1
|
Guedes G, Uribe KB, Martínez-Parra L, Aires A, Beraza M, Ruiz-Cabello J, Cortajarena AL. Engineering Protein-Nanoparticle Hybrids as Targeted Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59849-59861. [PMID: 39444371 DOI: 10.1021/acsami.4c12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Iron oxide nanoparticles (IONPs) have shown great promise in biomedical applications, particularly as MRI contrast agents due to their magnetic properties and biocompatibility. Although several IONPs have been approved by regulatory agencies as MRI contrast agents, their primary application as negative contrast agents limits their usage. Additionally, there is an emerging need for the development of molecular contrast agents that can specifically target biomarkers, enabling more accurate and sensitive diagnostics. To address these challenges, we exploited the engineerability of proteins to stabilize IONPs with tailored magnetic properties, creating protein-stabilized iron oxide nanoparticles (Prot-IONPs) and leveraged the chemical diversity of proteins to functionalize Prot-IONPs with targeting moieties. As a proof-of-concept, we used alendronate (Ald) to target atherosclerotic plaques in the aorta. Simple protein functionalization allowed targeting while maintaining the stability and relaxation properties of the Prot-IONPs. Prot-IONPs-Ald successfully enabled positive contrast imaging of atherosclerotic plaques in vivo in an atherosclerotic mouse model (ApoE-/- mice on a high-fat diet). This study demonstrates the potential of engineering protein-nanoparticle hybrids as versatile platforms for developing targeted in vivo MRI contrast agents.
Collapse
Affiliation(s)
- Gabriela Guedes
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain
| | - Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
| | - Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
| | - Marta Beraza
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Ciber Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastian Paseo Miramón 194, 20014 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Chavan DD, Bhosale RR, Thorat VM, Shete AS, Patil SJ, Tiwari DD. Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors. Cureus 2024; 16:e70312. [PMID: 39469411 PMCID: PMC11513206 DOI: 10.7759/cureus.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The purpose of nanotechnology-based drug delivery systems or novel drug delivery systems is to improve the effectiveness of therapy, and their promising properties have led to their increasing significance in the management of cancer. The researchers have primarily focused on designing novel nanocarriers, like nanoparticles (NPs), that can effectively deliver drugs to target cells and respond specifically to conditions particular to cancer. Whether passive or active targeting, these nanocarriers can deliver therapeutic cargoes to the tumor site to release the drug from the drug delivery systems. The purpose of this study is to provide recent scientific literature and key findings to researchers as well as the scientific community from the medical and pharmaceutical domains by reporting current advancements in the development of NPs for the treatment of different malignant solid tumors, such as colorectal, pancreatic, prostate, and cervical cancer.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| |
Collapse
|
3
|
Baniasadi A, Das JP, Prendergast CM, Beizavi Z, Ma HY, Jaber MY, Capaccione KM. Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis. J Transl Med 2024; 22:567. [PMID: 38872212 PMCID: PMC11177383 DOI: 10.1186/s12967-024-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
Collapse
Affiliation(s)
- Alireza Baniasadi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA.
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conor M Prendergast
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Zahra Beizavi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Hong Y Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | | | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| |
Collapse
|
4
|
Shen X, Özen AC, Monsivais H, Susnjar A, Ilbey S, Zheng W, Du Y, Chiew M, Emir U. High-resolution 3D ultra-short echo time MRI with Rosette k-space pattern for brain iron content mapping. J Trace Elem Med Biol 2023; 77:127146. [PMID: 36871432 PMCID: PMC10107748 DOI: 10.1016/j.jtemb.2023.127146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND The iron concentration increases during normal brain development and is identified as a risk factor for many neurodegenerative diseases, it is vital to monitor iron content in the brain non-invasively. PURPOSE This study aimed to quantify in vivo brain iron concentration with a 3D rosette-based ultra-short echo time (UTE) magnetic resonance imaging (MRI) sequence. METHODS A cylindrical phantom containing nine vials of different iron concentrations (iron (II) chloride) from 0.5 millimoles to 50 millimoles and six healthy subjects were scanned using 3D high-resolution (0.94 ×0.94 ×0.94 mm3) rosette UTE sequence at an echo time (TE) of 20 μs. RESULTS Iron-related hyperintense signals (i.e., positive contrast) were detected based on the phantom scan, and were used to establish an association between iron concentration and signal intensity. The signal intensities from in vivo scans were then converted to iron concentrations based on the association. The deep brain structures, such as the substantia nigra, putamen, and globus pallidus, were highlighted after the conversion, which indicated potential iron accumulations. CONCLUSION This study suggested that T1-weighted signal intensity could be used for brain iron mapping.
Collapse
Affiliation(s)
- Xin Shen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Antonia Susnjar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Yansheng Du
- Department of Neurology, School of Medicine, Indiana University, Bloomington, IN, USA
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Uzay Emir
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Shen X, Özen AC, Sunjar A, Ilbey S, Sawiak S, Shi R, Chiew M, Emir U. Ultra-short T 2 components imaging of the whole brain using 3D dual-echo UTE MRI with rosette k-space pattern. Magn Reson Med 2023; 89:508-521. [PMID: 36161728 PMCID: PMC9712161 DOI: 10.1002/mrm.29451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aimed to develop a new 3D dual-echo rosette k-space trajectory, specifically designed for UTE MRI applications. The imaging of the ultra-short transverse relaxation time (uT2 ) of brain was acquired to test the performance of the proposed UTE sequence. THEORY AND METHODS The rosette trajectory was developed based on rotations of a "petal-like" pattern in the kx -ky plane, with oscillated extensions in the kz -direction for 3D coverage. Five healthy volunteers underwent 10 dual-echo 3D rosette UTE scans with various TEs. Dual-exponential complex model fitting was performed on the magnitude data to separate uT2 signals, with the output of uT2 fraction, uT2 value, and long-T2 value. RESULTS The 3D rosette dual-echo UTE sequence showed better performance than a 3D radial UTE acquisition. More significant signal intensity decay in white matter than gray matter was observed along with the TEs. The white matter regions had higher uT2 fraction values than gray matter (10.9% ± 1.9% vs. 5.7% ± 2.4%). The uT2 value was approximately 0.10 ms in white matter . CONCLUSION The higher uT2 fraction value in white matter compared to gray matter demonstrated the ability of the proposed sequence to capture rapidly decaying signals.
Collapse
Affiliation(s)
- Xin Shen
- Weldon School of Biomedical Engineering, Purdue University
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Antonia Sunjar
- Weldon School of Biomedical Engineering, Purdue University
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Stephen Sawiak
- Department of Clinical Neurosciences, University of Cambridge, UK,Department of Psychology, University of Cambridge, UK
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University,College of Veterinary Medicine, Purdue University
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Uzay Emir
- Weldon School of Biomedical Engineering, Purdue University,Health Science Department, Purdue University
| |
Collapse
|
6
|
Xie M, Xu Y, Huang J, Li Y, Wang L, Yang L, Mao H. Going even smaller: Engineering sub-5 nm nanoparticles for improved delivery, biocompatibility, and functionality. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1644. [PMID: 32432393 PMCID: PMC8654183 DOI: 10.1002/wnan.1644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/10/2022]
Abstract
The rapid development and advances in nanomaterials and nanotechnology in the past two decades have made profound impact in our approaches to individualized disease diagnosis and treatment. Nanomaterials, mostly in the range of 10-200 nm, developed for biomedical applications provide a wide range of platforms for building and engineering functionalized structures, devices, or systems to fulfill the specific diagnostic and therapeutic needs. Driven by achieving the ultimate goal of clinical translation, sub-5 nm nano-constructs, in particular inorganic nanoparticles such as gold, silver, silica, and iron oxide nanoparticles, have been developed in recent years to improve the biocompatibility, delivery and pharmacokinetics of imaging probes and drug delivery systems, as well as in vivo theranostic applications. The emerging studies have provided new findings that demonstrated the unique size-dependent physical properties, physiological behaviors and biological functions of the nanomaterials in the range of the sub-5 nm scale, including renal clearance, novel imaging contrast, and tissue distribution. This advanced review attempts to introduce the new strategies of rational design for engineering nanoparticles with the core sizes under 5 nm in consideration of the clinical and translational requirements. We will provide readers the update on recent discoveries of chemical, physical, and biological properties of some biocompatible sub-5 nm nanomaterials as well as their demonstrated imaging and theranostic applications, followed by sharing our perspectives on the future development of this class of nanomaterials. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Manman Xie
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, The United States of America
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, The United States of America
| | - Jing Huang
- Laboratory of Vascular Biology, Harvard Medical School, Boston, Massachusetts, The United States of America
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, The United States of America
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, The United States of America
- Department of Radiology, The People’s Hospital of Longhua, Shenzhen, Guangdong, China
| | - Lily Yang
- Department of Surgery, Emory University, Atlanta, Georgia, The United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, The United States of America
| |
Collapse
|
7
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
8
|
Li Y, Wu H, Ji B, Qian W, Xia S, Wang L, Xu Y, Chen J, Yang L, Mao H. Targeted Imaging of CD206 Expressing Tumor-Associated M2-like Macrophages Using Mannose-Conjugated Antibiofouling Magnetic Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:4335-4347. [PMID: 34841220 DOI: 10.1021/acsabm.0c00368] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although tumor-associated macrophages (TAMs) have been shown to promote cancer progression, their roles in tumor development and resistance to therapy remain to be fully understood, mainly because of the lack of a good approach to evaluate the dynamic changes of heterogeneous macrophages in their residing microenvironment. Here, we report an approach of using antibiofouling PEG-b-AGE polymer-coated iron oxide nanoparticles (IONPs) for targeted imaging of mannose receptor (CD206)-expressing M2-like TAMs. Antibiofouling polymer coatings block non-specific phagocytosis of IONPs by different cells but enable ligand-mediated CD206+ M2-like macrophage targeting after surface functionalizing with mannose (Man-IONP). Costaining tissue sections of the 4T1 mouse mammary tumors using an anti-CD206 antibody and fluorescent dye (TRITC)-labeled Man-IONP showed 94.7 ± 4.5% colocalization of TRITC-Man-IONPs with the anti-CD206 antibody. At 48 h after intravenous (i.v.) injection of Man-IONPs, magnetic resonance imaging of mice bearing orthotopic 4T1 mammary tumors showed a significantly larger IONP-induced decrease of the transverse relaxation time (T 2) in tumors with 29.4 ± 1.5 ms compared to 12.3 ± 3.6 ms in tumors that received non-targeted IONP probes (P < 0.001). Immunofluorescence-stained tumor tissue sections collected at 6, 18, and 24 h after i.v. administration of the nanoprobes revealed that Man-IONPs specifically targeted CD206+ M2-like macrophages in various tumor areas at all time points, while nonconjugated IONPs were absent in the tumor after 18 h. Thus, antibiofouling Man-IONPs demonstrated the capability of explicitly imaging CD206+ M2-like macrophages in vivo and potentials for investigating the dynamics of macrophages in the tumor microenvironment and delivering therapeutics targeting M2-like TAMs.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30329, United States
| | - Hui Wu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30329, United States
| | - Bing Ji
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30329, United States
| | - Weiping Qian
- Department of Surgery, Emory University, Atlanta, Georgia 30329, United States
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia 30329, United States
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30329, United States; Department of Radiology, The People's Hospital of Longhua, Shenzhen, Guangdong 518109, China
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30329, United States
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia 30329, United States
| | - Lily Yang
- Department of Surgery, Emory University, Atlanta, Georgia 30329, United States
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30329, United States
| |
Collapse
|
9
|
Wu C, Chen T, Deng L, Xia Q, Chen C, Lan M, Pu Y, Tang H, Xu Y, Zhu J, Xu C, Shen C, Zhang X. Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents. NANOSCALE ADVANCES 2020; 2:2752-2757. [PMID: 36132378 PMCID: PMC9416939 DOI: 10.1039/d0na00117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/15/2020] [Indexed: 06/15/2023]
Abstract
In this communication, a paramagnetic bifunctional manganese(ii) chelate ([Mn(Dopa-EDTA)]2-) containing a catechol group is designed and synthesized. The catechol can bind iron ions on the surface of superparamagnetic iron oxide (SPIO) nanocrystals to form core-shell nanoparticles. Both 4 and 7 nm SPIO@[Mn(Dopa-EDTA)]2- show good water solubility, single-crystal dispersion, and low cytotoxicity. The study of the interplay between the longitudinal and transverse relaxation revealed that 4 nm SPIO@[Mn(Dopa-EDTA)]2- with lower r 2/r 1 = 1.75 at 0.5 T tends to be a perfect T 1 contrast agent while 7 nm SPIO@[Mn(Dopa-EDTA)]2- with a higher r 2/r 1 = 15.0 at 3.0 T tends to be a T 2 contrast agent. Interestingly, 4 nm SPIO@[Mn(Dopa-EDTA)]2- with an intermediate value of r 2/r 1 = 5.26 at 3.0 T could act as T 1-T 2 dual-modal contrast agent. In vivo imaging with the 4 nm SPIO@[Mn(Dopa-EDTA)]2- nanoparticle shows unique imaging features: (1) long-acting vascular imaging and different signal intensity changes between the liver parenchyma and blood vessels with the CEMRA sequence; (2) the synergistic contrast enhancement of hepatic imaging with the T 1WI and T 2WI sequence. In summary, these Fe/Mn hybrid core-shell nanoparticles, with their ease of synthesis, good biocompatibility, and synergistic contrast enhancement ability, may provide a useful method for tissue and vascular MR imaging.
Collapse
Affiliation(s)
- Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Tianwu Chen
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Lihua Deng
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- Department of Radiology, First People's Hospital of Neijiang Neijiang 641000 China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Chuan Chen
- School of Pharmacy, North Sichuan Medical College Nanchong 637000 China
| | - Mu Lan
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Hongjie Tang
- Department of Radiology, Nanchong Hospital of Traditional Chinese Medicine Nanchong 637000 China
| | - Ye Xu
- Department of Radiology, Children's Hospital of Chongqing Medical University Chongqing 401122 China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- School of Pharmacy, North Sichuan Medical College Nanchong 637000 China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| |
Collapse
|
10
|
Deh K, Zaman M, Vedvyas Y, Liu Z, Gillen KM, O' Malley P, Bedretdinova D, Nguyen T, Lee R, Spincemaille P, Kim J, Wang Y, Jin MM. Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects. Sci Rep 2020; 10:1171. [PMID: 31980695 PMCID: PMC6981186 DOI: 10.1038/s41598-020-58219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
The use of magnetic fluid hyperthermia (MFH) for cancer therapy has shown promise but lacks suitable methods for quantifying exogenous irons such as superparamagnetic iron oxide (SPIO) nanoparticles as a source of heat generation under an alternating magnetic field (AMF). Application of quantitative susceptibility mapping (QSM) technique to prediction of SPIO in preclinical models has been challenging due to a large variation of susceptibility values, chemical shift from tissue fat, and noisier data arising from the higher resolution required to visualize the anatomy of small animals. In this study, we developed a robust QSM for the SPIO ferumoxytol in live mice to examine its potential application in MFH for cancer therapy. We demonstrated that QSM was able to simultaneously detect high level ferumoxytol accumulation in the liver and low level localization near the periphery of tumors. Detection of ferumoxytol distribution in the body by QSM, however, required imaging prior to and post ferumoxytol injection to discriminate exogenous iron susceptibility from other endogenous sources. Intratumoral injection of ferumoxytol combined with AMF produced a ferumoxytol-dose dependent tumor killing. Histology of tumor sections corroborated QSM visualization of ferumoxytol distribution near the tumor periphery, and confirmed the spatial correlation of cell death with ferumoxytol distribution. Due to the dissipation of SPIOs from the injection site, quantitative mapping of SPIO distribution will aid in estimating a change in temperature in tissues, thereby maximizing MFH effects on tumors and minimizing side-effects by avoiding unwanted tissue heating.
Collapse
Affiliation(s)
- Kofi Deh
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Marjan Zaman
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yogindra Vedvyas
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhe Liu
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Padraic O' Malley
- Department of Urology, University of Florida, Gainesville, FL, 32610, USA
| | | | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Richard Lee
- Urology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Juyoung Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, 245-711, South Korea
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Moonsoo M Jin
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA. .,Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Satpathy M, Wang L, Zielinski RJ, Qian W, Wang YA, Mohs AM, Kairdolf BA, Ji X, Capala J, Lipowska M, Nie S, Mao H, Yang L. Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using HER2-Targeted Theranostic Nanoparticles. Theranostics 2019; 9:778-795. [PMID: 30809308 PMCID: PMC6376473 DOI: 10.7150/thno.29964] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/19/2018] [Indexed: 01/30/2023] Open
Abstract
Cancer heterogeneity and drug resistance limit the efficacy of cancer therapy. To address this issue, we have developed an integrated treatment protocol for effective treatment of heterogeneous ovarian cancer. Methods: An amphiphilic polymer coated magnetic iron oxide nanoparticle was conjugated with near infrared dye labeled HER2 affibody and chemotherapy drug cisplatin. The effects of the theranostic nanoparticle on targeted drug delivery, therapeutic efficacy, non-invasive magnetic resonance image (MRI)-guided therapy, and optical imaging detection of therapy resistant tumors were examined in an orthotopic human ovarian cancer xenograft model with highly heterogeneous levels of HER2 expression. Results: We found that systemic delivery of HER2-targeted magnetic iron oxide nanoparticles carrying cisplatin significantly inhibited the growth of primary tumor and peritoneal and lung metastases in the ovarian cancer xenograft model in nude mice. Differential delivery of theranostic nanoparticles into individual tumors with heterogeneous levels of HER2 expression and various responses to therapy were detectable by MRI. We further found a stronger therapeutic response in metastatic tumors compared to primary tumors, likely due to a higher level of HER2 expression and a larger number of proliferating cells in metastatic tumor cells. Relatively long-time retention of iron oxide nanoparticles in tumor tissues allowed interrogating the relationship between nanoparticle drug delivery and the presence of resistant residual tumors by in vivo molecular imaging and histological analysis of the tumor tissues. Following therapy, most of the remaining tumors were small, primary tumors that had low levels of HER2 expression and nanoparticle drug accumulation, thereby explaining their lack of therapeutic response. However, a few residual tumors had HER2-expressing tumor cells and detectable nanoparticle drug delivery but failed to respond, suggesting additional intrinsic resistant mechanisms. Nanoparticle retention in the small residual tumors, nevertheless, produced optical signals for detection by spectroscopic imaging. Conclusion: The inability to completely excise peritoneal metastatic tumors by debulking surgery as well as resistance to chemotherapy are the major clinical challenges for ovarian cancer treatment. This targeted cancer therapy has the potential for the development of effective treatment for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Minati Satpathy
- Departments of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rafal J. Zielinski
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiping Qian
- Departments of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Aaron M. Mohs
- Department of Biomedical Engineering, Emory University, Atlanta, GA, 30322, USA
| | - Brad A. Kairdolf
- Department of Biomedical Engineering, Emory University, Atlanta, GA, 30322, USA
| | - Xin Ji
- Ocean NanoTech, LLC, San Diego, CA, 92126, USA
| | - Jacek Capala
- Clinical Radiation Oncology Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Malgorzata Lipowska
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University, Atlanta, GA, 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lily Yang
- Departments of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
12
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
13
|
Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol 2017; 7:738-746. [PMID: 29075487 PMCID: PMC5649002 DOI: 10.3892/mco.2017.1399] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
In recent years, magnetic nanoparticles (MNPs) have demonstrated marked progress in the field of oncology. General nanoparticles are widely used in tumor targeting, and the intrinsic magnetic property of MNPs makes them the most promising nanomaterial to be used as contrast agents for magnetic resonance imaging (MRI) and induced magnetic hyperthermia. The properties of MNPs are fully exploited when they are used as drug delivery agents, wherein drugs may be targeted to the desired specific location in vivo by application of an external magnetic field. Early diagnosis of cancer may be achieved by MRI, therefore, individualized treatment may be combined with MRI, so as to achieve the precise definition and appropriate treatment. In the present review, research on MNPs in cancer diagnosis, drug delivery and treatment has been summarized. Furthermore, the future perspectives and challenges of MNPs in the field of oncology are also discussed.
Collapse
Affiliation(s)
- Meijia Wu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Shengwu Huang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
14
|
Ring HL, Zhang J, Klein ND, Eberly LE, Haynes CL, Garwood M. Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping. Magn Reson Med 2017; 79:1420-1428. [PMID: 28653344 DOI: 10.1002/mrm.26800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/08/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Iron-oxide nanoparticles (IONPs) have shown tremendous utility for enhancing image contrast and delivering targeted therapies. Quantification of IONPs has been demonstrated at low concentrations with gradient echo (GRE) and spin echo (SE), and at high concentrations with echoless sequences such as swept imaging with Fourier transform (SWIFT). This work examines the overlap of IONP quantification with GRE, SE, and SWIFT. METHODS The limit of quantification of GRE, SE, inversion-recovery GRE, and SWIFT sequences was assessed using IONPs at a concentration range of 0.02 to 89.29 mM suspended in 1% agarose. Empirically derived limits of quantification were compared with International Union of Pure and Applied Chemistry definitions. Both commercial and experimental IONPs were used. RESULTS All three IONPs assessed demonstrated an overlap of concentration quantification with GRE, SE, and SWIFT sequences. The largest dynamic range observed was 0.004 to 35.7 mM with Feraheme. CONCLUSIONS The metrics established allow upper and lower quantitative limitations to be estimated given the relaxivity characteristics of the IONP and the concentration range of the material to be assessed. The methods outlined in this paper are applicable to any pulse sequence, IONP formulation, and field strength. Magn Reson Med 79:1420-1428, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hattie L Ring
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinjin Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan D Klein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Zhao D. Bacteriogenic magnetic nanoparticles as magnetic resonance imaging contrast agents. Transl Cancer Res 2017; 6:S512-S514. [PMID: 31531290 DOI: 10.21037/tcr.2017.03.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dawen Zhao
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
16
|
de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016; 18:807-819. [PMID: 27130234 PMCID: PMC5093212 DOI: 10.1007/s11307-016-0959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. PROCEDURES The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. RESULTS Integrin αvβ6, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. CONCLUSIONS The results of this study show that integrin αvβ6, CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hendrica A J M Prevoo
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
17
|
Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2016; 12:73-87. [PMID: 27876448 DOI: 10.2217/nnm-2016-0316] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles.
Collapse
Affiliation(s)
- Lei Zhu
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiyang Zhou
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Hui Mao
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lily Yang
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Zhang J, Ring HL, Hurley KR, Shao Q, Carlson CS, Idiyatullin D, Manuchehrabadi N, Hoopes PJ, Haynes CL, Bischof JC, Garwood M. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T 1 contrast for heating. Magn Reson Med 2016; 78:702-712. [PMID: 27667655 DOI: 10.1002/mrm.26394] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE To use contrast based on longitudinal relaxation times (T1 ) or rates (R1 ) to quantify the biodistribution of iron oxide nanoparticles (IONPs), which are of interest for hyperthermia therapy, cell targeting, and drug delivery, within primary clearance organs. METHODS Mesoporous silica-coated IONPs (msIONPs) were intravenously injected into 15 naïve mice. Imaging and mapping of the longitudinal relaxation rate constant at 24 h or 1 week postinjection were performed with an echoless pulse sequence (SWIFT). Alternating magnetic field heating measurements were also performed on ex vivo tissues. RESULTS Signal enhancement from positive T1 contrast caused by IONPs was observed and quantified in vivo in liver, spleen, and kidney at concentrations up to 3.2 mg Fe/(g tissue wt.) (61 mM Fe). In most cases, each organ had a linear correlation between the R1 and the tissue iron concentration despite variations in intra-organ distribution, degradation, and IONP surface charge. Linear correlation between R1 and volumetric SAR in hyperthermia therapy was observed. CONCLUSION The linear dependence between R1 and tissue iron concentration in major organs allows quantitative monitoring of IONP biodistribution in a dosage range relevant to magnetic hyperthermia applications, which falls into the concentration gap between CT and conventional MRI techniques. Magn Reson Med 78:702-712, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jinjin Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hattie L Ring
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katie R Hurley
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cathy S Carlson
- Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Navid Manuchehrabadi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - P Jack Hoopes
- Department of Surgery and Radiation Oncology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3818-3836. [PMID: 27790080 PMCID: PMC5077153 DOI: 10.1002/adfm.201504185] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With rapid advances in nanomedicine, magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool in biomedical applications, including diagnostic imaging, drug delivery and novel therapeutics. Significant preclinical and clinical research has explored their functionalization, targeted delivery, controllable drug release and image-guided capabilities. To further develop MNPs for theranostic applications and clinical translation in the future, we attempt to provide an overview of the recent advances in the development and application of MNPs for drug delivery, specifically focusing on the topics concerning the importance of biomarker targeting for personalized therapy and the unique magnetic and contrast-enhancing properties of theranostic MNPs that enable image-guided delivery. The common strategies and considerations to produce theranostic MNPs and incorporate payload drugs into MNP carriers are described. The notable examples are presented to demonstrate the advantages of MNPs in specific targeting and delivering under image guidance. Furthermore, current understanding of delivery mechanisms and challenges to achieve efficient therapeutic efficacy or diagnostic capability using MNP-based nanomedicine are discussed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anamaria Orza
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Peng Guo
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA. Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Goodfellow F, Simchick GA, Mortensen LJ, Stice SL, Zhao Q. Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3899-3915. [PMID: 28751853 PMCID: PMC5526633 DOI: 10.1002/adfm.201504444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.
Collapse
Affiliation(s)
| | - Gregory A Simchick
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| | | | | | - Qun Zhao
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| |
Collapse
|
21
|
Hurley KR, Ring HL, Etheridge M, Zhang J, Gao Z, Shao Q, Klein ND, Szlag VM, Chung C, Reineke TM, Garwood M, Bischof JC, Haynes CL. Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle. Mol Pharm 2016; 13:2172-83. [PMID: 26991550 DOI: 10.1021/acs.molpharmaceut.5b00866] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iron oxide nanoparticles have great potential as diagnostic and therapeutic agents in cancer and other diseases; however, biological aggregation severely limits their function in vivo. Aggregates can cause poor biodistribution, reduced heating capability, and can confound their visualization and quantification by magnetic resonance imaging (MRI). Herein, we demonstrate that the incorporation of a functionalized mesoporous silica shell can prevent aggregation and enable the practical use of high-heating, high-contrast iron oxide nanoparticles in vitro and in vivo. Unmodified and mesoporous silica-coated iron oxide nanoparticles were characterized in biologically relevant environments including phosphate buffered saline, simulated body fluid, whole mouse blood, lymph node carcinoma of prostate (LNCaP) cells, and after direct injection into LNCaP prostate cancer tumors in nude mice. Once coated, iron oxide nanoparticles maintained colloidal stability along with high heating and relaxivity behaviors (SARFe = 204 W/g Fe at 190 kHz and 20 kA/m and r1 = 6.9 mM(-1) s(-1) at 1.4 T). Colloidal stability and minimal nonspecific cell uptake allowed for effective heating in salt and agarose suspensions and strong signal enhancement in MR imaging in vivo. These results show that (1) aggregation can lower the heating and imaging performance of magnetic nanoparticles and (2) a coating of functionalized mesoporous silica can mitigate this issue, potentially improving clinical planning and practical use.
Collapse
Affiliation(s)
- Katie R Hurley
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Hattie L Ring
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael Etheridge
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jinjin Zhang
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Zhe Gao
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Qi Shao
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Nathan D Klein
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Victoria M Szlag
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Connie Chung
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael Garwood
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, ‡Center for Magnetic Resonance Research, §Department of Biomedical Engineering, ⊥Department of Mechanical Engineering, ¶Department of Physics, ∥Department of Radiology, and #Department of Urologic Surgery, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Usman A, Sadat U, Patterson AJ, Tang TY, Varty K, Boyle JR, Armon MP, Hayes PD, Graves MJ, Gillard JH. Use of ultrasmall superparamagnetic iron oxide particles for imaging carotid atherosclerosis. Nanomedicine (Lond) 2015; 10:3077-3087. [PMID: 26420349 DOI: 10.2217/nnm.15.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on the results of histopathological studies, inflammation within atherosclerotic tissue is now widely accepted as a key determinant of the disease process. Conventional imaging methods can highlight the location and degree of luminal stenosis but not the inflammatory activity of the plaque. Iron oxide-based MRI contrast media particularly ultrasmall supermagnetic particles of iron oxide have shown potential in assessing atheromatous plaque inflammation and in determining efficacy of antiatherosclerosis pharmacological treatments. In this paper, we review current data on the use of ultrasmall superparamagnetic iron oxides in atherosclerosis imaging with focus on ferumoxtran-10 and ferumoxytol. The basic chemistry, pharmacokinetics and dynamics, potential applications, limitations and future perspectives of these contrast media nanoparticles are discussed.
Collapse
Affiliation(s)
- Ammara Usman
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Umar Sadat
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Andrew J Patterson
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Tjun Y Tang
- Department of Surgery, Changi General Hospital, Singapore
| | - Kevin Varty
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Jonathan R Boyle
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mathew P Armon
- Department of Vascular Surgery, Norfolk & Norwich University Hospital, Norwich, NR4 7UY, UK
| | - Paul D Hayes
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jonathan H Gillard
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
23
|
Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:797-816. [PMID: 25966677 DOI: 10.1002/wnan.1343] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/23/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
Effective treatment of triple-negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and noninvasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise toward the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle-based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor-associated endothelial cells, stromal fibroblasts, and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in-depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as by others, and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic.
Collapse
Affiliation(s)
| | - Erica N Bozeman
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Lily Yang
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|