1
|
Jayanandaiah A, Ayyappan A, Paramasivan NK, Narasimhaiah D, Sreedharan SE, Thulaseedharan JV, Sylaja PN. Diagnostic accuracy of carotid plaque magnetic resonance imaging compared to histopathology in symptomatic carotid artery stenosis. J Clin Neurosci 2024; 128:110802. [PMID: 39163700 DOI: 10.1016/j.jocn.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Vulnerable plaques have been shown to predict ipsilateral cerebral ischemic events and identifying them leads to appropriate secondary stroke prevention strategies. We evaluated the diagnostic accuracy of MR carotid plaque imaging in identifying plaque vulnerability when compared with histopathological findings in patients with symptomatic carotid stenosis who underwent carotid endarterectomy (CEA). METHODS A prospective cohort of forty-five consecutive patients with moderate to severe symptomatic carotid stenosis who underwent CEA at a tertiary Indian hospital had 3 T MRI plaque imaging with multi-parametric protocol between November 2021 and December 2022. Images were analyzed by a vascular radiologist blinded to histopathological data. High-risk plaque characteristics such as lipid rich necrotic core (LRNC), intraplaque hemorrhage (IPH), thin fibrous cap and ulceration were assessed and correlated with histopathological findings as per American Heart Association (AHA) classification using Cohen's kappa statistics to obtain diagnostic accuracies. RESULTS Of the 45 patients, 38(84 %) were males. The mean age was 65 ± 7.7 years and mean duration to CEA from the most recent event was 57 days (57 ± 46 days). A significant correlation between MR plaque imaging and histopathology was noted for IPH (sensitivity-91 %, specificity-86 %, κ = 0.774, p < 0.001), LRNC (sensitivity-92.1 %, specificity-85.7 %, κ = 0.697, p < 0.001), and plaque ulceration (sensitivity-84.6 %, specificity-78.1 %, κ = 0.563, p < 0.001). MRI had an overall sensitivity and specificity of 92.3 % and 84.2 % respectively (κ = 0.77, p < 0.001) in discriminating high risk plaques. CONCLUSION MR plaque imaging shows a very good correlation with histopathology and can identify unstable high-risk plaques with high accuracy. This may have implication in selection of patients for carotid revascularization in symptomatic carotid stenosis.
Collapse
Affiliation(s)
- Akash Jayanandaiah
- Comprehensive Stroke Care Program, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anoop Ayyappan
- Department of Imaging Science and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Naveen K Paramasivan
- Comprehensive Stroke Care Program, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Deepthi Narasimhaiah
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sapna E Sreedharan
- Comprehensive Stroke Care Program, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Jissa V Thulaseedharan
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P N Sylaja
- Comprehensive Stroke Care Program, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Renal artery assessment with non-enhanced MR angiography versus digital subtraction angiography: comparison between 1.5 and 3.0 T. Eur Radiol 2019; 30:1747-1754. [DOI: 10.1007/s00330-019-06440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023]
|
3
|
Crombag GAJC, van Hoof RHM, Holtackers RJ, Schreuder FHBM, Truijman MTB, Schreuder TAHCML, van Orshoven NP, Mess WH, Hofman PAM, van Oostenbrugge RJ, Wildberger JE, Kooi ME. Symptomatic Carotid Plaques Demonstrate Less Leaky Plaque Microvasculature Compared With the Contralateral Side: A Dynamic Contrast-Enhanced Magnetic Resonance Imaging Study. J Am Heart Assoc 2019; 8:e011832. [PMID: 30971168 PMCID: PMC6507193 DOI: 10.1161/jaha.118.011832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Rupture of a vulnerable carotid atherosclerotic plaque is an important underlying cause of ischemic stroke. Increased leaky plaque microvasculature may contribute to plaque vulnerability. These immature microvessels may facilitate entrance of inflammatory cells into the plaque. The objective of the present study is to investigate whether there is a difference in plaque microvasculature (the volume transfer coefficient Ktrans) between the ipsilateral symptomatic and contralateral asymptomatic carotid plaque using noninvasive dynamic contrast‐enhanced magnetic resonance imaging. Methods and Results Eighty‐eight patients with recent transient ischemic attack or ischemic stroke and ipsilateral >2 mm carotid plaque underwent 3 T magnetic resonance imaging to identify plaque components and to determine characteristics of plaque microvasculature. The volume transfer coefficient Ktrans, indicative for microvascular density, flow, and permeability, was calculated for the ipsilateral and asymptomatic plaque, using a pharmacokinetic model (Patlak). Presence of a lipid‐rich necrotic core, intraplaque hemorrhage, and a thin and/or ruptured fibrous cap was assessed on multisequence magnetic resonance imaging. We found significantly lower Ktrans in the symptomatic carotid plaque compared with the asymptomatic side (0.057±0.002 min−1 versus 0.062±0.002 min−1; P=0.033). There was an increased number of slices with intraplaque hemorrhage (0.9±1.6 versus 0.3±0.8, P=0.002) and lipid‐rich necrotic core (1.4±1.9 versus 0.8±1.4, P=0.016) and a higher prevalence of plaques with a thin and/or ruptured fibrous cap (32% versus 17%, P=0.023) at the symptomatic side. Conclusions Ktrans was significantly lower in symptomatic carotid plaques, indicative for a decrease of plaque microvasculature in symptomatic plaques. This could be related to a larger amount of necrotic tissue in symptomatic plaques. Clinical Trial Registration URL: http://www.clinicaltrials.gov.uk. Unique identifier: NCT01208025.
Collapse
Affiliation(s)
- Geneviève A J C Crombag
- 1 Department of Radiology and Nuclear Medicine Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands
| | - Raf H M van Hoof
- 1 Department of Radiology and Nuclear Medicine Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands.,5 Control Systems Technology Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - Robert J Holtackers
- 1 Department of Radiology and Nuclear Medicine Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands
| | - Floris H B M Schreuder
- 6 Department of Neurology Donders Institute for Brain Cognition & Behaviour Radboud University Medical Centre Nijmegen The Netherlands
| | - Martine T B Truijman
- 2 Department of Neurology Maastricht University Medical Centre Maastricht The Netherlands
| | | | | | - Werner H Mess
- 3 Department of Clinical Neurophysiology Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands
| | - Paul A M Hofman
- 1 Department of Radiology and Nuclear Medicine Maastricht University Medical Centre Maastricht The Netherlands
| | - Robert J van Oostenbrugge
- 2 Department of Neurology Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands
| | - Joachim E Wildberger
- 1 Department of Radiology and Nuclear Medicine Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands
| | - M Eline Kooi
- 1 Department of Radiology and Nuclear Medicine Maastricht University Medical Centre Maastricht The Netherlands.,4 CARIM School for Cardiovascular Diseases Maastricht University Medical Centre Maastricht The Netherlands
| |
Collapse
|
4
|
Crombag GAJC, Schreuder FHBM, van Hoof RHM, Truijman MTB, Wijnen NJA, Vöö SA, Nelemans PJ, Heeneman S, Nederkoorn PJ, Daemen JWH, Daemen MJAP, Mess WH, Wildberger JE, van Oostenbrugge RJ, Kooi ME. Microvasculature and intraplaque hemorrhage in atherosclerotic carotid lesions: a cardiovascular magnetic resonance imaging study. J Cardiovasc Magn Reson 2019; 21:15. [PMID: 30832656 PMCID: PMC6398220 DOI: 10.1186/s12968-019-0524-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The presence of intraplaque haemorrhage (IPH) has been related to plaque rupture, is associated with plaque progression, and predicts cerebrovascular events. However, the mechanisms leading to IPH are not fully understood. The dominant view is that IPH is caused by leakage of erythrocytes from immature microvessels. The aim of the present study was to investigate whether there is an association between atherosclerotic plaque microvasculature and presence of IPH in a relatively large prospective cohort study of patients with symptomatic carotid plaque. METHODS One hundred and thirty-two symptomatic patients with ≥2 mm carotid plaque underwent cardiovascular magnetic resonance (CMR) of the symptomatic carotid plaque for detection of IPH and dynamic contrast-enhanced (DCE)-CMR for assessment of plaque microvasculature. Ktrans, an indicator of microvascular flow, density and leakiness, was estimated using pharmacokinetic modelling in the vessel wall and adventitia. Statistical analysis was performed using an independent samples T-test and binary logistic regression, correcting for clinical risk factors. RESULTS A decreased vessel wall Ktrans was found for IPH positive patients (0.051 ± 0.011 min- 1 versus 0.058 ± 0.017 min- 1, p = 0.001). No significant difference in adventitial Ktrans was found in patients with and without IPH (0.057 ± 0.012 min- 1 and 0.057 ± 0.018 min- 1, respectively). Histological analysis in a subgroup of patients that underwent carotid endarterectomy demonstrated no significant difference in relative microvessel density between plaques without IPH (n = 8) and plaques with IPH (n = 15) (0.000333 ± 0.0000707 vs. and 0.000289 ± 0.0000439, p = 0.585). CONCLUSIONS A reduced vessel wall Ktrans is found in the presence of IPH. Thus, we did not find a positive association between plaque microvasculature and IPH several weeks after a cerebrovascular event. Not only leaky plaque microvessels, but additional factors may contribute to IPH development. TRIAL REGISTRATION NCT01208025 . Registration date September 23, 2010. Retrospectively registered (first inclusion September 21, 2010). NCT01709045 , date of registration October 17, 2012. Retrospectively registered (first inclusion August 23, 2011).
Collapse
Affiliation(s)
- Geneviève A. J. C. Crombag
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Floris H. B. M. Schreuder
- Department of Neurology & Donders Institute for Brain Cognition & Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Raf H. M. van Hoof
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Martine T. B. Truijman
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicky J. A. Wijnen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Stefan A. Vöö
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Patty J. Nelemans
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Sylvia Heeneman
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paul J. Nederkoorn
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Jan-Willem H. Daemen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mat J. A. P. Daemen
- Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Werner H. Mess
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J. E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Robert J. van Oostenbrugge
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M. Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Sheahan M, Ma X, Paik D, Obuchowski NA, St. Pierre S, Newman WP, Rae G, Perlman ES, Rosol M, Keith JC, Buckler AJ. Atherosclerotic Plaque Tissue: Noninvasive Quantitative Assessment of Characteristics with Software-aided Measurements from Conventional CT Angiography. Radiology 2018; 286:622-631. [PMID: 28858564 PMCID: PMC5790306 DOI: 10.1148/radiol.2017170127] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purpose To (a) evaluate whether plaque tissue characteristics determined with conventional computed tomographic (CT) angiography could be quantitated at higher levels of accuracy by using image processing algorithms that take characteristics of the image formation process coupled with biologic insights on tissue distributions into account by comparing in vivo results and ex vivo histologic findings and (b) assess reader variability. Materials and Methods Thirty-one consecutive patients aged 43-85 years (average age, 64 years) known to have or suspected of having atherosclerosis who underwent CT angiography and were referred for endarterectomy were enrolled. Surgical specimens were evaluated with histopathologic examination to serve as standard of reference. Two readers used lumen boundary to determine scanner blur and then optimized component densities and subvoxel boundaries to best fit the observed image by using semiautomatic software. The accuracy of the resulting in vivo quantitation of calcification, lipid-rich necrotic core (LRNC), and matrix was assessed with statistical estimates of bias and linearity relative to ex vivo histologic findings. Reader variability was assessed with statistical estimates of repeatability and reproducibility. Results A total of 239 cross sections obtained with CT angiography and histologic examination were matched. Performance on held-out data showed low levels of bias and high Pearson correlation coefficients for calcification (-0.096 mm2 and 0.973, respectively), LRNC (1.26 mm2 and 0.856), and matrix (-2.44 mm2 and 0.885). Intrareader variability was low (repeatability coefficient ranged from 1.50 mm2 to 1.83 mm2 among tissue characteristics), as was interreader variability (reproducibility coefficient ranged from 2.09 mm2 to 4.43 mm2). Conclusion There was high correlation and low bias between the in vivo software image analysis and ex vivo histopathologic quantitative measures of atherosclerotic plaque tissue characteristics, as well as low reader variability. Software algorithms can mitigate the blurring and partial volume effects of routine CT angiography acquisitions to produce accurate quantification to enhance current clinical practice. Clinical trial registration no. NCT02143102 © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on September 15, 2017.
Collapse
Affiliation(s)
- Malachi Sheahan
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Xiaonan Ma
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - David Paik
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Nancy A. Obuchowski
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Samantha St. Pierre
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - William P. Newman
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Guenevere Rae
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Eric S. Perlman
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Michael Rosol
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - James C. Keith
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| | - Andrew J. Buckler
- From the Louisiana State University Health Sciences Center, New Orleans, La (M.S., W.P.N., G.R.); Elucid Bioimaging, 225 Main St, Wenham, MA 01984 (X.M., D.P., S.S.P., M.R., J.C.K., A.J.B.); Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); and Perlman Advisory Group, Boynton Beach, Fla (E.S.P.)
| |
Collapse
|
6
|
Xia J, Yin A, Li Z, Liu X, Peng X, Xie N. Quantitative Analysis of Lipid-Rich Necrotic Core in Carotid Atherosclerotic Plaques by In Vivo Magnetic Resonance Imaging and Clinical Outcomes. Med Sci Monit 2017; 23:2745-2750. [PMID: 28584227 PMCID: PMC5470833 DOI: 10.12659/msm.901864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to explore the accuracy of in vivo magnetic resonance imaging (MRI) in the quantitative evaluation of lipid-rich necrotic core (LRNC) in carotid atherosclerotic plaques compared with histopathology, and to assess the association of LRNC size with cerebral ischemia symptoms. Material/Methods Thirty patients were enrolled and 19 patients (16 men and 3 women) were analyzed. All the patients were submitted to MRI on a Siemens Avanto (1.5-Tesla) device before carotid endarterectomy (CEA). The scanning protocol included three-dimensional time of flight (3D TOF), T1-weighted image (T1WI), T2-weighted image (T2WI), turbo spin-echo T2-weighted (T2-TSE), and contrast-enhanced T1-weighted image. MRI images were reviewed for quantitative measurements of LRNC areas. LRNC specimens were collected for histology. Percentages of LRNC area to total vessel area were assessed to determine the association of MRI with histological findings. Results There were 151 pairs of matched MRI and pathological sections. LRNC area percentages (LRNC area/vessel area) measured by MRI and histology were 20.6±9.0% and 18.7±9.5%, respectively (r=0.69, p<0.001). Twelve out of 19 patients had symptoms (S-group; 3 had recent stroke, 3 had a recent stroke and a history of transient ischemic attack (TIA), and 6 had TIA); the remaining 7 subjects showed no symptoms (NS-group). LRNC area percentages in the S- and NS-groups were 22.2±5.8% and 12.6±10.7%, respectively (p<0.05). Conclusions MRI can quantitatively measure LRNC in carotid atherosclerotic plaques, and may be useful in predicting the rupture risk of plaques. These findings provide a basis for imaging use in individualized treatment plan.
Collapse
Affiliation(s)
- Jun Xia
- Department of Radiology, Shenzhen No.2 People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Anyu Yin
- Department of Radiology, Shenzhen No.2 People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Zhenzhou Li
- Department of Ultrasound, Shenzhen No. 2 People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Xin Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China (mainland)
| | - Xianghong Peng
- Core Laboratory, Shenzhen No. 2 People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Ni Xie
- Core Laboratory, Shenzhen No. 2 People's Hospital (the First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
7
|
Manual versus Automated Carotid Artery Plaque Component Segmentation in High and Lower Quality 3.0 Tesla MRI Scans. PLoS One 2016; 11:e0164267. [PMID: 27930665 PMCID: PMC5145140 DOI: 10.1371/journal.pone.0164267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/22/2016] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To study the interscan reproducibility of manual versus automated segmentation of carotid artery plaque components, and the agreement between both methods, in high and lower quality MRI scans. METHODS 24 patients with 30-70% carotid artery stenosis were planned for 3T carotid MRI, followed by a rescan within 1 month. A multicontrast protocol (T1w,T2w, PDw and TOF sequences) was used. After co-registration and delineation of the lumen and outer wall, segmentation of plaque components (lipid-rich necrotic cores (LRNC) and calcifications) was performed both manually and automated. Scan quality was assessed using a visual quality scale. RESULTS Agreement for the detection of LRNC (Cohen's kappa (k) is 0.04) and calcification (k = 0.41) between both manual and automated segmentation methods was poor. In the high-quality scans (visual quality score ≥ 3), the agreement between manual and automated segmentation increased to k = 0.55 and k = 0.58 for, respectively, the detection of LRNC and calcification larger than 1 mm2. Both manual and automated analysis showed good interscan reproducibility for the quantification of LRNC (intraclass correlation coefficient (ICC) of 0.94 and 0.80 respectively) and calcified plaque area (ICC of 0.95 and 0.77, respectively). CONCLUSION Agreement between manual and automated segmentation of LRNC and calcifications was poor, despite a good interscan reproducibility of both methods. The agreement between both methods increased to moderate in high quality scans. These findings indicate that image quality is a critical determinant of the performance of both manual and automated segmentation of carotid artery plaque components.
Collapse
|
8
|
Skagen K, Evensen K, Scott H, Krohg-Sørensen K, Vatnehol SA, Hol PK, Skjelland M, Russell D. Semiautomated Magnetic Resonance Imaging Assessment of Carotid Plaque Lipid Content. J Stroke Cerebrovasc Dis 2016; 25:2004-10. [PMID: 27234919 DOI: 10.1016/j.jstrokecerebrovasdis.2016.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The composition of a carotid plaque is important for plaque vulnerability and stroke risk. The main aim of this study was to assess the potential of semiautomated segmentation of carotid plaque magnetic resonance imaging (MRI) in the assessment of the size of the lipid-rich necrotic core (LRNC). METHODS Thirty-four consecutive patients with carotid stenosis of 70% or higher, who were scheduled for carotid endarterectomy, underwent a clinical neurological examination, Color duplex ultrasound, 3-T MRI with an 8-channel carotid coil, and blood tests. All examinations were performed less than 24 hours prior to surgery and plaques were assessed histologically immediately following endarterectomy. Plaques were defined as symptomatic when associated with ipsilateral cerebral ischemic symptoms within 30 days prior to inclusion. The level of agreement between the size of the LRNC and calcification on MRI to the histological estimation of the same tissue components, plaque echolucency on ultrasound, and symptoms was assessed. RESULTS The size of the LRNC on MRI was significantly correlated to the percentage amount of lipid per plaque on histological assessment (P = .010, r = .5), and to echogenicity on ultrasound with echolucent plaques having larger LRNC than echogenic plaques (P = .001, r = -.7). CONCLUSIONS In this study, we found that semiautomated MRI assessments of the percentage LRNC in carotid plaques were significantly correlated to the percentage LRNC per plaque on histological assessment, and to echogenicity on ultrasound with echolucent plaques having larger LRNC than echogenic plaques.
Collapse
Affiliation(s)
- Karolina Skagen
- Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kristin Evensen
- Department of Neurology, Oslo University Hospital, Norway; Vestre Viken, Drammen Hospital, Norway
| | - Helge Scott
- Department of Pathology, Oslo University Hospital, Norway
| | | | | | - Per Kristian Hol
- Institute of Clinical Medicine, University of Oslo, Norway; The Intervention Centre, Oslo University Hospital, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, Norway
| | - David Russell
- Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
9
|
Lopez Gonzalez M, Foo S, Holmes W, Stewart W, Muir K, Condon B, Welch G, Forbes K. Atherosclerotic Carotid Plaque Composition: A 3T and 7T MRI-Histology Correlation Study. J Neuroimaging 2016; 26:406-13. [PMID: 26919134 DOI: 10.1111/jon.12332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- M.R. Lopez Gonzalez
- Department of Clinical Physics and Bioengineering; Glasgow Royal Infirmary; Glasgow UK
| | - S.Y. Foo
- ST1, West of Scotland Radiology Training Scheme, NHS; Glasgow UK
| | - W.M. Holmes
- Glasgow Experimental MRI Centre; Institute of Neuroscience and Psychology, University of Glasgow; UK
| | - W. Stewart
- Department of Neuropathology, Laboratory Medicine Building; Queen Elizabeth University Hospital; Glasgow UK
| | - K.W. Muir
- Centre for Stroke and Brain Imaging Research, Institute of Neuroscience and Psychology; University of Glasgow; UK
| | - B. Condon
- Institute of Neurological Sciences; Queen Elizabeth University Hospital; UK
| | - G. Welch
- Vascular Surgery; Queen Elizabeth University Hospital; Glasgow UK
| | - K.P. Forbes
- Institute of Neurological Sciences; Queen Elizabeth University Hospital; UK
| |
Collapse
|
10
|
Abstract
Plaque imaging by MR imaging provides a wealth of information on the characteristics of individual plaque that may reveal vulnerability to rupture, likelihood of progression, or optimal treatment strategy. T1-weighted and T2-weighted images among other options reveal plaque morphology and composition. Dynamic contrast-enhanced-MR imaging reveals plaque activity. To extract this information, image processing tools are needed. Numerous approaches for analyzing such images have been developed, validated against histologic gold standards, and used in clinical studies. These efforts are summarized in this article.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Room No. 109, Haidian District, Beijing, China
| | - Qiang Zhang
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Room No. 120, Haidian District, Beijing, China
| | - William Kerwin
- Department of Radiology, School of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Abstract
There has been significant progress made in 3-dimensional (3D) carotid plaque MR imaging techniques in recent years. Three-dimensional plaque imaging clearly represents the future in clinical use. With effective flow-suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multivascular beds capability, and even can be used in fast screening.
Collapse
Affiliation(s)
- Chun Yuan
- Vascular Imaging Lab, Department of Radiology, Bio-Molecular Imaging Center, University of Washington, Box 358050, 850 Republican Street, Seattle, WA 98109-4714, USA.
| | - Dennis L Parker
- Department of Radiology, Imaging & Neurosciences Center, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA
| |
Collapse
|
12
|
In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience. Int J Cardiovasc Imaging 2015; 32:73-81. [PMID: 26169389 DOI: 10.1007/s10554-015-0704-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Automatic in vivo segmentation of multicontrast (multisequence) carotid magnetic resonance for plaque composition has been proposed as a substitute for manual review to save time and reduce inter-reader variability in large-scale or multicenter studies. Using serial images from a prospective longitudinal study, we sought to compare a semi-automatic approach versus expert human reading in analyzing carotid atherosclerosis progression. Baseline and 6-month follow-up multicontrast carotid images from 59 asymptomatic subjects with 16-79 % carotid stenosis were reviewed by both trained radiologists with 2-4 years of specialized experience in carotid plaque characterization with MRI and a previously reported automatic atherosclerotic plaque segmentation algorithm, referred to as morphology-enhanced probabilistic plaque segmentation (MEPPS). Agreement on measurements from individual time points, as well as on compositional changes, was assessed using the intraclass correlation coefficient (ICC). There was good agreement between manual and MEPPS reviews on individual time points for calcification (CA) (area: ICC; 0.85-0.91; volume: ICC; 0.92-0.95) and lipid-rich necrotic core (LRNC) (area: ICC; 0.78-0.82; volume: ICC; 0.84-0.86). For compositional changes, agreement was good for CA volume change (ICC; 0.78) and moderate for LRNC volume change (ICC; 0.49). Factors associated with LRNC progression as detected by MEPPS review included intraplaque hemorrhage (positive association) and reduction in low-density lipoprotein cholesterol (negative association), which were consistent with previous findings from manual review. Automatic classifier for plaque composition produced results similar to expert manual review in a prospective serial MRI study of carotid atherosclerosis progression. Such automatic classification tools may be beneficial in large-scale multicenter studies by reducing image analysis time and avoiding bias between human reviewers.
Collapse
|
13
|
Quam DJ, Gundert TJ, Ellwein L, Larkee CE, Hayden P, Migrino RQ, Otake H, LaDisa JF. Immersive visualization for enhanced computational fluid dynamics analysis. J Biomech Eng 2014; 137:1934918. [PMID: 25378201 DOI: 10.1115/1.4029017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 11/08/2022]
Abstract
Modern biomedical computer simulations produce spatiotemporal results that are often viewed at a single point in time on standard 2D displays. An immersive visualization environment (IVE) with 3D stereoscopic capability can mitigate some shortcomings of 2D displays via improved depth cues and active movement to further appreciate the spatial localization of imaging data with temporal computational fluid dynamics (CFD) results. We present a semi-automatic workflow for the import, processing, rendering, and stereoscopic visualization of high resolution, patient-specific imaging data, and CFD results in an IVE. Versatility of the workflow is highlighted with current clinical sequelae known to be influenced by adverse hemodynamics to illustrate potential clinical utility.
Collapse
|
14
|
Sun J, Zhao XQ, Balu N, Hippe DS, Hatsukami TS, Isquith DA, Yamada K, Neradilek MB, Cantón G, Xue Y, Fleg JL, Desvigne-Nickens P, Klimas MT, Padley RJ, Vassileva MT, Wyman BT, Yuan C. Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging 2014; 31:95-103. [PMID: 25216871 DOI: 10.1007/s10554-014-0532-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/04/2014] [Indexed: 11/28/2022]
Abstract
This study sought to determine the multicenter reproducibility of magnetic resonance imaging (MRI) and the compatibility of different scanner platforms in assessing carotid plaque morphology and composition. A standardized multi-contrast MRI protocol was implemented at 16 imaging sites (GE: 8; Philips: 8). Sixty-eight subjects (61 ± 8 years; 52 males) were dispersedly recruited and scanned twice within 2 weeks on the same magnet. Images were reviewed centrally using a streamlined semiautomatic approach. Quantitative volumetric measurements on plaque morphology (lumen, wall, and outer wall) and plaque tissue composition [lipid-rich necrotic core (LRNC), calcification, and fibrous tissue] were obtained. Inter-scan reproducibility was summarized using the within-subject standard deviation, coefficient of variation (CV) and intraclass correlation coefficient (ICC). Good to excellent reproducibility was observed for both morphological (ICC range 0.98-0.99) and compositional (ICC range 0.88-0.96) measurements. Measurement precision was related to the size of structures (CV range 2.5-4.9 % for morphology, 36-44 % for LRNC and calcification). Comparable measurement variability was found between the two platforms on both plaque morphology and tissue composition. In conclusion, good to excellent inter-scan reproducibility of carotid MRI can be achieved in multicenter settings with comparable measurement precision between platforms, which may facilitate future multicenter endeavors that use serial MRI to monitor atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Jie Sun
- Department of Radiology, University of Washington, 850 Republican St Brotman 127, Seattle, WA, 98109, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Identifying a high risk cardiovascular phenotype by carotid MRI-depicted intraplaque hemorrhage. Int J Cardiovasc Imaging 2013; 29:1477-83. [DOI: 10.1007/s10554-013-0229-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
16
|
Kerwin WS. Carotid artery disease and stroke: assessing risk with vessel wall MRI. ISRN CARDIOLOGY 2012; 2012:180710. [PMID: 23209940 PMCID: PMC3504380 DOI: 10.5402/2012/180710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/03/2012] [Indexed: 11/23/2022]
Abstract
Although MRI is widely used to diagnose stenotic carotid arteries, it also detects characteristics of the atherosclerotic plaque itself, including its size, composition, and activity. These features are emerging as additional risk factors for stroke that can be feasibly acquired clinically. This paper summarizes the state of evidence for a clinical role for MRI of carotid atherosclerosis.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA 98109, USA ; VPDiagnostics Incorporation, Seattle, WA 98101, USA
| |
Collapse
|
17
|
Yuan C, Wang J, Balu N. High-field atherosclerotic plaque magnetic resonance imaging. Neuroimaging Clin N Am 2012; 22:271-84, xi. [PMID: 22548932 DOI: 10.1016/j.nic.2012.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Manifestations of atherosclerotic plaque in different arterial beds range from perfusion deficits to overt ischemia such as stroke and myocardial infarction. Atherosclerotic plaque composition is associated with its propensity to rupture and cause vascular events. Magnetic resonance (MR) imaging of atherosclerotic plaque using clinical 1.5 T scanners can detect plaque composition. Plaque MR imaging at higher field strengths offers both opportunities and challenges to improving the high spatial resolution and contrast required for this type of imaging. This article summarizes the technological requirements required for high-field plaque MR imaging and its application in detecting plaque components.
Collapse
Affiliation(s)
- Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
18
|
Moody A. Stroke: Cause and Effect—Seek and Ye Shall Find. JACC Cardiovasc Imaging 2012; 5:406-8. [DOI: 10.1016/j.jcmg.2012.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 11/17/2022]
|
19
|
van 't Klooster R, Naggara O, Marsico R, Reiber JHC, Meder JF, van der Geest RJ, Touzé E, Oppenheim C. Automated versus manual in vivo segmentation of carotid plaque MRI. AJNR Am J Neuroradiol 2012; 33:1621-7. [PMID: 22442043 DOI: 10.3174/ajnr.a3028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Automatically identifying carotid plaque composition using MR imaging remains a challenging task in vivo. The purpose of our study was to compare the detection and quantification of carotid artery atherosclerotic plaque components based on in vivo MR imaging data using manual and automated segmentation. MATERIALS AND METHODS Sixty patients from a multicenter study were split into a training group (20 patients) and a study group (40 patients). Each MR imaging study consisted of 4 high-resolution carotid wall sequences (T1, T2, PDw, TOF). Manual segmentation was performed by delineation of the vessel wall and different plaque components. Automated segmentation was performed in the study group by a supervised classifier trained on images from the training group of patients. RESULTS For the detection of plaque components, the agreement between the visual and automated analysis was moderate for calcifications (κ = 0.59, CI 95% [0.36-0.82]) and good for hemorrhage (0.65 [0.42-0.88]) and lipids (0.65 [0.03-1.27]). For quantification of plaque volumes, the intraclass correlation was high for hemorrhage (0.80 [0.54-0.92]) and fibrous tissue (0.80 [0.65-0.89]), good for lipids (0.65 [0.43-0.80]), and poor for calcifications. CONCLUSIONS In 40 patients with carotid stenosis, our results indicated that it was possible to automatically detect carotid plaque components with substantial or good agreement with visual identification, and that the volumes obtained manually and automatically were reasonably consistent for hemorrhage and lipids but not for calcium.
Collapse
Affiliation(s)
- R van 't Klooster
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu W, Balu N, Sun J, Zhao X, Chen H, Yuan C, Zhao H, Xu J, Wang G, Kerwin WS. Segmentation of carotid plaque using multicontrast 3D gradient echo MRI. J Magn Reson Imaging 2011; 35:812-9. [PMID: 22127812 DOI: 10.1002/jmri.22886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/11/2011] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the performance of automatic segmentation of atherosclerotic plaque components using solely multicontrast 3D gradient echo (GRE) magnetic resonance imaging (MRI). MATERIALS AND METHODS A total of 15 patients with a history of recent transient ischemic attacks or stroke underwent carotid vessel wall imaging bilaterally with a combination of 2D turbo spin echo (TSE) sequences and 3D GRE sequences. The TSE sequences included T1-weighted, T2-weighted, and contrast-enhanced T1-weighted scans. The 3D GRE sequences included time-of-flight (TOF), magnetization-prepared rapid gradient echo (MP-RAGE), and motion-sensitized driven equilibrium prepared rapid gradient echo (MERGE) scans. From these images, the previously developed morphology-enhanced probabilistic plaque segmentation (MEPPS) algorithm was retrained based solely on the 3D GRE sequences to segment necrotic core (NC), calcification (CA), and loose matrix (LM). Segmentation performance was assessed using a leave-one-out cross-validation approach via comparing the new 3D-MEPPS algorithm to the original MEPPS algorithm that was based on the traditional multicontrast protocol including 2D TSE and TOF sequences. RESULTS Twenty arteries of 15 subjects were found to exhibit significant plaques within the coverage of all imaging sequences. For these arteries, between new and original MEPPS algorithms, the areas per slice exhibited correlation coefficients of 0.86 for NC, 0.99 for CA, and 0.80 for LM; no significant area bias was observed. CONCLUSION The combination of 3D imaging sequences (TOF, MP-RAGE, and MERGE) can provide sufficient contrast to distinguish NC, CA, and LM. Automatic segmentation using 3D sequences and traditional multicontrast protocol produced highly similar results.
Collapse
Affiliation(s)
- Wenbo Liu
- Biomedical Engineering & Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Biasiolli L, Lindsay AC, Choudhury RP, Robson MD. Loss of fine structure and edge sharpness in fast-spin-echo carotid wall imaging: measurements and comparison with multiple-spin-echo in normal and atherosclerotic subjects. J Magn Reson Imaging 2011; 33:1136-43. [PMID: 21509872 DOI: 10.1002/jmri.22569] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To test whether the k-space acquisition strategy used by fast-spin-echo (FSE) is a major source of blurring in carotid wall and plaque imaging, and investigate an alternative acquisition approach. MATERIALS AND METHODS The effect of echo train length (ETL) and T(2) on the amount of blurring was studied in FSE simulations of vessel images. Edge sharpness was measured in black-blood T(1) W and proton density-weighted (PDW) carotid images acquired from 5 normal volunteers and 19 asymptomatic patients using both FSE and multiple-spin-echo (Multi-SE) sequences at 3 Tesla (T). Plaque images were classified and divided in group α (tissues' average T(2) ∼ 40-70 ms) and group β (plaque components with shorter T(2) ). RESULTS Simulations predicted 26.9% reduction of vessel edge sharpness from Multi-SE to FSE images (ETL = 9, T(2) = 60 ms). This agreed with in vivo measurements in normal volunteers (27.4%) and in patient group α (26.2%), while in group β the loss was higher (31.6%). CONCLUSION FSE significantly reduced vessel edge sharpness along the phase-encoding direction in T(1) W and PDW images. Blurring was stronger in the presence of plaque components with short T(2) times. This study shows a limitation of FSE and the potential of Multi-SE to improve the quality of carotid imaging.
Collapse
Affiliation(s)
- Luca Biasiolli
- University of Oxford Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
22
|
Migrino RQ, Bowers M, Harmann L, Prost R, LaDisa JF. Carotid plaque regression following 6-month statin therapy assessed by 3T cardiovascular magnetic resonance: comparison with ultrasound intima media thickness. J Cardiovasc Magn Reson 2011; 13:37. [PMID: 21812992 PMCID: PMC3166901 DOI: 10.1186/1532-429x-13-37] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/03/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) allows volumetric carotid plaque measurement that has advantage over 2-dimensional ultrasound (US) intima-media thickness (IMT) in evaluating treatment response. We tested the hypothesis that 6-month statin treatment in patients with carotid plaque will lead to plaque regression when measured by 3 Tesla CMR but not by IMT. METHODS Twenty-six subjects (67 ± 2 years, 7 females) with known carotid plaque (> 1.1 mm) and coronary or cerebrovascular atherosclerotic disease underwent 3T CMR (T1, T2, proton density and time of flight sequences) and US at baseline and following 6 months of statin therapy (6 had initiation, 7 had increase and 13 had maintenance of statin dosing). CMR plaque volume (PV) was measured in the region 12 mm below and up to 12 mm above carotid flow divider using software. Mean posterior IMT in the same region was measured. Baseline and 6-month CMR PV and US IMT were compared. Change in lipid rich/necrotic core (LR/NC) and calcification plaque components from CMR were related to change in PV. RESULTS Low-density lipoprotein cholesterol decreased (86 ± 6 to 74 ± 4 mg/dL, p = 0.046). CMR PV decreased 5.8 ± 2% (1036 ± 59 to 976 ± 65 mm3, p = 0.018). Mean IMT was unchanged (1.12 ± 0.06 vs. 1.14 ± 0.06 mm, p = NS). Patients with initiation or increase of statins had -8.8 ± 2.8% PV change (p = 0.001) while patients with maintenance of statin dosing had -2.7 ± 3% change in PV (p = NS). There was circumferential heterogeneity in CMR plaque thickness with greatest thickness in the posterior carotid artery, in the region opposite the flow divider. Similarly there was circumferential regional difference in change of plaque thickness with significant plaque regression in the anterior carotid region in region of the flow divider. Change in LR/NC (R = 0.62, p = 0.006) and calcification (R = 0.45, p = 0.03) correlated with PV change. CONCLUSIONS Six month statin therapy in patients with carotid plaque led to reduced plaque volume by 3T CMR, but ultrasound posterior IMT did not show any change. The heterogeneous spatial distribution of plaque and regional differences in magnitude of plaque regression may explain the difference in findings and support volumetric measurement of plaque. 3T CMR has potential advantage over ultrasound IMT to assess treatment response in individuals and may allow reduced sample size, duration and cost of clinical trials of plaque regression.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carotid Artery Diseases/blood
- Carotid Artery Diseases/diagnosis
- Carotid Artery Diseases/diagnostic imaging
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/pathology
- Carotid Artery, Common/diagnostic imaging
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/pathology
- Female
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Image Interpretation, Computer-Assisted
- Lipids/blood
- Magnetic Resonance Imaging
- Male
- Middle Aged
- Necrosis
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/diagnosis
- Plaque, Atherosclerotic/diagnostic imaging
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Predictive Value of Tests
- Prospective Studies
- Time Factors
- Treatment Outcome
- Tunica Intima/diagnostic imaging
- Tunica Intima/drug effects
- Tunica Intima/pathology
- Tunica Media/diagnostic imaging
- Tunica Media/drug effects
- Tunica Media/pathology
- Ultrasonography
- Vascular Calcification/diagnosis
- Vascular Calcification/drug therapy
- Wisconsin
Collapse
Affiliation(s)
- Raymond Q Migrino
- Department of Medicine, Marquette University, 1120 W. Wisconsin Avenue, Wilwaukee, WI 53233, USA
- Radiology Department, Medical College of Wisconsin, 8701 Watertown Plank Road | Milwaukee, WI 53226, USA
- Cardiology Department, Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85012-1892, USA
| | - Mark Bowers
- Department of Medicine, Marquette University, 1120 W. Wisconsin Avenue, Wilwaukee, WI 53233, USA
| | - Leanne Harmann
- Department of Medicine, Marquette University, 1120 W. Wisconsin Avenue, Wilwaukee, WI 53233, USA
| | - Robert Prost
- Radiology Department, Medical College of Wisconsin, 8701 Watertown Plank Road | Milwaukee, WI 53226, USA
| | - John F LaDisa
- Department of Medicine, Marquette University, 1120 W. Wisconsin Avenue, Wilwaukee, WI 53233, USA
- Biomedical Engineering Department, Marquette University, 1120 W. Wisconsin Avenue, Wilwaukee, WI 53233, USA
| |
Collapse
|
23
|
Qiao Y, Etesami M, Malhotra S, Astor BC, Virmani R, Kolodgie FD, Trout HH, Wasserman BA. Identification of intraplaque hemorrhage on MR angiography images: a comparison of contrast-enhanced mask and time-of-flight techniques. AJNR Am J Neuroradiol 2011; 32:454-9. [PMID: 21233234 DOI: 10.3174/ajnr.a2320] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE MRA is widely used to measure carotid narrowing. Standard CE- and TOF-MRA techniques use highly T1-weighted gradient-echo sequences that can detect T1 short blood products, so they have the potential to identify IPH, an indicator of plaque rupture. We sought to determine the accuracy and reliability of these MRA sequences to detect IPH. MATERIALS AND METHODS 3D TOF and CE carotid MRA scans were obtained at 3T on 15 patients (age range, 58-86 years; 13 men) scheduled for CEA. The source images from the precontrast (mask) CE-MRA and the TOF sequences were reviewed by 2 independent readers for IPH presence (identified as hyperintense signal intensity compared with adjacent muscle). CEA specimens were stained with antibody against glycophorin A and Mallory stain to detect IPH and were correlated with MR images. RESULTS Nine of 15 CEA specimens (61 of 144 MR images) contained IPH confirmed by histology. Compared with TOF, CE-MRA mask demonstrated greater sensitivity, specificity, PPV, and NPV for IPH detection. The accuracy for correctly identifying IPH by using CE-MRA mask images and TOF images was 94% and 84%, respectively. Inter- and intraobserver agreement for IPH detection was excellent by mask images (κ = 0.91 and κ = 0.94, respectively) and TOF images (κ = 0.77 and κ = 0.84, respectively). CONCLUSIONS CE-MRA mask images are highly accurate and reliable for identifying IPH, more so than the TOF sequence, and can potentially provide valuable information about risk for rupture.
Collapse
Affiliation(s)
- Y Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Current clinical techniques that rely on stenosis measurement alone appear to be insufficient for risk prediction in atherosclerosis patients. Many novel imaging methods have been developed to study atherosclerosis progression and to identify new features that can predict future clinical risk. MRI of atherosclerotic vessel walls is one such method. It has the ability to noninvasively evaluate multiple biomarkers of the disease such as luminal stenosis, plaque burden, tissue composition and plaque activity. In addition, the accuracy of in vivo MRI has been validated against histology with high reproducibility, thus paving the way for application to epidemiological studies of disease pathogenesis and, by serial MRI, in monitoring the efficacy of therapeutic intervention. In this review, we describe the various MR techniques used to evaluate aspects of plaque progression, discuss imaging-based measurements (imaging biomarkers), and also detail their validation. The application of plaque MRI in clinical trials as well as emerging imaging techniques used to evaluate plaque compositional features and biological activities are also discussed.
Collapse
Affiliation(s)
- Jinnan Wang
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, 10510
- Department of Radiology, University of Washington, Seattle, WA, 98109
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, 98109
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, WA, 98109
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, 98109
| |
Collapse
|
25
|
Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis 2010; 13:87-99. [DOI: 10.1007/s10456-010-9172-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
|
26
|
LaDisa JF, Bowers M, Harmann L, Prost R, Doppalapudi AV, Mohyuddin T, Zaidat O, Migrino RQ. Time-efficient patient-specific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden. Med Phys 2010; 37:784-92. [PMID: 20229888 DOI: 10.1118/1.3292631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Low wall shear stress (WSS) and high oscillatory shear index (OSI) influence plaque formation, yet little is known about their role in progression/regression of established plaques because of lack of practical means to calculate them in individual patients. Our aim was to use computational fluid dynamics (CFD) models of patients with carotid plaque undergoing statin treatment to calculate WSS and OSI in a time-efficient manner, and determine their relationship to plaque thickness (PT), plaque composition (PC), and regression. METHODS Eight patients (68 +/- 9 yr, one female) underwent multicontrast 3 T MRI at baseline and six-month post statin treatment. PT and PC were measured in carotid segments (common-CC, bifurcation-B, internal-IC) and circumferentially in nonoverlapping 600 angles and correlated with CFD models created from MRI, ultrasound, and blood pressure. RESULTS PT was highest in B (2.42 +/- 0.98 versus CC: 1.60 +/- 0.47, IC: 1.62 +/- 0.52 mm, p < 0.01). Circumferentially, plaque was greatest opposite the flow divider (p < 0.01), where the lowest WSS and highest OSI were observed. In B and IC, PT was inversely related to WSS (R = -0.28 and -0.37, p < 0.01) and directly related to OSI (R = 0.22 and 0.52, p < 0.05). The total plaque volume changed from 1140 +/- 437 to 974 +/- 587 mm3 at six months (p = 0.1). Baseline WSS, but not OSI, correlated with changes in PT, necrotic tissue, and hemorrhage in B and IC, but not CC. CFD modeling took 49 +/- 18 h per patient. CONCLUSIONS PT and PC correspond to adverse WSS and OSI in B and IC, and WSS is modestly but significantly related to changes in PT after short-term statin treatment. Regional hemodynamics from CFD can feasibly augment routine clinical imaging for comprehensive plaque evaluation.
Collapse
Affiliation(s)
- John F LaDisa
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Saba L, Potters F, van der Lugt A, Mallarini G. Imaging of the fibrous cap in atherosclerotic carotid plaque. Cardiovasc Intervent Radiol 2010; 33:681-9. [PMID: 20237780 DOI: 10.1007/s00270-010-9828-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 02/04/2010] [Indexed: 12/21/2022]
Abstract
In the last two decades, a substantial number of articles have been published to provide diagnostic solutions for patients with carotid atherosclerotic disease. These articles have resulted in a shift of opinion regarding the identification of stroke risk in patients with carotid atherosclerotic disease. In the recent past, the degree of carotid artery stenosis was the sole determinant for performing carotid intervention (carotid endarterectomy or carotid stenting) in these patients. We now know that the degree of stenosis is only one marker for future cerebrovascular events. If one wants to determine the risk of these events more accurately, other parameters must be taken into account; among these parameters are plaque composition, presence and state of the fibrous cap (FC), intraplaque haemorrhage, plaque ulceration, and plaque location. In particular, the FC is an important structure for the stability of the plaque, and its rupture is highly associated with a recent history of transient ischaemic attack or stroke. The subject of this review is imaging of the FC.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria di Cagliari, Polo di Monserrato, ss 554 Monserrato, Cagliari 09045, Italy.
| | | | | | | |
Collapse
|
28
|
Oikawa M, Ota H, Takaya N, Miller Z, Hatsukami TS, Yuan C. Carotid magnetic resonance imaging. A window to study atherosclerosis and identify high-risk plaques. Circ J 2009; 73:1765-73. [PMID: 19755748 DOI: 10.1253/circj.cj-09-0617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite recent advances in the understanding and etiology of cardiovascular disease, it remains the leading cause of morbidity and mortality worldwide. A great deal of research has been dedicated to investigating and identifying plaque instability: the so-called "vulnerable plaque". A reliable, in vivo, imaging method capable of identifying plaque characteristics associated with high-risk plaque will be immensely useful for evaluating plaque status and predicting future events. With excellent soft-tissue contrast and resolution, magnetic resonance imaging (MRI) has the ability to visualize features of vulnerable plaques, as well as perform longitudinal studies on the etiology, progression, and regression of atherosclerotic plaque. This review will cover the current state-of-the-art and new developments in carotid MRI to characterize atherosclerosis and its use in clinical diagnoses and longitudinal studies to understand mechanisms of lesion progression and regression.
Collapse
Affiliation(s)
- Minako Oikawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review examines the state of the art in vessel wall imaging by magnetic resonance imaging (MRI) with an emphasis on the biomechanical assessment of atherosclerotic plaque. Three areas of advanced techniques are discussed. First, alternative contrast mechanisms, including susceptibility, magnetization transfer, diffusion, and perfusion, are presented as to how they facilitate accurate determination of plaque constituents underlying biomechanics. Second, imaging technologies including hardware and sequences, are reviewed as to how they provide the resolution and signal-to-noise ratio necessary for determining plaque structure. Finally, techniques for combining MRI data into an overall assessment of plaque biomechanical properties, including wall shear stress and internal plaque strain, are presented. The paper closes with a discussion of the extent to which these techniques have been applied to different arteries commonly targeted by vessel wall MRI.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|