1
|
Das S, Kunjam P, Ebeling JF, Barthelat F. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays. BIOINSPIRATION & BIOMIMETICS 2024; 19:046011. [PMID: 38722377 DOI: 10.1088/1748-3190/ad493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Prashant Kunjam
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Jona Faye Ebeling
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
- Department of Nature and Engineering, City University of Applied Sciences Bremen, Hermann-Köhl-Straße 1, 28199 Bremen, Germany
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| |
Collapse
|
2
|
Taft N, Harris J, Grande TC. The comparative morphology of the musculature controlling the pectoral free rays in scorpaenoid fishes. J Morphol 2023; 284:e21597. [PMID: 37313767 DOI: 10.1002/jmor.21597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023]
Abstract
Free rays are ventral pectoral fin rays (lepidotrichia) that are free of the pectoral fin webbing. They are some of the most striking adaptations of benthic fishes. Free rays are used for specialized behaviors such as digging, walking or crawling along the sea bottom. Studies of pectoral free rays have focused on a small number of species, most notably the searobins (Family Triglidae). Previous research on the morphology of the free rays has emphasized their functional novelty. We hypothesize that the more extreme specializations of the pectoral free rays in searobins are not precisely novel, but are part of a broader range of morphological specializations that are associated with the pectoral free rays in suborder Scorpaenoidei. We perform a detailed comparative description of the intrinsic musculature and osteology of the pectoral free rays in three families of scorpaenoid fishes: Hoplichthyidae, Triglidae, and Synanceiidae. These families vary in the number of pectoral free rays and the degree of morphological specialization of those rays. As part of our comparative analysis, we propose significant revisions to earlier descriptions of both the identity and function of the musculature associated with the pectoral free rays. We focus particularly on the specialized adductors that are important for walking behaviors. Our emphasis on the homology of these features provides important morphological and evolutionary context for understanding the evolution and function of free rays within Scorpaenoidei and other groups.
Collapse
Affiliation(s)
- Natalia Taft
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, Wisconsin, USA
| | - Jeremy Harris
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Terry C Grande
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Das S, Hannard F, Barthelat F. Mechanics and properties of fish fin rays in nonlinear regimes of large deformations. Acta Biomater 2023:S1742-7061(23)00354-9. [PMID: 37364788 DOI: 10.1016/j.actbio.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Fins from ray-finned fishes do not contain muscles, yet fish can change the shape of their fins with high precision and speed, while producing large hydrodynamics forces without collapsing. This remarkable performance has been intriguing researchers for decades, but experiments have so far focused on homogenized properties, and models were developed only for small deformations and small rotations. Here we present fully instrumented micromechanical tests on individual rays from Rainbow trout in both morphing and flexural deflection mode and at large deflections. We then present a nonlinear mechanical model of the ray that captures the key structural elements controlling the mechanical behavior of rays under large deformations, which we successfully fit onto the experiments for property identification. We found that the flexural stiffness of the mineralized layers in the rays (hemitrichs) is 5-6 times lower than their axial stiffness, an advantageous combination to produce stiff morphing. In addition, the collagenous core region can be modeled with spring elements which are 3-4 orders of magnitude more compliant than the hemitrichs. This fibrillar structure provides negligible resistance to shearing from the initial position, but it prevents buckling and collapse of the structure at large deformations. These insights from the experiments and nonlinear models can serve as new guidelines for the design of efficient bioinspired stiff morphing materials and structures at large deformations. STATEMENT OF SIGNIFICANCE: Fins from ray-finned fishes do not contain muscles, yet fish can change the shape of their fins with high precision and speed, while producing large hydrodynamics forces without collapsing. Experiments have so far focused on homogenized properties, and models were developed only for small deformations and small rotations providing limited insight into the rich nonlinear mechanics of natural rays. We present micromechanical tests in both morphing and flexural deflection mode on individual rays, a nonlinear model of the ray that captures the mechanical behavior of rays under large deformations and combine microCT measurements to generate new insights into the nonlinear mechanics of rays. These insights can serve as new guidelines for the design of efficient bioinspired stiff morphing materials and structures at large deformations.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, USA
| | - Florent Hannard
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, USA.
| |
Collapse
|
4
|
Rees L, König D, Jaźwińska A. Platyfish bypass the constraint of the caudal fin ventral identity in teleosts. Dev Dyn 2022; 251:1862-1879. [PMID: 35803741 PMCID: PMC9796532 DOI: 10.1002/dvdy.518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The caudal fin of teleosts is characterized by dorsoventral symmetry. Despite this external morphology, the principal rays of this appendage connect to bones below the notochord, indicating the ventral (hypochordal) identity of this organ. RESULTS Here, we report that this typical architecture of the caudal fin is not fully conserved in the platyfish (Xiphophorus maculatus) and the guppy (Poecilia reticulata), representatives of the Poeciliidae family. We show that in these species, 3-4 principal rays connect to bones above the notochord, suggesting an epichordal contribution. Consistently, as examined in platyfish, dorsal identity genes zic1/4 were highly expressed in these rays, providing molecular evidence of their epichordal origin. Developmental analysis revealed that the earliest rays above the notochord emerge at the 10-ray stage of fin morphogenesis. In contrast to zebrafish and medaka, platyfish and guppies display a mirrored shape of dorsal and ventral processes of the caudal endoskeleton. Our study suggests that an ancestral bauplan expanded in poeciliids by advancing its symmetrical pattern. CONCLUSION The platyfish evolved a fin architecture with the epichordal origin of its upper principal rays and a high level of symmetry in the caudal endoskeleton. This innovative architecture highlights the adaptation of the teleost skeleton.
Collapse
Affiliation(s)
- Lana Rees
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Désirée König
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Anna Jaźwińska
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
5
|
Matthews DG, Zhu R, Wang J, Dong H, Bart-Smith H, Lauder G. Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance. BIOINSPIRATION & BIOMIMETICS 2022; 17:066017. [PMID: 36206750 DOI: 10.1088/1748-3190/ac9879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In fish, the tail is a key element of propulsive anatomy that contributes to thrust during swimming. Fish possess the ability to alter tail stiffness, surface area and conformation. Specifically, the region at the base of the tail, the caudal peduncle, is proposed to be a key location of fish stiffness modulation during locomotion. Most previous analyses have focused on the overall body or tail stiffness, and not on the effects of changing stiffness specifically at the base of the tail in fish and robotic models. We used both computational fluid dynamics analysis and experimental measurements of propulsive forces in physical models with different peduncle stiffnesses to analyze the effect of altering stiffness on the tail angle of attack and propulsive force and efficiency. By changing the motion program input to the tail, we were able to alter the phase relationship between the front and back tail sections between 0° and 330°. Computational simulations showed that power consumption was nearly minimized and thrust production was nearly maximized at the kinematic pattern whereφ= 270°, the approximate phase lag observed in the experimental foils and in free swimming tuna. We observed reduced thrust and efficiency at high angles of attack, suggesting that the tail driven during these motion programs experiences stalling and loss of lift. However, there is no single peduncle stiffness that consistently maximizes performance, particularly in physical models. This result highlights the fact that the optimal caudal peduncle stiffness is highly context dependent. Therefore, incorporating the ability to control peduncle stiffness in future robotic models of fish propulsion promises to increase the ability of robots to approach the performance of fish.
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 20138, United States of America
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 20138, United States of America
| | - Ruijie Zhu
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Junshi Wang
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Haibo Dong
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Hilary Bart-Smith
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - George Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 20138, United States of America
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 20138, United States of America
| |
Collapse
|
6
|
Flammang BE. Bioinspired Design in Research: Evolution as Beta-Testing. Integr Comp Biol 2022; 62:icac134. [PMID: 35933125 DOI: 10.1093/icb/icac134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modern fishes represent over 400 million years of evolutionary processes that, in many cases, resulted in selection for phenotypes with particular performance advantages. While this certainly occurred without a trajectory for optimization, it cannot be denied that some morphologies allow organisms to be more effective than others at tasks like evading predation, securing food, and ultimately passing on their genes. In this way, evolution generates a series of iterative prototypes with varying but measurable success in accomplishing objectives. Therefore, careful analysis of fundamental properties underlying biological phenomena allow us to fast-track development of bioinspired technologies aiming to accomplish similar objectives. At the same time, bioinspired designs can be a way to explore evolutionary processes, by better understanding the performance space within which a given morphology operates. Through strong interdisciplinary collaborations, we can develop novel bioinspired technologies that not only excel as robotic devices but that teach us something about biology and the rules of life in the process.
Collapse
Affiliation(s)
- Brooke E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, 323 Dr. Martin Luther King, Jr. Blvd., 07102, NJ, USA
| |
Collapse
|
7
|
Quinn D, Lauder G. Tunable stiffness in fish robotics: mechanisms and advantages. BIOINSPIRATION & BIOMIMETICS 2021; 17:011002. [PMID: 34814125 DOI: 10.1088/1748-3190/ac3ca5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
One of the emerging themes of fish-inspired robotics is flexibility. Adding flexibility to the body, joints, or fins of fish-inspired robots can significantly improve thrust and/or efficiency during locomotion. However, the optimal stiffness depends on variables such as swimming speed, so there is no one 'best' stiffness that maximizes efficiency in all conditions. Fish are thought to solve this problem by using muscular activity to tune their body and fin stiffness in real-time. Inspired by fish, some recent robots sport polymer actuators, adjustable leaf springs, or artificial tendons that tune stiffness mechanically. Models and water channel tests are providing a theoretical framework for stiffness-tuning strategies that devices can implement. The strategies can be thought of as analogous to car transmissions, which allow users to improve efficiency by tuning gear ratio with driving speed. We provide an overview of the latest discoveries about (1) the propulsive benefits of flexibility, particularlytunableflexibility, and (2) the mechanisms and strategies that fish and fish-inspired robots use to tune stiffness while swimming.
Collapse
Affiliation(s)
- Daniel Quinn
- Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA, United States of America
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - George Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
8
|
Matthews DG, Lauder GV. Fin-fin interactions during locomotion in a simplified biomimetic fish model. BIOINSPIRATION & BIOMIMETICS 2021; 16:046023. [PMID: 34015781 DOI: 10.1088/1748-3190/ac03a8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Fish median fins are extremely diverse, but their function is not yet fully understood. Various biological studies on fish and engineering studies on flapping foils have revealed that there are hydrodynamic interactions between fins arranged in tandem and that these interactions can lead to improved performance by the posterior fin. This performance improvement is often driven by the augmentation of a leading-edge vortex on the trailing fin. Past experimental studies have necessarily simplified fish anatomy to enable more detailed engineering analyses, but such simplifications then do not capture the complexities of an undulating fish-like body with fins attached. We present a flexible fish-like robotic model that better represents the kinematics of swimming fishes while still being simple enough to examine a range of morphologies and motion patterns. We then create statistical models that predict the individual effects of each kinematic and morphological variable. Our results demonstrate that having fins arranged in tandem on an undulating body can lead to more steady production of thrust forces determined by the distance between the fins and their relative motion. We find that these same variables also affect swimming speed. Specifically, when swimming at high frequencies, self-propelled speed decreases by 12%-26% due to out of phase fin motion. Flow visualization reveals that variation within this range is caused in part by fin-fin flow interactions that affect leading edge vortices. Our results indicate that undulatory swimmers should optimize both the positioning and relative motion of their median fins in order to reduce force oscillations and improve overall performance while swimming.
Collapse
Affiliation(s)
- David G Matthews
- The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States of America
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States of America
| | - George V Lauder
- The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States of America
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
9
|
Hannard F, Mirkhalaf M, Ameri A, Barthelat F. Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials. Sci Robot 2021; 6:6/57/eabf9710. [PMID: 34380757 DOI: 10.1126/scirobotics.abf9710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
Fish fins do not contain muscles, yet fish can change their shape with high precision and speed to produce large and complex hydrodynamic forces-a combination of high morphing efficiency and high flexural stiffness that is rare in modern morphing and robotic materials. These "flexo-morphing" capabilities are rare in modern morphing and robotic materials. The thin rays that stiffen the fins and transmit actuation include mineral segments, a prominent feature whose mechanics and function are not fully understood. Here, we use mechanical modeling and mechanical testing on 3D-printed ray models to show that the function of the segmentation is to provide combinations of high flexural stiffness and high morphing amplitude that are critical to the performance of the fins and would not be possible with rays made of a continuous material. Fish fin-inspired designs that combine very soft materials and very stiff segments can provide robotic materials with large morphing amplitudes and strong grasping forces.
Collapse
Affiliation(s)
- Florent Hannard
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.,Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mohammad Mirkhalaf
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.,School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia
| | - Abtin Ameri
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada
| | - Francois Barthelat
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. .,Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Decoding the Relationships between Body Shape, Tail Beat Frequency, and Stability for Swimming Fish. FLUIDS 2020. [DOI: 10.3390/fluids5040215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As fish swim through a fluid environment, they must actively use their fins in concert to stabilize their motion and have a robust form of locomotion. However, there is little knowledge of how these forces act on the fish body. In this study, we employ a 3D immersed boundary model to decode the relationship between roll, pitch, and yaw of the fish body and the driving forces acting on flexible fish bodies. Using bluegill sunfish as our representative geometry, we first examine the role of an actuating torque on the stability of the fish model, with a torque applied at the head of the unconstrained fish body. The resulting kinematics is a product of the passive elasticity, fluid forces, and driving torque. We then examine a constrained model to understand the role that fin geometry, body elasticity, and frequency play on the range of corrective forces acting on the fish. We find non-monotonic behavior with respect to frequency, suggesting that the effective flexibility of the fins play an important role in the swimming performance.
Collapse
|
11
|
Petersen JC, Ramsay JB. Walking on chains: the morphology and mechanics behind the fin ray derived limbs of sea-robins. J Exp Biol 2020; 223:jeb227140. [PMID: 32709626 DOI: 10.1242/jeb.227140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022]
Abstract
Fish fin rays (lepidotrichia) are typically composed of paired and segmented flexible structures (hemitrichia) that help support and change the shape of the fins to affect water flow. Yet, marine ray-finned fish that are members of the family Priontinae (sea-robins) have specialized pectoral fin rays that are separated from the fin and used as limbs to walk along the seafloor. While previous kinematic studies have demonstrated the use of these specialized fin rays as walking appendages, there is little information on how the morphology of the 'walking rays' and associated musculature facilitate underwater walking. Here, we examine the musculoskeletal anatomy of the walking and pectoral fin rays in the striped sea-robin Prionotus evolans and compare the mechanical properties of the rays with those of the smaller northern sea-robin Prionotus carolinus We aimed to determine what structural modifications in the walking rays allow them to function as a supportive limb. We found enlarged processes for muscle attachment, bone extensions that brace the hemitrich articulations, and reduced flexibility and increased second moment of area along the rostro-caudal bending axis in the rays used for walking. This novel limb design may have promoted the benthic foraging behavior exhibited by these species by uncoupling locomotion and feeding.
Collapse
Affiliation(s)
- Jarrod C Petersen
- Biological Department, College of Mathematics and Sciences, Westfield State University, 577 Western Avenue, Westfield, MA 01086, USA
| | - Jason B Ramsay
- Biological Department, College of Mathematics and Sciences, Westfield State University, 577 Western Avenue, Westfield, MA 01086, USA
| |
Collapse
|
12
|
Wainwright DK, Lauder GV. Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles. BIOINSPIRATION & BIOMIMETICS 2020; 15:035007. [PMID: 32053798 DOI: 10.1088/1748-3190/ab75f7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tunas of the genus Thunnus are a group of high-performance pelagic fishes with many locomotor traits that are convergently shared with other high-performance fish groups. Because of their swimming abilities, tunas continue to be an inspiration for both comparative biomechanics and the design of biomimetic autonomous underwater vehicles (AUVs). Despite the strong history of studies in tuna physiology and current interest in tuna biomechanics and bio-inspired design, we lack quantitative data on the function of many features of tunas. Here we present data on the morphology, behavior, and function of tunas, focusing especially on experimentally examining the function of tuna lateral keels, finlets, and pectoral fins by using simple physical models. We find that both triangular lateral keels and flexible finlets decrease power requirements during swimming, likely by reducing lateral forces and yaw torques (compared to models either without keels or with rectangular keels, and models with stiff finlets or strip fins of equal area, respectively). However, both triangular keels and flexible finlets generate less thrust than other models either without these features or with modified keels or finlets, leading to a tradeoff between power consumption and thrust. In addition, we use micro computed tomography (µCT) to show that the flexible lateral keels possess a lateral line canal, suggesting these keels have a sensory function. The curved and fully-attached base of tuna pectoral fins provides high lift-to-drag ratio at low angles of attack, and generates the highest torques across speeds and angles of attack. Therefore, curved, fully-attached pectoral fins grant both better gliding and maneuvering performance compared to flat or curved, partially-attached designs. We provide both 3D models of tuna morphology derived from µCT scans and conclusions about the performance effects of tuna-like features as a resource for future biological and engineering work for next-generation tuna-inspired AUV designs.
Collapse
Affiliation(s)
- Dylan K Wainwright
- Harvard University, Museum of Comparative Zoology, 26 Oxford Street, Cambridge MA 02143, United States of America. Yale University, Peabody Museum of Natural History, 21 Sachem Street, New Haven CT 06511, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
13
|
Aiello BR, Olsen AM, Mathis CE, Westneat MW, Hale ME. Pectoral fin kinematics and motor patterns are shaped by fin ray mechanosensation during steady swimming in Scarus quoyi. ACTA ACUST UNITED AC 2020; 223:jeb.211466. [PMID: 31862848 DOI: 10.1242/jeb.211466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
For many fish species, rhythmic movement of the pectoral fins, or forelimbs, drives locomotion. In terrestrial vertebrates, normal limb-based rhythmic gaits require ongoing modulation with limb mechanosensors. Given the complexity of the fluid environment and dexterity of fish swimming through it, we hypothesize that mechanosensory modulation is also critical to normal fin-based swimming. Here, we examined the role of sensory feedback from the pectoral fin rays and membrane on the neuromuscular control and kinematics of pectoral fin-based locomotion. Pectoral fin kinematics and electromyograms of the six major fin muscles of the parrotfish, Scarus quoyi, a high-performance pectoral fin swimmer, were recorded during steady swimming before and after bilateral transection of the sensory nerves extending into the rays and surrounding membrane. Alternating activity of antagonistic muscles was observed and drove the fin in a figure-of-eight fin stroke trajectory before and after nerve transection. After bilateral transections, pectoral fin rhythmicity remained the same or increased. Differences in fin kinematics with the loss of sensory feedback also included fin kinematics with a significantly more inclined stroke plane angle, an increased angular velocity and fin beat frequency, and a transition to the body-caudal fin gait at lower speeds. After transection, muscles were active over a larger proportion of the fin stroke, with overlapping activation of antagonistic muscles rarely observed in the trials of intact fish. The increased overlap of antagonistic muscle activity might stiffen the fin system in order to enhance control and stability in the absence of sensory feedback from the fin rays. These results indicate that fin ray sensation is not necessary to generate the underlying rhythm of fin movement, but contributes to the specification of pectoral fin motor pattern and movement during rhythmic swimming.
Collapse
Affiliation(s)
- Brett R Aiello
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Aaron M Olsen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Chris E Mathis
- The College, University of Chicago, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.,The College, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA .,The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Cohen KE, Flammang BE, Crawford CH, Hernandez LP. Knowing when to stick: touch receptors found in the remora adhesive disc. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190990. [PMID: 32218935 PMCID: PMC7029896 DOI: 10.1098/rsos.190990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Remoras are fishes that piggyback onto larger marine fauna via an adhesive disc to increase locomotor efficiency, likelihood of finding mates and access to prey. Attaching rapidly to a large, fast-moving host is no easy task, and while research to date has focused on how the disc supports adhesion, no attention has been paid to how or if remoras are able to sense attachment. We identified push-rod-like mechanoreceptor complexes embedded in the soft lip of the remora adhesive disc that are known in other organisms to respond to touch and shear forces. This is, to our knowledge, the first time such mechanoreceptor complexes are described in fishes as they were only known previously in monotremes. The presence of push-rod-like mechanoreceptor complexes suggests not only that fishes may be able to sense their environment in ways not heretofore described but that specialized tactile mechanoreceptor complexes may be a more basal vertebrate feature than previously thought.
Collapse
Affiliation(s)
- Karly E. Cohen
- Biology Department, University of Washington, Life Sciences Building, Seattle, WA 98195, USA
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, Suite 6000, Washington, DC 20052, USA
| | - Brooke E. Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Callie H. Crawford
- Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - L. Patricia Hernandez
- Biology Department, University of Washington, Life Sciences Building, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Cohen KE, Flammang BE, Crawford CH, Hernandez LP. Knowing when to stick: touch receptors found in the remora adhesive disc. ROYAL SOCIETY OPEN SCIENCE 2020. [PMID: 32218935 DOI: 10.5061/dryad.t9d744k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Remoras are fishes that piggyback onto larger marine fauna via an adhesive disc to increase locomotor efficiency, likelihood of finding mates and access to prey. Attaching rapidly to a large, fast-moving host is no easy task, and while research to date has focused on how the disc supports adhesion, no attention has been paid to how or if remoras are able to sense attachment. We identified push-rod-like mechanoreceptor complexes embedded in the soft lip of the remora adhesive disc that are known in other organisms to respond to touch and shear forces. This is, to our knowledge, the first time such mechanoreceptor complexes are described in fishes as they were only known previously in monotremes. The presence of push-rod-like mechanoreceptor complexes suggests not only that fishes may be able to sense their environment in ways not heretofore described but that specialized tactile mechanoreceptor complexes may be a more basal vertebrate feature than previously thought.
Collapse
Affiliation(s)
- Karly E Cohen
- Biology Department, University of Washington, Life Sciences Building, Seattle, WA 98195, USA
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, Suite 6000, Washington, DC 20052, USA
| | - Brooke E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Callie H Crawford
- Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - L Patricia Hernandez
- Biology Department, University of Washington, Life Sciences Building, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Fish FE, Lauder GV. Control surfaces of aquatic vertebrates: active and passive design and function. ACTA ACUST UNITED AC 2018; 220:4351-4363. [PMID: 29187618 DOI: 10.1242/jeb.149617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance.
Collapse
Affiliation(s)
- Frank E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Taft NK, Taft BN, Henck H, Mehner T. Variation in flexural stiffness of the lepidotrichia within and among the soft fins of yellow perch under different preservation techniques. J Morphol 2018; 279:1045-1057. [DOI: 10.1002/jmor.20831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Natalia K. Taft
- Department of Biological Sciences; University of Wisconsin at Parkside; Kenosha Wisconsin
| | | | - Hailey Henck
- Department of Biological Sciences; University of Wisconsin at Parkside; Kenosha Wisconsin
| | - Thomas Mehner
- Department of Biological Sciences; University of Wisconsin at Parkside; Kenosha Wisconsin
| |
Collapse
|
18
|
Aiello BR, Hardy AR, Cherian C, Olsen AM, Orsbon CP, Hale ME, Westneat MW. A comparison of pectoral fin ray morphology and its impact on fin ray flexural stiffness in labriform swimmers. J Morphol 2018; 279:1031-1044. [DOI: 10.1002/jmor.20830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/02/2018] [Accepted: 03/29/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Brett R. Aiello
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
| | - Adam R. Hardy
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
| | | | - Aaron M. Olsen
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidence Rhode Island
| | - Courtney P. Orsbon
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
| | - Melina E. Hale
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
- The College, University of ChicagoChicago Illinois
| | - Mark W. Westneat
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
- The College, University of ChicagoChicago Illinois
| |
Collapse
|
19
|
Puri S, Aegerter-Wilmsen T, Jaźwińska A, Aegerter CM. In vivo quantification of mechanical properties of caudal fins in adult zebrafish. ACTA ACUST UNITED AC 2018; 221:jeb.171777. [PMID: 29246971 PMCID: PMC5868929 DOI: 10.1242/jeb.171777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022]
Abstract
The caudal fins of adult zebrafish are supported by multiple bony rays that are laterally interconnected by soft interray tissue. Little is known about the fin's mechanical properties that influence bending in response to hydrodynamic forces during swimming. Here, we developed an experimental setup to measure the elastic properties of caudal fins in vivo by applying micro-Newton forces to obtain bending stiffness and a tensional modulus. We detected overall bending moments of 1.5×10−9–4×10−9 N m2 along the proximal–distal axis of the appendage showing a non-monotonous pattern that was not due to the geometry of the fin itself. Surgical disruption of the interray tissues along the proximal–distal axis revealed no significant changes to the overall bending stiffness, which we confirmed by determining a tensional modulus of the interray tissue. Thus, the biophysical values suggest that the flexibility of the fin during its hydrodynamic performance predominantly relies on the mechanical properties of the rays. Summary: The quantitative in vivo determination of the zebrafish caudal fin's main constituents (bony rays and interray tissue) shows that flexibility is dominated by the elastic properties of the bony rays, whereas the elastic properties of the interray tissue co-define the fin's complex 3D deformation during swimming and will also be needed as a crucial input for hydrodynamic simulations.
Collapse
Affiliation(s)
- Sahil Puri
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Tinri Aegerter-Wilmsen
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christof M Aegerter
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland .,Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Donatelli CM, Summers AP, Tytell ED. Long-axis twisting during locomotion of elongate fishes. ACTA ACUST UNITED AC 2017; 220:3632-3640. [PMID: 28794228 DOI: 10.1242/jeb.156497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022]
Abstract
Fish live in a complex world and must actively adapt their swimming behavior to a range of environments. Most studies of swimming kinematics focus on two-dimensional properties related to the bending wave that passes from head to tail. However, fish also twist their bodies three dimensionally around their longitudinal axis as the bending wave passes down the body. We measured and characterized this movement, which we call 'wobble', in six species of elongate fishes (Anoplarchus insignis, Xiphister mucosus, Lumpenus sagitta, Pholis laeta, Apodichthys flavidus and Ronquilus jordani) from three different habitats (intertidal, nearshore and subtidal) using custom video analysis software. Wobble and bending are synchronized, with a phase shift between the wobble wave and bending wave. We found that species from the same habitats swim in similar ways, even if they are more closely related to species from different habitats. In nearshore species, the tail wobbles the most but, in subtidal and intertidal species, the head wobbles more than or the same as the tail. We also wanted to understand the relationship between wobble and the passive mechanics of the fish bodies. Therefore, we measured torsional stiffness and modulus along the body and found that modulus increases from head to tail in all six species. As wobble does not correlate with the passive properties of the body, it may play a different role in swimming behavior of fishes from different habitats.
Collapse
Affiliation(s)
| | - Adam P Summers
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, Medford, MA 02133, USA
| |
Collapse
|
21
|
Nguyen K, Yu N, Bandi MM, Venkadesan M, Mandre S. Curvature-induced stiffening of a fish fin. J R Soc Interface 2017; 14:rsif.2017.0247. [PMID: 28566508 PMCID: PMC5454310 DOI: 10.1098/rsif.2017.0247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
Abstract
How fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays. An external force causes neighbouring rays to bend and splay apart, and thus stretches the membrane. This coupling between bending the rays and stretching the membrane underlies the increase in stiffness. Using three-dimensional reconstruction of a mackerel (Scomber japonicus) pectoral fin for illustration, we calculate the range of stiffnesses this fin is expected to span by changing curvature. The three-dimensional reconstruction shows that, even in its geometrically flat state, a functional curvature is embedded within the fin microstructure owing to the morphology of individual rays. As the ability of a propulsive surface to transmit force to the surrounding fluid is limited by its stiffness, the fin curvature controls the coupling between the fish and its surrounding fluid. Thereby, our results provide mechanical underpinnings and morphological predictions for the hypothesis that the spanned range of fin stiffnesses correlates with the behaviour and the ecological niche of the fish.
Collapse
Affiliation(s)
- Khoi Nguyen
- Collective Interactions Unit, OIST Graduate University, Onna, Okinawa 904-0495, Japan,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Ning Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mahesh M. Bandi
- Collective Interactions Unit, OIST Graduate University, Onna, Okinawa 904-0495, Japan
| | - Madhusudhan Venkadesan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Shreyas Mandre
- School of Engineering, Brown University, Providence, RI 02912, USA,e-mail:
| |
Collapse
|
22
|
Seth D, Flammang BE, Lauder GV, Tangorra JL. Development of a vortex generator to perturb fish locomotion. J Exp Biol 2017; 220:959-963. [PMID: 28082612 DOI: 10.1242/jeb.148346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
Abstract
Knowledge about the stiffness of fish fins, and whether stiffness is modulated during swimming, is important for understanding the mechanics of a fin's force production. However, the mechanical properties of fins have not been studied during natural swimming, in part because of a lack of instrumentation. To remedy this, a vortex generator was developed that produces traveling vortices of adjustable strength which can be used to perturb the fins of swimming fish. Experiments were conducted to understand how the generator's settings affected the resulting vortex rings. A variety of vortices (14-32 mm diameter traveling at 371-2155 mm s-1) were produced that elicited adequate responses from the fish fins to help us to understand the fin's mechanical properties at various swimming speeds (0-350 mm s-1).
Collapse
Affiliation(s)
- Deeksha Seth
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Randell 115, MEM Department, Philadelphia, PA 19104, USA
| | - Brooke E Flammang
- New Jersey Institute of Technology, Department of Biological Sciences, University Heights, Newark, NJ 07102, USA
| | - George V Lauder
- Harvard University, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology Laboratory, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James L Tangorra
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Randell 115, MEM Department, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Aiello BR, Hardy AR, Cherian C, Olsen AM, Ahn SE, Hale ME, Westneat MW. The relationship between pectoral fin ray stiffness and swimming behavior in Labridae: insights into design, performance, and ecology. J Exp Biol 2017; 221:jeb.163360. [DOI: 10.1242/jeb.163360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022]
Abstract
The functional capabilities of flexible, propulsive, appendages are directly influenced by their mechanical properties. The fins of fishes have undergone extraordinary evolutionary diversification in structure and function, which raises questions of how fin mechanics relate to swimming behavior. In the fish family Labridae, pectoral fin swimming behavior ranges from rowing to flapping. Rowers are more maneuverable than flappers, but flappers generate greater thrust at high speeds and achieve greater mechanical efficiency at all speeds. Interspecific differences in hydrodynamic capability are largely dependent on fin kinematics and deformation, and are expected to correlate with fin stiffness. Here we examine fin ray stiffness in two closely related species that employ divergent swimming behaviors, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. To determine the spatial distribution of flexural stiffness across the fin, we performed three-point bending tests at the center of the proximal, middle, and distal regions of four equally spaced fin rays. Pectoral fin ray flexural stiffness ranged from 0.0001-1.5109 microNewtons•m2, and the proximal regions of G. varius fin rays were nearly an order of magnitude stiffer than those of H. bivittatus. In both species, fin ray flexural stiffness decreased exponentially along the proximo-distal span of fin rays, and flexural stiffness decreased along the fin chord from the leading to trailing edge. Further, the proportion of fin area occupied by fin rays was significantly greater in G. varius than in H. bivittatus, suggesting that the proportion of fin ray to fin area contributes to differences in fin mechanics.
Collapse
Affiliation(s)
- Brett R. Aiello
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Adam R. Hardy
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Chery Cherian
- The College, University of Chicago, Chicago, IL, USA
| | - Aaron M. Olsen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Sihyun E. Ahn
- The College, University of Chicago, Chicago, IL, USA
| | - Melina E. Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Flammang BE, Lauder GV. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus. ZOOLOGY 2016; 119:414-420. [PMID: 27291816 DOI: 10.1016/j.zool.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Most teleost fishes, like the bluegill sunfish Lepomis macrochirus, have multiple flexible fins that are used as modifiable control surfaces. This helps to make fish highly maneuverable, permitting behaviors like reversing direction of motion and swimming backwards without having to rotate body position. To answer the question of how fish swim backwards we used high-speed videography and electromyography to determine the kinematics and muscle activity necessary to produce reverse-direction propulsion in four bluegill sunfish. We found that, in contrast to slow forward swimming, low-speed backward swimming is a multi-fin behavior, utilizing the pectoral, dorsal, anal, and caudal fins. The pectoral fins alternate beats, each fin broadly flaring on the outstroke and feathered on the instroke. The dorsal fin and dorsal portion of the caudal fin move out of phase as do the anal fin and ventral portion of the caudal fin. Electromyography of muscles in the pectoral, dorsal, anal, and caudal fins demonstrated bilateral activation when these fins changed direction, suggesting that fins are stiffened at this time. In addition to backward propulsion by the pectoral fins, particle image velocimetry revealed that the dorsal and anal fins are capable of producing reverse momentum jets to propel the fish backward. Because teleost fishes are statically unstable, locomotion at slow speeds requires precise fin control to adequately balance torques produced about the center of mass. Therefore, the kinematics of backward swimming may be the result of compensation for rolling, pitching, and yawning instability. We suggest that asymmetric pectoral fin activity with feathering during adduction balances rolling instability. The ventral to dorsal undulatory wave on the caudal fin controls pitch instability and yaw instability encountered from pectoral-driven backward locomotion. Thrust generation from the dorsal and anal fins decreases the destabilizing effect of the long moment arm of the tail in backward swimming. Thus, backward locomotion at slow speed is not simply the reverse of slow forward swimming.
Collapse
Affiliation(s)
- Brooke E Flammang
- Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Kahn JC, Tangorra JL. The Effects of Fluidic Loading on Underwater Contact Sensing with Robotic Fins and Beams. IEEE TRANSACTIONS ON HAPTICS 2016; 9:184-195. [PMID: 26441453 DOI: 10.1109/toh.2015.2485200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As robots become more involved in underwater operations, understanding underwater contact sensing with compliant systems is fundamental to engineering useful haptic interfaces and vehicles. Despite knowledge of contact sensation in air, little is known about contact sensing underwater and the impact of fluid on both the robotic probe and the target object. The objective of this work is to understand the effects of fluidic loading, fin webbing, and target object geometry on strain sensation within compliant robotic fins and beams during obstacle contact. General descriptions of obstacle contact were sought for strain measurements in fins and beams. Multiple phases of contact were characterized where the robot, fluid, and object interact to affect sensory signals. Unlike in air, the underwater structure-fluid-structure interaction (SFSI) caused changes to strain in each phase of contact. The addition of webbing to beams created a mechanical coupling between adjacent beams, which changed contact strains. Complex obstacle geometries tended to make contact less apparent and caused stretch in fins. This work demonstrates several effects of fluidic loading on strain sensing with compliant robotic beams and fins as they contact obstacles in air and underwater, and provides guidance for future work in underwater active sensing with compliant manipulators.
Collapse
|
26
|
Williams R, Hale ME. Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus). ACTA ACUST UNITED AC 2015; 218:3435-47. [PMID: 26347560 DOI: 10.1242/jeb.123638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
Abstract
For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has been shown to be important for control of limb-based behaviors and we hypothesized that this is also the case for the fishes. In this study, we examined the impact of the loss of sensory feedback from the pectoral fins on movement kinematics during hover behavior. Research was performed with bluegill sunfish (Lepomis macrochirus), a model for understanding the biomechanics of swimming and for bio-inspired design of engineered fins. The bluegill beats its pectoral fins rhythmically, and in coordination with pelvic and median fin movement, to maintain a stationary position while hovering. Bilateral deafferentation of the fin rays results in a splay-finned posture where fins beat regularly but at a higher frequency and without adducting fully against the side of the body. For unilateral transections, more irregular changes in fin movements were recorded. These data indicate that sensory feedback from the fin rays and membrane is important for generating normal hover movements but is not necessary for generating rhythmic fin movement.
Collapse
Affiliation(s)
- Richard Williams
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Henrion S, Spoor CW, Pieters RPM, Müller UK, van Leeuwen JL. Refraction corrected calibration for aquatic locomotion research: application of Snell's law improves spatial accuracy. BIOINSPIRATION & BIOMIMETICS 2015; 10:046009. [PMID: 26151159 DOI: 10.1088/1748-3190/10/4/046009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Images of underwater objects are distorted by refraction at the water-glass-air interfaces and these distortions can lead to substantial errors when reconstructing the objects' position and shape. So far, aquatic locomotion studies have minimized refraction in their experimental setups and used the direct linear transform algorithm (DLT) to reconstruct position information, which does not model refraction explicitly. Here we present a refraction corrected ray-tracing algorithm (RCRT) that reconstructs position information using Snell's law. We validated this reconstruction by calculating 3D reconstruction error-the difference between actual and reconstructed position of a marker. We found that reconstruction error is small (typically less than 1%). Compared with the DLT algorithm, the RCRT has overall lower reconstruction errors, especially outside the calibration volume, and errors are essentially insensitive to camera position and orientation and the number and position of the calibration points. To demonstrate the effectiveness of the RCRT, we tracked an anatomical marker on a seahorse recorded with four cameras to reconstruct the swimming trajectory for six different camera configurations. The RCRT algorithm is accurate and robust and it allows cameras to be oriented at large angles of incidence and facilitates the development of accurate tracking algorithms to quantify aquatic manoeuvers.
Collapse
Affiliation(s)
- Sebastian Henrion
- Experimental Zoology, Department of Animal Sciences, Wageningen University, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Kahn JC, Peretz DJ, Tangorra JL. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin. BIOINSPIRATION & BIOMIMETICS 2015; 10:036009. [PMID: 25985056 DOI: 10.1088/1748-3190/10/3/036009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered robotic fins have adapted principles of propulsion from bony-finned fish, using spatially-varying compliance and complex kinematics to produce and control the fin's propulsive force through time. While methods of force production are well understood, few models exist to predict the propulsive forces of a compliant, high degree of freedom, robotic fin as it moves through fluid. Inspired by evidence that the bluegill sunfish (Lepomis macrochirus) has bending sensation in its pectoral fins, the objective of this study is to understand how sensors distributed within a compliant robotic fin can be used to estimate and predict the fin's propulsive force. A biorobotic model of a bluegill sunfish pectoral fin was instrumented with pressure and bending sensors at multiple locations. Experiments with the robotic fin were executed that varied the swimming gait, flapping frequency, stroke phase, and fin stiffness to understand the forces and sensory measures that occur during swimming. A convolution-based, multi-input-single-output (MISO) model was selected to model and study the relationships between sensory data and propulsive force. Subsets of sensory data were studied to determine which sensor modalities and sensor placement locations resulted in the best force predictions. The propulsive forces of the fin were accurately predicted using the linear MISO model on intrinsic sensory data. Bending sensation was more effective than pressure sensation for predicting propulsive forces, and the importance of bending sensation was consistent with several results in biology and engineering studies. It was important to have a spatial distribution of sensors and multiple sensory modalities in order to predict forces across large changes to dynamics. The relationship between propulsive forces and intrinsic sensory measures is complex, and good models should allow for temporal lags between forces and sensory data, changes to the model within a fin stroke, and changes to the model through gait transitions.
Collapse
|
29
|
Williams TM, Fuiman LA, Davis RW. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores. Integr Comp Biol 2015; 55:673-82. [PMID: 25936358 DOI: 10.1093/icb/icv025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foraging by large (>25 kg), mammalian carnivores often entails cryptic tactics to surreptitiously locate and overcome highly mobile prey. Many forms of intermittent locomotion from stroke-and-glide maneuvers by marine mammals to sneak-and-pounce behaviors by terrestrial canids, ursids, and felids are involved. While affording proximity to vigilant prey, these tactics are also associated with unique energetic costs and benefits to the predator. We examined the energetic consequences of intermittent locomotion in mammalian carnivores and assessed the role of these behaviors in overall foraging efficiency. Behaviorally-linked, three-axis accelerometers were calibrated to provide instantaneous locomotor behaviors and associated energetic costs for wild adult Weddell seals (Leptonychotes weddellii) diving beneath the Antarctic ice. The results were compared with previously published values for other marine and terrestrial carnivores. We found that intermittent locomotion in the form of extended glides, burst-and-glide swimming, and rollercoaster maneuvers while hunting silverfish (Pleuragramma antarcticum) resulted in a marked energetic savings for the diving seals relative to continuously stroking. The cost of a foraging dive by the seals decreased by 9.2-59.6%, depending on the proportion of time gliding. These energetic savings translated into exceptionally low transport costs during hunting (COTHUNT) for diving mammals. COTHUNT for Weddell seals was nearly six times lower than predicted for large terrestrial carnivores, and demonstrates the importance of turning off the propulsive machinery to facilitate cost-efficient foraging in highly active, air-breathing marine predators.
Collapse
Affiliation(s)
- Terrie M Williams
- *Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA; The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373-5015, USA; Departments of Marine Biology and Wildlife and Fisheries Science, Texas A&M University, Galveston, TX 77553, USA
| | - Lee A Fuiman
- *Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA; The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373-5015, USA; Departments of Marine Biology and Wildlife and Fisheries Science, Texas A&M University, Galveston, TX 77553, USA
| | - Randall W Davis
- *Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA; The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373-5015, USA; Departments of Marine Biology and Wildlife and Fisheries Science, Texas A&M University, Galveston, TX 77553, USA
| |
Collapse
|
30
|
Lauder GV, Tangorra JL. Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements. SPRINGER TRACTS IN MECHANICAL ENGINEERING 2015. [DOI: 10.1007/978-3-662-46870-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Abstract
Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.
Collapse
Affiliation(s)
- George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
32
|
Abstract
We present experimental evidence for the hydrodynamic benefits of swimming 'in ground effect', that is, near a solid boundary. This situation is common to fish that swim near the substrate, especially those that are dorsoventrally compressed, such as batoids and flatfishes. To investigate flexible propulsors in ground effect, we conduct force measurements and particle image velocimetry on flexible rectangular panels actuated at their leading edge near the wall of a water channel. For a given actuation mode, the panels swim faster near the channel wall while maintaining the same propulsive economy. In conditions producing net thrust, panels produce more thrust near the ground. When operating in resonance, swimming near the ground can also increase propulsive efficiency. Finally, the ground can act to suppress three-dimensional modes, thereby increasing thrust and propulsive efficiency. The planform considered here is non-biological, but the hydrodynamic benefits are likely to apply to more complex geometries, especially those where broad flexible propulsors are involved such as fish bodies and fins. Such fish could produce more thrust by swimming near the ground, and in some cases do so more efficiently.
Collapse
Affiliation(s)
- Daniel B Quinn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
33
|
Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors. ZOOLOGY 2014; 117:337-48. [PMID: 25043841 DOI: 10.1016/j.zool.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022]
Abstract
The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected individual fin rays, during four locomotor behaviors executed by free-swimming ghost knifefish: forward swimming, backward swimming, heave (vertical) motion, and hovering. We used high-speed video (1000 fps) to examine the motion of the entire anal fin and we measured the three-dimensional curvature of four adjacent fin rays in the middle of the fin during each behavior to determine how individual fin rays bend along their length during swimming. Canonical discriminant analysis separated all four behaviors on anal fin kinematic variables and showed that forward and backward swimming behaviors contrasted the most: forward behaviors exhibited a large anterior wavelength and posterior amplitude while during backward locomotion the anal fin exhibited both a large posterior wavelength and anterior amplitude. Heave and hover behaviors were defined by similar kinematic variables; however, for each variable, the mean values for heave motions were generally greater than for hovering. Individual fin rays in the middle of the anal fin curved substantially along their length during swimming, and the magnitude of this curvature was nearly twice the previously measured maximum curvature for ray-finned fish fin rays during locomotion. Fin rays were often curved into the direction of motion, indicating active control of fin ray curvature, and not just passive bending in response to fluid loading.
Collapse
|
34
|
Shelton RM, Thornycroft P, Lauder GV. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. J Exp Biol 2014; 217:2110-20. [DOI: 10.1242/jeb.098046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
An undulatory pattern of body bending in which waves pass along the body from head to tail is a major means of creating thrust in many fish species during steady locomotion. Analyses of live fish swimming have provided the foundation of our current understanding of undulatory locomotion, but our inability to experimentally manipulate key variables such as body length, flexural stiffness, and tailbeat frequency in freely-swimming fish has limited our ability to investigate a number of important features of undulatory propulsion. In this paper we use a robotic apparatus to create an undulatory wave in swimming passive flexible foils by creating a heave motion at their leading edge, and compare this motion to body bending patterns of bluegill sunfish (Lepomis macrochirus) and clown knifefish (Notopterus chitala). We found similar swimming speeds, Reynolds and Strouhal numbers, and patterns of curvature and shape between these fish and foils suggesting that passive flexible foils provide a useful model for understanding fish undulatory locomotion. We swam foils with different lengths, stiffnesses, and heave frequencies while measuring forces, torques, and hydrodynamics. From measured forces and torques we calculated thrust and power coefficients, work, and cost of transport for each foil. We found that increasing frequency and stiffness produced faster swimming speeds and more thrust. Increasing length had minimal impact on swimming speed, but had a large impact on Strouhal number, cost of transport, and thrust coefficient. Foils that were both stiff and long had the lowest cost of transport (in mJ m-1 g-1) at low cycle frequencies, and the ability to reach the highest speed at high cycle frequencies.
Collapse
|
35
|
Flammang BE, Lauder GV. Pectoral fins aid in navigation of a complex environment by bluegill sunfish under sensory deprivation conditions. J Exp Biol 2013; 216:3084-9. [DOI: 10.1242/jeb.080077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SUMMARY
Complex structured environments offer fish advantages as places of refuge and areas of greater potential prey densities, but maneuvering through these environments is a navigational challenge. To successfully navigate complex habitats, fish must have sensory input relaying information about the proximity and size of obstacles. We investigated the role of the pectoral fins as mechanosensors in bluegill sunfish swimming through obstacle courses under different sensory deprivation and flow speed conditions. Sensory deprivation was accomplished by filming in the dark to remove visual input and/or temporarily blocking lateral line input via immersion in cobalt chloride. Fish used their pectoral fins to touch obstacles as they swam slowly past them under all conditions. Loss of visual and/or lateral line sensory input resulted in an increased number of fin taps and shorter tap durations while traversing the course. Propulsive pectoral fin strokes were made in open areas between obstacle posts and fish did not use the pectoral fins to push off or change heading. Bending of the flexible pectoral fin rays may initiate an afferent sensory input, which could be an important part of the proprioceptive feedback system needed to navigate complex environments. This behavioral evidence suggests that it is possible for unspecialized pectoral fins to act in both a sensory and a propulsive capacity.
Collapse
Affiliation(s)
- Brooke E. Flammang
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V. Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|