1
|
Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-actin. Part II: mixed isoforms. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Njabon EN, Patouossa I, Carlson KL, Lowe SL, Forlemu NY, Thomasson KA. Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-Actin. Part I: Muscle and heart homo-isoforms. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
3
|
Chang YC, Chiou J, Yang YF, Su CY, Lin YF, Yang CN, Lu PJ, Huang MS, Yang CJ, Hsiao M. Therapeutic Targeting of Aldolase A Interactions Inhibits Lung Cancer Metastasis and Prolongs Survival. Cancer Res 2019; 79:4754-4766. [PMID: 31358528 DOI: 10.1158/0008-5472.can-18-4080] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/28/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Cancer metabolic reprogramming promotes tumorigenesis and metastasis; however, the underlying molecular mechanisms are still being uncovered. In this study, we show that the glycolytic enzyme aldolase A (ALDOA) is a key enzyme involved in lung cancer metabolic reprogramming and metastasis. Overexpression of ALDOA increased migration and invasion of lung cancer cell lines in vitro and formation of metastatic lung cancer foci in vivo. ALDOA promoted metastasis independent of its enzymatic activity. Immunoprecipitation and proteomic analyses revealed γ-actin binds to ALDOA; blocking this interaction using specific peptides decreased metastasis both in vitro and in vivo. Screening of clinically available drugs based on the crystal structure of ALDOA identified raltegravir, an antiretroviral agent that targets HIV integrase, as a pharmacologic inhibitor of ALDOA-γ-actin binding that produced antimetastatic and survival benefits in a xenograft model with no significant toxicity. In summary, ALDOA promotes lung cancer metastasis by interacting with γ-actin. Targeting this interaction provides a new therapeutic strategy to treat lung cancer metastasis. SIGNIFICANCE: This study demonstrates the role of aldolase A and its interaction with γ-actin in the metastasis of non-small lung cancer and that blocking this interaction could be an effective cancer treatment.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jean Chiou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Yang
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Medical Municipal Ta-Tung, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Carlson BE, Vigoreaux JO, Maughan DW. Diffusion coefficients of endogenous cytosolic proteins from rabbit skinned muscle fibers. Biophys J 2014; 106:780-92. [PMID: 24559981 DOI: 10.1016/j.bpj.2013.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022] Open
Abstract
Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10(-10) cm(2) s(-1)) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10(-7) cm(2) s(-1) (parvalbumin) to 0.20 × 10(-7) cm(2) s(-1) (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand.
Collapse
Affiliation(s)
- Brian E Carlson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Jim O Vigoreaux
- Department of Molecular Physiology and Biophysics, Health Science Research Facility, University of Vermont College of Medicine, Burlington, Vermont; Department of Biology, University of Vermont, Burlington, Vermont
| | - David W Maughan
- Department of Molecular Physiology and Biophysics, Health Science Research Facility, University of Vermont College of Medicine, Burlington, Vermont.
| |
Collapse
|
5
|
Araiza-Olivera D, Chiquete-Felix N, Rosas-Lemus M, Sampedro JG, Peña A, Mujica A, Uribe-Carvajal S. A glycolytic metabolon inSaccharomyces cerevisiaeis stabilized by F-actin. FEBS J 2013; 280:3887-905. [DOI: 10.1111/febs.12387] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 05/09/2013] [Accepted: 06/07/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Araiza-Olivera
- Department of Molecular Genetics; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Natalia Chiquete-Felix
- Department of Molecular Genetics; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Mónica Rosas-Lemus
- Department of Molecular Genetics; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - José G. Sampedro
- Instituto de Física; Universidad Autónoma de San Luís Potosí; Mexico
| | - Antonio Peña
- Department of Molecular Genetics; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Adela Mujica
- Department of Cellular Biology; Centro de Investigaciones y Estudios Avanzados; Instituto Politécnico Nacional; Mexico City Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
6
|
Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson KA. Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach. Proteins 2011; 79:2813-27. [PMID: 21905108 DOI: 10.1002/prot.23107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 11/09/2022]
Abstract
The association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI). The BD simulations are steered by electrostatics calculated by Poisson-Boltzmann theory. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases but also suggest that these interactions are significant, at physiological ionic strengths. Furthermore, BD agrees with experiments that muscle LDH, aldolase, and GAPDH interact significantly with F-actin whereas TPI does not. BD indicates similarities in binding regions for aldolase and LDH among the different species investigated. Furthermore, the residues responsible for salt bridge formation in stable complexes persist as ionic strength increases. This suggests the importance of the residues determined for these binary complexes and specificity of the interactions. That these interactions are conserved across species, and there appears to be a general trend among the enzymes, support the importance of these enzyme-F-actin interactions in creating initial complexes critical for compartmentation.
Collapse
Affiliation(s)
- Neville Y Forlemu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Molecular modeling techniques have truly come of age in recent decades, and here we cover several of the most commonly used techniques, namely molecular dynamics, Brownian dynamics, and molecular docking. In each case, we explain the physical basis and limitations of the various techniques and then illustrate their application to various problems related to the cytoskeleton. This set of studies covers a relatively wide range of examples and is comprehensive enough to clearly see how these techniques could be applied to other systems. Finally, we cover several related methodologies that expand on these basic techniques to allow for more detailed and specific simulation and analysis.
Collapse
Affiliation(s)
- Xiange Zheng
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
8
|
Susa T, Sato T, Ono T, Kato T, Kato Y. Cofactor CLIM2 promotes the repressive action of LIM homeodomain transcription factor Lhx2 in the expression of porcine pituitary glycoprotein hormone alpha subunit gene. ACTA ACUST UNITED AC 2006; 1759:403-9. [PMID: 17005264 DOI: 10.1016/j.bbaexp.2006.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 11/20/2022]
Abstract
We have cloned a porcine orthologue of cofactor CLIM2 (Ldb1/NLI) from the porcine pituitary cDNA library by protein-protein interaction with the Yeast Two-Hybrid System using porcine Lhx2 as a bait protein. Porcine CLIM2 shows a high identity (99%) in the dimerization domain, nuclear localization signal and LIM binding domain with those of man and mouse. The expression of CLIM2 gene in the anterior pituitary lobe was detected during the porcine fetal and postnatal period by RT-PCR analysis, suggesting that this protein is constitutively expressing and plays a basic role in the anterior pituitary. Transfection assay to the pituitary tumor derived LbetaT2 cells, and the Chinese hamster ovary cells demonstrated that CLIM2 acts as a corepressor of the porcine Lhx2 function. Interestingly, CLIM2 alone apparently repressed the high level of alphaGSU gene expression in LbetaT2 cells. These data suggest that CLIM2 is a basic factor in the pituitary development and function, and plays the role of repressor to modify the function of Lhx2 on the alphaGSU gene expression.
Collapse
Affiliation(s)
- Takao Susa
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | | | | | | | | |
Collapse
|
9
|
Forlemu NY, Waingeh VF, Ouporov IV, Lowe SL, Thomasson KA. Theoretical study of interactions between muscle aldolase and F-actin: Insight into different species. Biopolymers 2006; 85:60-71. [PMID: 17039493 DOI: 10.1002/bip.20611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interactions of the glycolytic enzyme, fructose-1,6-bisphosphate aldolase (aldolase), with F-actin may be one mechanism for the colocalization of glycolytic enzymes. Examination of these interactions in different animal species tests this hypothesis by observing whether binding sites are conserved across species. Brownian dynamics (BD) simulations provide descriptions of such protein-protein interactions with the muscle isoforms of zebra fish and human aldolase. The results are compared with previous results obtained for rabbit muscle and yeast. The aldolase binding groove previously determined in rabbit muscle is conserved in both the human and fish muscle isoforms. The nonspecific radial free energies of interaction are similar with fish being slightly weaker than human and rabbit: human, -2.27 +/- 0.05 kcal/mol; rabbit, -2.0 +/- 0.04 kcal/mol; and fish, -1.5 +/- 0.03 kcal/mol. BD results show a large Boltzmann population of complexes formed around the A/D and B/C grooves of aldolase with the most feasible binding mode comprising two aldolase subunits to subdomain I region of the actin subunits. These results show that the location of the important residues and binding site for fish and human aldolase is very similar to that in rabbit and that in different animals the binding site is conserved. This suggests that the binding interaction between aldolase and F-actin is general in animal muscles and is rendered possible and energetically favorable through the conservation of this binding site.
Collapse
Affiliation(s)
- Neville Y Forlemu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA
| | | | | | | | | |
Collapse
|
10
|
Waingeh VF, Lowe SL, Thomasson KA. Brownian dynamics of interactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mutants and F-actin. Biopolymers 2004; 73:533-41. [PMID: 15048777 DOI: 10.1002/bip.10560] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Brownian dynamics simulations of computer models of GAPDH mutants interacting with F-actin emphasized the electrostatic nature of such interactions, and confirmed the importance of four previously identified lysine residues on the GAPDH structure in these interactions. Mutants were GAPDH models in which one or more of the previously identified lysines had been replaced with alanine. Simulations showed reduced binding of these mutants to F-actin compared to wild-type GAPDH. Binding was significantly reduced by mutating the four lysines; the specific electrostatic interaction energy of the quadruple mutant was -7.3 +/- 1.0 compared to -11.4 +/- 0.5 kcal/mol for the wild enzyme. The BD simulations also reaffirmed the importance of quaternary structure for GAPDH binding F-actin.
Collapse
Affiliation(s)
- Victor F Waingeh
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | |
Collapse
|
11
|
Lowe SL, Adrian C, Ouporov IV, Waingeh VF, Thomasson KA. Brownian dynamics simulations of glycolytic enzyme subsets with F-actin. Biopolymers 2004; 70:456-70. [PMID: 14648757 DOI: 10.1002/bip.10530] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain.
Collapse
Affiliation(s)
- S L Lowe
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | |
Collapse
|