expression in both human and non-human primates. Of these, the anatomy of the incisivus labii superioris (ILS) and incisivus labii inferioris (ILI), which are considered as the accessory bundle of the orbicularis oris (OO) in humans, has rarely been documented in the literature. Our current understanding of the function of the ILS and ILI is that they probably retract the upper and lower lips. Also, there is no account of these muscles in non-human primates in the current literature. The aim of this study was to reveal the ILS and ILI in non-human primates. Five Macaca fascicularis, one Macaca fuscata, one Macaca fuscata yakui, and one Pan troglodytes were dissected. Seven formalin-fixed cadavers and one fresh cadaver were included. Both the ILS and ILI were observed in all specimens. The ILS originated from the incisive fossa of the maxilla and inserted into the OO. The mentalis (MT) and ILI arose from the incisive fossa of the mandible and inserted into the OO and the skin of the chin area. The MT and ILI in the P. troglodytes examined were thicker than in the other three non-human species, and the ILS and ILI in the three macaques were similar in shape to those of humans. The difference of these muscles may result in different functions of the lip such as during vocalization, feeding, and facial expression.
Collapse
Affiliation(s)
- Joe Iwanaga
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Watanabe
- Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Shogo Kikuta
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Eishi Hirasaki
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Koh-Ichi Yamaki
- Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Rudolf P Bohm
- Division of Veterinary Medicine, Tulane National Primate Research Center, New Orleans, Louisiana, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Anatomical Sciences, St. George's University, St. George's, Grenada
| |
Collapse
|
5
|
Lin N, Dong XJ, Wang TY, He WJ, Wei J, Wu HY, Wang TH. Characteristics of olfactory ensheathing cells and microarray analysis in Tupaia belangeri (Wagner, 1841). Mol Med Rep 2019; 20:1819-1825. [PMID: 31257532 PMCID: PMC6625397 DOI: 10.3892/mmr.2019.10422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/25/2017] [Indexed: 12/02/2022] Open
Abstract
Tree shrews are most closely related to the primates and so possess a number of advantages in experimental studies; they have been used as an animal model in bacterial and virus infection, cancer, endocrine system disease, and certain nervous system diseases. Their olfactory ensheathing cells (OECs) are able to release several cytokines to promote neuronal survival, regeneration and remyelination. The present study used western blot analysis to identify antibody specificity in protein extracts from whole tree shrew brains to identify the specificity of p75 nerve growth factor receptor (NGFR) derived from rabbits (75 kDa). OECs were cultured and isolated, then stained and identified using the antibodies for p75NGFR. To investigate the capacity of OECs to express cytokines and growth factors, microarray technology was used, and the analysis revealed that OECs were able to express 9,821 genes. Of these genes, 44 genes were from the neurotrophic factor family, which may indicate their potential in transplantation in vivo. The present study considered the function of OECs as revealed by other studies, and may contribute to future research.
Collapse
Affiliation(s)
- Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiu-Juan Dong
- Department of Physical Education, Hainan Normal University, Haikou, Hainan 571100, P.R. China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wen-Ji He
- Department of Ultrasonic Cardiogram, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Jing Wei
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Hai-Ying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
6
|
Youlatos D, Widayati KA, Tsuji Y. Foot postures and grasping of free-ranging Sunda colugos (Galeopterus variegatus) in West Java, Indonesia. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Vander Linden A, Hedrick BP, Kamilar JM, Dumont ER. Atlas morphology, scaling and locomotor behaviour in primates, rodents and relatives (Mammalia: Euarchontoglires). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Abby Vander Linden
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Brandon P Hedrick
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jason M Kamilar
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Anthropology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Elizabeth R Dumont
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| |
Collapse
|
8
|
Arnold P, Esteve-Altava B, Fischer MS. Musculoskeletal networks reveal topological disparity in mammalian neck evolution. BMC Evol Biol 2017; 17:251. [PMID: 29237396 PMCID: PMC5729486 DOI: 10.1186/s12862-017-1101-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.e., the variability of the neck's musculoskeletal organization) is thus proposed to be an important source of neck disparity across mammals. Anatomical network analysis provides a novel framework to study the organization of the anatomical arrangement, or connectivity pattern, of the bones and muscles that constitute the mammalian neck in an evolutionary context. RESULTS Neck organization in mammals is characterized by a combination of conserved and highly variable network properties. We uncovered a conserved regionalization of the musculoskeletal organization of the neck into upper, mid and lower cervical modules. In contrast, there is a varying degree of complexity or specialization and of the integration of the pectoral elements. The musculoskeletal organization of the monotreme neck is distinctively different from that of therian mammals. CONCLUSIONS Our findings reveal that the limited number of vertebrae in the mammalian neck does not result in a low musculoskeletal disparity when examined in an evolutionary context. However, this disparity evolved late in mammalian history in parallel with the radiation of certain lineages (e.g., cetartiodactyls, xenarthrans). Disparity is further facilitated by the enhanced incorporation of forelimb muscles into the neck and their variability in attachment sites.
Collapse
Affiliation(s)
- Patrick Arnold
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Borja Esteve-Altava
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - Martin S. Fischer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
9
|
Diogo R, Bello‐Hellegouarch G, Kohlsdorf T, Esteve‐Altava B, Molnar JL. Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and “Scala Naturae”. Anat Rec (Hoboken) 2016; 299:1224-55. [DOI: 10.1002/ar.23390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Diogo
- Department of AnatomyHoward University College of MedicineWashington DC USA
| | | | - Tiana Kohlsdorf
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto SP Brazil
| | - Borja Esteve‐Altava
- Department of AnatomyHoward University College of MedicineWashington DC USA
- Structure and Motion Laboratory Department of Comparative Biomedical SciencesRoyal Veterinary College, Hawkshead Lane, HatfieldHertfordshireAL9 7TA UK
| | - Julia L. Molnar
- Department of AnatomyHoward University College of MedicineWashington DC USA
| |
Collapse
|
10
|
Haidarliu S, Kleinfeld D, Deschênes M, Ahissar E. The Musculature That Drives Active Touch by Vibrissae and Nose in Mice. Anat Rec (Hoboken) 2014; 298:1347-58. [PMID: 25408106 DOI: 10.1002/ar.23102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 11/06/2022]
Abstract
Coordinated action of facial muscles during whisking, sniffing, and touching objects is an important component of active sensing in rodents. Accumulating evidence suggests that the anatomical schemes that underlie active sensing are similar across the majority of whisking rodents. Intriguingly, however, muscle architecture in the mystacial pad of the mouse was reported to be different, possessing only one extrinsic vibrissa protracting muscle (M. nasalis) in the rostral part of the snout. In this study, the organization of the muscles that move the nose and the mystacial vibrissae in mice was re-examined and compared with that reported previously in other rodents. We found that muscle distribution within the mystacial pad and around the tip of the nose in mice is isomorphic with that found in other whisking rodents. In particular, in the rostral part of the mouse snout, we describe both protractors and retractors of the vibrissae. Nose movements are controlled by the M. dilator nasi and five subunits of the M. nasolabialis profundus, with involvement of the nasal cartilaginous skeleton as a mediator in the muscular effort translation.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - David Kleinfeld
- Department of Physics and Section of Neurobiology, University of California at San Diego, La Jolla, California
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, Canada
| | - Ehud Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
12
|
Deschênes M, Haidarliu S, Demers M, Moore J, Kleinfeld D, Ahissar E. Muscles involved in naris dilation and nose motion in rat. Anat Rec (Hoboken) 2014; 298:546-53. [PMID: 25257748 DOI: 10.1002/ar.23053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 11/07/2022]
Abstract
In a number of mammals muscle dilator nasi (naris) has been described as a muscle that reduces nasal airflow resistance by dilating the nostrils. Here we show that in rats the tendon of this muscle inserts into the aponeurosis above the nasal cartilage. Electrical stimulation of this muscle raises the nose and deflects it laterally towards the side of stimulation, but does not change the size of the nares. In alert head-restrained rats, electromyographic recordings of muscle dilator nasi reveal that it is active during nose motion rather than nares dilation. Together these results suggest an alternative role for the muscle dilator nasi in directing the nares for active odor sampling rather than dilating the nares. We suggest that dilation of the nares results from contraction of muscles of the maxillary division of muscle nasolabialis profundus. This muscle group attaches to the outer wall of the nasal cartilage and to the plate of the mystacial pad. Contraction of these muscles exerts a dual action: it pulls the lateral nasal cartilage outward, thus dilating the naris, and drags the plate of the mystacial pad rostrally to produce a slight retraction of the vibrissae. On the basis of these results, we propose that muscle dilator nasi of the rat should be re-named muscle deflector nasi, and that the maxillary parts of muscle nasolabialis profundus should be referred to as muscle dilator nasi.
Collapse
Affiliation(s)
- Martin Deschênes
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, G1J 2G3, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Three-dimensional observation of mouse tongue muscles using micro-computed tomography. Odontology 2013; 103:1-8. [DOI: 10.1007/s10266-013-0131-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/17/2013] [Indexed: 01/27/2023]
|
14
|
Diogo R, Pastor F, De Paz F, Potau JM, Bello-Hellegouarch G, Ferrero EM, Fisher RE. The head and neck muscles of the serval and tiger: homologies, evolution, and proposal of a mammalian and a veterinary muscle ontology. Anat Rec (Hoboken) 2012; 295:2157-78. [PMID: 22961868 DOI: 10.1002/ar.22589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022]
Abstract
Here we describe the head and neck muscles of members of the two extant felid subfamilies (Leptailurus serval: Felinae; Panthera tigris: Pantherinae) and compare these muscles with those of other felids, other carnivorans (e.g., domestic dogs), other eutherian mammals (e.g., rats, tree-shrews and modern humans), and noneutherian mammals including monotremes. Another major goal of the article is to discuss and help clarify nomenclatural discrepancies found in the Nomina Anatomica Veterinaria and in veterinary atlases and textbooks that use cats and dogs as models to understand the anatomy of domestic mammals and to stress differences with modern humans. We propose a unifying nomenclature that is expanded to all the head and neck muscles and to all mammalian taxa in order to help build veterinary and mammalian muscle ontologies. Our observations and comparisons and the specific use of this nomenclature point out that felids such as tigers and servals and other carnivorans such as dogs have more facial muscle structures related to the mobility of both the auricular and orbital regions than numerous other mammals, including modern humans, which might be the result of an ancient adaptation related to the remarkable predatory capacities of carnivorans. Interestingly, the skeletal differences, mainly concerning the hyoid apparatus, pharynx, and larynx, that are likely associated with the different types of vocalizations seen in the Felinae (mainly purring) and Pantherinae (mainly roaring) are not accompanied by clear differences in the musculature connected to these structures in the feline L. serval and the pantherine P. tigris.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Diogo R, Richmond BG, Wood B. Evolution and homologies of primate and modern human hand and forearm muscles, with notes on thumb movements and tool use. J Hum Evol 2012; 63:64-78. [DOI: 10.1016/j.jhevol.2012.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/31/2012] [Accepted: 04/05/2012] [Indexed: 12/01/2022]
|
16
|
Facial muscle coordination in monkeys during rhythmic facial expressions and ingestive movements. J Neurosci 2012; 32:6105-16. [PMID: 22553017 DOI: 10.1523/jneurosci.6136-11.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evolutionary hypotheses regarding the origins of communication signals generally suggest, particularly for the case of primate orofacial signals, that they derive by ritualization of noncommunicative behaviors, notably including ingestive behaviors such as chewing and nursing. These theories are appealing in part because of the prominent periodicities in both types of behavior. Despite their intuitive appeal, however, there are little or no data with which to evaluate these theories because the coordination of muscles innervated by the facial nucleus has not been carefully compared between communicative and ingestive movements. Such data are especially crucial for reconciling neurophysiological assumptions regarding facial motor control in communication and ingestion. We here address this gap by contrasting the coordination of facial muscles during different types of rhythmic orofacial behavior in macaque monkeys, finding that the perioral muscles innervated by the facial nucleus are rhythmically coordinated during lipsmacks and that this coordination appears distinct from that observed during ingestion.
Collapse
|
17
|
Muchlinski MN, Snodgrass JJ, Terranova CJ. Muscle mass scaling in primates: an energetic and ecological perspective. Am J Primatol 2012; 74:395-407. [PMID: 22318851 DOI: 10.1002/ajp.21990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 10/24/2011] [Accepted: 11/13/2011] [Indexed: 11/10/2022]
Abstract
Body composition is known to vary dramatically among mammals, even in closely related species, yet this issue has never been systematically investigated. Here, we examine differences in muscle mass scaling among mammals, and explore how primate body composition compares to that of nonprimate mammals. We use a literature-based sample of eutherian and metatherian mammals, and combine this with new dissection-based data on muscularity in a variety of strepsirrhine primates and the haplorhine, Tarsius syrichta. Our results indicate an isometric scaling relationship between total muscle mass and total body mass across mammals. However, we documented substantial variation in muscularity in mammals (21-61% of total body mass), which can be seen both within and between taxonomic groups. We also found that primates are under-muscled when compared to other mammals. This difference in body composition may in part reflect the functional consequences of arboreality, as arboreal species have significantly lower levels of muscularity than terrestrial species.
Collapse
Affiliation(s)
- Magdalena N Muchlinski
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, 40536, USA.
| | | | | |
Collapse
|
18
|
Diogo R, Wood B. Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat 2011; 219:273-359. [PMID: 21689100 PMCID: PMC3171772 DOI: 10.1111/j.1469-7580.2011.01403.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 02/01/2023] Open
Abstract
Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm.
Collapse
Affiliation(s)
- R Diogo
- Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, George Washington University, Washington, DC, USA.
| | | |
Collapse
|
19
|
Abdala V, Diogo R. Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles. J Anat 2010; 217:536-73. [PMID: 20807270 PMCID: PMC3035861 DOI: 10.1111/j.1469-7580.2010.01278.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2010] [Indexed: 11/27/2022] Open
Abstract
The main aim of the present work is to synthesize the information obtained from our dissections of the pectoral and forelimb muscles of representative members of the major extant taxa of limbed amphibians and reptiles and from our review of the literature, in order to provide an account of the comparative anatomy, homologies and evolution of these muscles in the Tetrapoda. The pectoral and forelimb musculature of all these major taxa conform to a general pattern that seems to have been acquired very early in the evolutionary history of tetrapods. Although some muscles are missing in certain taxa, and a clear departure from this general pattern is obviously present in derived groups such as birds, the same overall configuration is easily distinguishable in these taxa. Among the most notable anatomical differences between the groups, one that seems to have relevant evolutionary and functional implications, concerns the distal insertion points of the forearm musculature. In tetrapods, the muscles of the radial and ulnar complexes of the forearm are pleisomorphically mainly inserted onto the radius/ulna or onto the more proximal carpal bones, but in mammals some of these muscles insert more distally onto bones such as the metacarpals. Interestingly, a similar trend towards a more distal insertion of these muscles is also found in some non-mammalian tetrapod taxa, such as some anurans (e.g. Phyllomedusa). This may be correlated with the acquisition of more subtle digital movement abilities in these latter taxa.
Collapse
Affiliation(s)
- Virginia Abdala
- U.N.T., Instituto de Herpetologia, Fundación Miguel Lillo, CONICET, Tucumán, Argentina.
| | | |
Collapse
|
20
|
Giner MI, Ballester-Lurbe B, Gomez O, Terrado J. Anomaly of the Sternothyroideus Muscle Insertion in a Dog. ACTA ACUST UNITED AC 2009. [DOI: 10.2174/1877609400901010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Diogo R, Wood BA, Aziz MA, Burrows A. On the origin, homologies and evolution of primate facial muscles, with a particular focus on hominoids and a suggested unifying nomenclature for the facial muscles of the Mammalia. J Anat 2009; 215:300-19. [PMID: 19531159 PMCID: PMC2750763 DOI: 10.1111/j.1469-7580.2009.01111.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2009] [Indexed: 11/30/2022] Open
Abstract
The mammalian facial muscles are a subgroup of hyoid muscles (i.e. muscles innervated by cranial nerve VII). They are usually attached to freely movable skin and are responsible for facial expressions. In this study we provide an account of the origin, homologies and evolution of the primate facial muscles, based on dissections of various primate and non-primate taxa and a review of the literature. We provide data not previously reported, including photographs showing in detail the facial muscles of primates such as gibbons and orangutans. We show that the facial muscles usually present in strepsirhines are basically the same muscles that are present in non-primate mammals such as tree-shrews. The exceptions are that strepsirhines often have a muscle that is usually not differentiated in tree-shrews, the depressor supercilii, and lack two muscles that are usually differentiated in these mammals, the zygomatico-orbicularis and sphincter colli superficialis. Monkeys such as macaques usually lack two muscles that are often present in strepsirhines, the sphincter colli profundus and mandibulo-auricularis, but have some muscles that are usually absent as distinct structures in non-anthropoid primates, e.g. the levator labii superioris alaeque nasi, levator labii superioris, nasalis, depressor septi nasi, depressor anguli oris and depressor labii inferioris. In turn, macaques typically lack a risorius, auricularis anterior and temporoparietalis, which are found in hominoids such as humans, but have muscles that are usually not differentiated in members of some hominoid taxa, e.g. the platysma cervicale (usually not differentiated in orangutans, panins and humans) and auricularis posterior (usually not differentiated in orangutans). Based on our observations, comparisons and review of the literature, we propose a unifying, coherent nomenclature for the facial muscles of the Mammalia as a whole and provide a list of more than 300 synonyms that have been used in the literature to designate the facial muscles of primates and other mammals. A main advantage of this nomenclature is that it combines, and thus creates a bridge between, those names used by human anatomists and the names often employed in the literature dealing with non-human primates and non-primate mammals.
Collapse
Affiliation(s)
- R Diogo
- Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, George Washington University, Washington, DC 20052, USA.
| | | | | | | |
Collapse
|
22
|
Burrows AM, Waller BM, Parr LA. Facial musculature in the rhesus macaque (Macaca mulatta): evolutionary and functional contexts with comparisons to chimpanzees and humans. J Anat 2009; 215:320-34. [PMID: 19563473 PMCID: PMC2750044 DOI: 10.1111/j.1469-7580.2009.01113.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2009] [Indexed: 12/01/2022] Open
Abstract
Facial expression is a common mode of visual communication in mammals but especially so in primates. Rhesus macaques (Macaca mulatta) have a well-documented facial expression repertoire that is controlled by the facial/mimetic musculature as in all mammals. However, little is known about the musculature itself and how it compares with those of other primates. Here we present a detailed description of the facial musculature in rhesus macaques in behavioral, evolutionary and comparative contexts. Formalin-fixed faces from six adult male specimens were dissected using a novel technique. The morphology, attachments, three-dimensional relationships and variability of muscles were noted and compared with chimpanzees (Pan troglodytes) and with humans. The results showed that there was a greater number of facial muscles in rhesus macaques than previously described (24 muscles), including variably present (and previously unmentioned) zygomaticus minor, levator labii superioris alaeque nasi, depressor septi, anterior auricularis, inferior auricularis and depressor supercilii muscles. The facial muscles of the rhesus macaque were very similar to those in chimpanzees and humans but M. mulatta did not possess a risorius muscle. These results support previous studies that describe a highly graded and intricate facial expression repertoire in rhesus macaques. Furthermore, these results indicate that phylogenetic position is not the primary factor governing the structure of primate facial musculature and that other factors such as social behavior are probably more important. The results from the present study may provide valuable input to both biomedical studies that use rhesus macaques as a model for human disease and disorder that includes assessment of facial movement and studies into the evolution of primate societies and communication.
Collapse
Affiliation(s)
- Anne M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | |
Collapse
|