1
|
Piccirilli F, Vondracek H, Silvestrini L, Parisse P, Spinozzi F, Vaccari L, Toma A, Aglieri V, Casalis L, Piccionello AP, Mariani P, Birarda G, Ortore MG. Dimeric and monomeric conformation of SARS-CoV-2 main protease: New technical approaches based on IR radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124772. [PMID: 39003826 DOI: 10.1016/j.saa.2024.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
The main proteases Mpro are a group of highly conserved cysteine hydrolases in β-coronaviruses. They have been demonstrated to play an unavoidable role in viral replication, and consequently they have been suggested as key targets for treating coronavirus-caused infectious diseases, mainly from the COVID-19 epidemic. Since the most functional form for Mpro enzymatic activity is associated to its homodimer, compounds inhibiting dimerization should also inhibit catalytic activity. We show how PIR-SEIRA (Plasmonic Internal Reflection-Surface Enhanced InfraRed Absorption) spectroscopy can be a noteworthy technique to study proteins subtle structural variations associated to inhibitor binding. Nanoantennas arrays can selectively confine and enhance electromagnetic field via localized plasmonic resonances, thus promoting ultrasensitive detection of biomolecules in close proximity of nanoantenna arrays and enabling the effective investigation of protein monolayers. By adopting this approach, reflection measurements conducted under back illumination of nanoantennas allow to probe anchored protein monolayers, with minimum contribution of environmental buffer molecules. PIR-SEIRA spectroscopy on Mpro was carried out by ad hoc designed devices, resonating in the spectral region of Amide I and Amide II bands. We evaluated here the structure of anchored monomers and dimers in different buffered environment and in presence of a newly designed Mpro inhibitor. Experimental results show that dimerization is not associated to relevant backbone rearrangements of the protein at secondary structure level, and even if the compound inhibits the dimerization, it is not effective at breaking preformed dimers.
Collapse
Affiliation(s)
| | - Hendrik Vondracek
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy
| | - Lucia Silvestrini
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy
| | - Pietro Parisse
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy; CNR - Istituto Officina dei Materiali, s.s. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy
| | - Lisa Vaccari
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy
| | - Andrea Toma
- Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, I- 16163, Italy
| | - Vincenzo Aglieri
- Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, I- 16163, Italy
| | - Loredana Casalis
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, viale delle scienze, Palermo, I-90133, Italy
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy
| | - Giovanni Birarda
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy.
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy.
| |
Collapse
|
2
|
Bou‐Abdallah F, Fish J, Terashi G, Zhang Y, Kihara D, Arosio P. Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism. Protein Sci 2024; 33:e5104. [PMID: 38995055 PMCID: PMC11241160 DOI: 10.1002/pro.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Collapse
Affiliation(s)
- Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| | - Jeremie Fish
- Department of Electrical & Computer EngineeringCoulter School of Engineering, Clarkson UniversityPotsdamNew YorkUSA
| | - Genki Terashi
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Paolo Arosio
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
3
|
Schild K, Sönnichsen FD, Martin D, Garamus VM, Van der Goot AJ, Schwarz K, Keppler JK. Unraveling the effects of low protein-phenol binding affinity on the structural properties of beta-lactoglobulin. Food Chem 2023; 426:136496. [PMID: 37331143 DOI: 10.1016/j.foodchem.2023.136496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
Non-covalent interactions of phenolics with proteins cannot always be readily identified, often leading to contradictory results described in the literature. This results in uncertainties as to what extent phenolics can be added to protein solutions (for example for bioactivity studies) without affecting the protein structure. Here, we clarify which tea phenolics (epigallocatechin gallate (EGCG), epicatechin and gallic acid) interact with the whey protein β-lactoglobulin by combining various state-of-the-art-methods. STD-NMR revealed that all rings of EGCG can interact with native β-lactoglobulin, indicating multidentate binding, as confirmed by the small angle X-ray scattering experiments. For epicatechin, unspecific interactions were found only at higher protein:epicatechin molar ratios and only with 1H NMR shift perturbation and FTIR. For gallic acid, none of the methods found evidence for an interaction with β-lactoglobulin. Thus, gallic acid and epicatechin can be added to native BLG, for example as antioxidants without causing modification within wide concentration ranges.
Collapse
Affiliation(s)
- Kerstin Schild
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht Platz 10, D-24118 Kiel, Christian-Albrechts-Universität Kiel, Germany.
| | - Frank D Sönnichsen
- Otto Diels Institute of Organic Chemistry. Otto-Hahn Platz 4, D-24098 Kiel, Christian-Albrechts-Universität Kiel, Germany.
| | - Dierk Martin
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann Weigmann Strasse 1, 24103 Kiel, Germany.
| | - Vasil M Garamus
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Atze Jan Van der Goot
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht Platz 10, D-24118 Kiel, Christian-Albrechts-Universität Kiel, Germany.
| | - Julia K Keppler
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
4
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
5
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Characterization of Conjugates between α-Lactalbumin and Benzyl Isothiocyanate-Effects on Molecular Structure and Proteolytic Stability. Molecules 2021; 26:molecules26206247. [PMID: 34684828 PMCID: PMC8539348 DOI: 10.3390/molecules26206247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
In complex foods, bioactive secondary plant metabolites (SPM) can bind to food proteins. Especially when being covalently bound, such modifications can alter the structure and, thus, the functional and biological properties of the proteins. Additionally, the bioactivity of the SPM can be affected as well. Consequently, knowledge of the influence of chemical modifications on these properties is particularly important for food processing, food safety, and nutritional physiology. As a model, the molecular structure of conjugates between the bioactive metabolite benzyl isothiocyanate (BITC, a hydrolysis product of the glucosinolate glucotropaeolin) and the whey protein α-lactalbumin (α-LA) was investigated using circular dichroism spectroscopy, anilino-1-naphthalenesulfonic acid fluorescence, and dynamic light scattering. Free amino groups were determined before and after the BITC conjugation. Finally, mass spectrometric analysis of the BITC-α-LA protein hydrolysates was performed. As a result of the chemical modifications, a change in the secondary structure of α-LA and an increase in surface hydrophobicity and hydrodynamic radii were documented. BITC modification at the ε-amino group of certain lysine side chains inhibited tryptic hydrolysis. Furthermore, two BITC-modified amino acids were identified, located at two lysine side chains (K32 and K113) in the amino acid sequence of α-LA.
Collapse
|
7
|
Spöttel J, Brockelt J, Badekow S, Rohn S. Immunological Analysis of Isothiocyanate-Modified α-Lactalbumin Using High-Performance Thin Layer Chromatography. Molecules 2021; 26:molecules26071842. [PMID: 33805932 PMCID: PMC8036266 DOI: 10.3390/molecules26071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Undirected modifications between food proteins and secondary plant metabolites can occur during food processing. The results of covalent interactions can alter the functional and biological properties of the proteins. The present work studied the extent of which covalent conjugation of the bioactive metabolite benzyl isothiocyanate (BITC; a glucosinolate breakdown product) to the whey protein α-lactalbumin affects the protein’s allergenicity. Additional to the immunological analysis of native untreated and BITC-modified α-lactalbumin, the analysis of antigenic properties of proteolytically digested protein derivatives was also performed by high performance thin layer chromatography and immunostaining. As a result of the chemical modifications, structural changes in the protein molecule affected the allergenic properties. In this process, epitopes are destroyed or inactivated, but at the same time, buried epitopes can be exposed or newly formed, so that the net effect was an increase in allergenicity, in this case. Results from the tryptic hydrolysis suggest that BITC conjugation sterically hindered the cleavage sites for the enzyme, resulting in reduced digestibility and allergenicity. Residual antigenicity can be still present as short peptide fragments that provide epitopes. The desire to make food safer for allergy sufferers and to protect sensitized individuals from an allergenic reaction makes it clear that the detection of food antigens is mandatory; especially by considering protein interactions.
Collapse
Affiliation(s)
- Jenny Spöttel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Johannes Brockelt
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Svenja Badekow
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Correspondence: ; Tel.: +49-30-314-72583
| |
Collapse
|
8
|
Keppler JK, Heyse A, Scheidler E, Uttinger MJ, Fitzner L, Jandt U, Heyn TR, Lautenbach V, Loch JI, Lohr J, Kieserling H, Günther G, Kempf E, Grosch JH, Lewiński K, Jahn D, Lübbert C, Peukert W, Kulozik U, Drusch S, Krull R, Schwarz K, Biedendieck R. Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Phenolic-Enriched Collagen Fibrillar Coatings on Titanium Alloy to Promote Osteogenic Differentiation and Reduce Inflammation. Int J Mol Sci 2020; 21:ijms21176406. [PMID: 32899166 PMCID: PMC7504673 DOI: 10.3390/ijms21176406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
The adsorption of biomolecules on biomaterial surfaces can promote their integration with surrounding tissue without changing their bulk properties. For biomaterials in bone reconstruction, the promotion of osteogenic differentiation and reduction of inflammation are desirable. Fibrillar coatings are interesting because of fibrils’ high surface area-volume ratio, aiding adsorption and adhesion. Fibrils also serve as a matrix for the immobilization of biomolecules with biological activity, such as the phenolic compound phloroglucinol (PG), the subunit of marine polyphenols. The aim of this work was to investigate the influence of PG coatings on fibroblast- and osteoblast-like cells to increase the osseointegration of titanium implants. Collagen fibril coatings, containing PG at low and high concentrations, were produced on titanium alloy (Ti6Al4V) scaffolds generated by additive manufacturing (AM). These coatings, especially PG-enriched coatings, reduced hydrophobicity and modulated the behavior of human osteosarcoma SaOS-2 and mouse embryonic fibroblast 3T3 cell lines. Both osteoblastic and fibroblastic cells spread and adhered well on PG-enriched coatings. Coatings significantly reduced the inflammatory response. Moreover, osteogenic differentiation was promoted by collagen coatings with a high PG concentration. Thus, the enrichment of collagen fibril coatings with PG is a promising strategy to improve Ti6Al4V implants for bone contact in orthopedics and dentistry and is worthy of further investigation.
Collapse
|
10
|
Covalent modification of food proteins by plant-based ingredients (polyphenols and organosulphur compounds): A commonplace reaction with novel utilization potential. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Roth-Walter F, Afify SM, Pacios LF, Blokhuis BR, Redegeld F, Regner A, Petje LM, Fiocchi A, Untersmayr E, Dvorak Z, Hufnagl K, Pali-Schöll I, Jensen-Jarolim E. Cow's milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J Allergy Clin Immunol 2020; 147:321-334.e4. [PMID: 32485264 DOI: 10.1016/j.jaci.2020.05.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Beta-lactoglobulin (BLG) is a bovine lipocalin in milk with an innate defense function. The circumstances under which BLG is associated with tolerance of or allergy to milk are not understood. OBJECTIVE Our aims were to assess the capacity of ligand-free apoBLG versus loaded BLG (holoBLG) to protect mice against allergy by using an iron-quercetin complex as an exemplary ligand and to study the molecular mechanisms of this protection. METHODS Binding of iron-quercetin to BLG was modeled and confirmed by spectroscopy and docking calculations. Serum IgE binding to apoBLG and holoBLG in children allergic to milk and children tolerant of milk was assessed. Mice were intranasally treated with apoBLG versus holoBLG and analyzed immunologically after systemic challenge. Aryl hydrocarbon receptor (AhR) activation was evaluated with reporter cells and Cyp1A1 expression. Treated human PBMCs and human mast cells were assessed by fluorescence-activated cell sorting and degranulation, respectively. RESULTS Modeling predicted masking of major IgE and T-cell epitopes of BLG by ligand binding. In line with this modeling, IgE binding in children allergic to milk was reduced toward holoBLG, which also impaired degranulation of mast cells. In mice, only treatments with holoBLG prevented allergic sensitization and anaphylaxis, while sustaining regulatory T cells. BLG facilitated quercetin-dependent AhR activation and, downstream of AhR, lung Cyp1A1 expression. HoloBLG shuttled iron into monocytic cells and impaired their antigen presentation. CONCLUSION The cargo of holoBLG is decisive in preventing allergy in vivo. BLG without cargo acted as an allergen in vivo and further primed human mast cells for degranulation in an antigen-independent fashion. Our data provide a mechanistic explanation why the same proteins can act either as tolerogens or as allergens.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Sheriene Moussa Afify
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Luis F Pacios
- Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
| | - Bart R Blokhuis
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Andreas Regner
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Lisa-Marie Petje
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Karin Hufnagl
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. Int J Mol Sci 2020; 21:ijms21072315. [PMID: 32230810 PMCID: PMC7177887 DOI: 10.3390/ijms21072315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.
Collapse
|
13
|
Dönmez Ö, Mogol BA, Gökmen V, Tang N, Andersen ML, Chatterton DEW. Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (−)-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Food Funct 2020; 11:6038-6053. [DOI: 10.1039/d0fo00783h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Milk proteins bind flavanoids (EGCG and green tea extract), affecting theirin vitrodigestibility and modulating flavanoid free radical scavenging.
Collapse
Affiliation(s)
- Özge Dönmez
- Food Quality and Safety (FoQuS) Research Group
- Department of Food Engineering
- Hacettepe University
- Ankara
- Turkey
| | - Burçe Ataç Mogol
- Food Quality and Safety (FoQuS) Research Group
- Department of Food Engineering
- Hacettepe University
- Ankara
- Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group
- Department of Food Engineering
- Hacettepe University
- Ankara
- Turkey
| | - Ning Tang
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- DK-1958 Frederiksberg C
- Denmark
| | - Mogens Larsen Andersen
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- DK-1958 Frederiksberg C
- Denmark
| | - Dereck E. W. Chatterton
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- DK-1958 Frederiksberg C
- Denmark
| |
Collapse
|
14
|
Heyn TR, Garamus VM, Neumann HR, Uttinger MJ, Guckeisen T, Heuer M, Selhuber-Unkel C, Peukert W, Keppler JK. Influence of the polydispersity of pH 2 and pH 3.5 beta-lactoglobulin amyloid fibril solutions on analytical methods. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Ali M, Keppler JK, Coenye T, Schwarz K. Covalent Whey Protein-Rosmarinic Acid Interactions: A Comparison of Alkaline and Enzymatic Modifications on Physicochemical, Antioxidative, and Antibacterial Properties. J Food Sci 2018; 83:2092-2100. [PMID: 30007045 DOI: 10.1111/1750-3841.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/01/2022]
Abstract
The covalent interactions between whey protein isolate (WPI) and rosmarinic acid (RosA) at two different conditions, alkaline (pH 9) and enzymatic (in the presence of tyrosinase, PPO), at room temperature with free atmospheric air were studied. The conjugates formed between WPI and RosA were characterized in terms of their physicochemical and functional properties. The changes in protein structure were analyzed by intrinsic fluorescence and binding of 8-anilino-1-naphthalenesulfonic acid. The findings show that the covalent interactions caused a decrease in free amino and thiol groups and tryptophan content at both conditions. The decrease at enzymatic conditions was lower than at alkaline conditions. In addition, modified WPI at alkaline conditions exhibited higher antioxidative capacity compared to the modification at enzymatic conditions. However, WPI modified at enzymatic condition showed mild antimicrobial activity against Staphylococcus aureus LMG 10147 and MU50 compared to WPI modified at alkaline conditions and unmodified WPI (control). The modified WPI can be used as multifunctional ingredient into various food products with an additional health promoting effect of the bound phenolic compounds.
Collapse
Affiliation(s)
- Mostafa Ali
- Dept. of Food Technology, Faculty of agriculture, Univ. of Kafrelsheikh, Kafrelsheikh, Egypt
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Julia K Keppler
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent Univ., Ghent, Belgium
| | - Karin Schwarz
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
16
|
Perusko M, Al-Hanish A, Mihailovic J, Minic S, Trifunovic S, Prodic I, Cirkovic Velickovic T. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction. Food Chem 2017; 232:744-752. [DOI: 10.1016/j.foodchem.2017.04.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/23/2023]
|
17
|
Xu AY, Melton LD, Ryan TM, Mata JP, Jameson GB, Rekas A, Williams MAK, McGillivray DJ. Sugar-coated proteins: the importance of degree of polymerisation of oligo-galacturonic acid on protein binding and aggregation. SOFT MATTER 2017; 13:2698-2707. [PMID: 28337496 DOI: 10.1039/c6sm02660e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have simplified the structural heterogeneity of protein-polysaccharide binding by investigating protein binding to oligosaccharides. The interactions between bovine beta-lactoglobulin A (βLgA) and oligo-galacturonic acids (OGAs) with various numbers of sugar residues have been investigated with a range of biophysical techniques. We show that the βLgA-OGA interaction is critically dependent on the length of the oligosaccharide. Isothermal titration calorimetry results suggest that a minimum length of 7 or 8 sugar residues is required in order to exhibit appreciable exothermic interactions with βLgA - shorter oligosaccharides show no enthalpic interactions at any concentration ratio. When titrating βLgA into OGAs with more than 7-8 sugar residues the sample solution also became turbid with increasing amounts of βLgA, indicating the formation of macroscopic assemblies. Circular dichroism, thioflavin T fluorescence and small angle X-ray/neutron scattering experiments revealed two structural regimes during the titration. When OGAs were in excess, βLgA formed discrete assemblies upon OGA binding, and no subsequent aggregation was observed. However, when βLgA was present in excess, multi-scale structures were formed and this eventually led to the separation of the solution into two liquid-phases.
Collapse
Affiliation(s)
- Amy Y Xu
- Riddet Institute Centre of Research Excellence, Private Bag 11222, Palmerston North 4442, New Zealand and School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Laurence D Melton
- Riddet Institute Centre of Research Excellence, Private Bag 11222, Palmerston North 4442, New Zealand and School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Timothy M Ryan
- Australian Synchrotron, Clayton 3168, Victoria, Australia and The MacDiarmid Institute, Private Bag 600, Wellington 6140, New Zealand
| | - Jitendra P Mata
- ACNS, Australian Nuclear Science and Technology Organisation (ANSTO), Private Bag 2001, NSW 2232, Australia
| | - Geoffrey B Jameson
- Riddet Institute Centre of Research Excellence, Private Bag 11222, Palmerston North 4442, New Zealand and Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Agata Rekas
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Private Bag 2001, NSW 2232, Australia
| | - Martin A K Williams
- Riddet Institute Centre of Research Excellence, Private Bag 11222, Palmerston North 4442, New Zealand and The MacDiarmid Institute, Private Bag 600, Wellington 6140, New Zealand and Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and The MacDiarmid Institute, Private Bag 600, Wellington 6140, New Zealand
| |
Collapse
|
18
|
Keppler JK, Martin D, Garamus VM, Berton-Carabin C, Nipoti E, Coenye T, Schwarz K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Czubinski J, Dwiecki K. A review of methods used for investigation of protein-phenolic compound interactions. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13339] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jaroslaw Czubinski
- Department of Biochemistry and Food Analysis; Poznan University of Life Sciences; 28 Wojska Polskiego Poznan 60-637 Poland
| | - Krzysztof Dwiecki
- Department of Biochemistry and Food Analysis; Poznan University of Life Sciences; 28 Wojska Polskiego Poznan 60-637 Poland
| |
Collapse
|
20
|
Douglas TEL, Dokupil A, Reczyńska K, Brackman G, Krok-Borkowicz M, Keppler JK, Božič M, Van Der Voort P, Pietryga K, Samal SK, Balcaen L, van den Bulcke J, Van Acker J, Vanhaecke F, Schwarz K, Coenye T, Pamuła E. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich
Ecklonia cava
extract Seanol
®
to endow antibacterial properties and promote mineralization. Biomed Mater 2016; 11:045015. [DOI: 10.1088/1748-6041/11/4/045015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|