1
|
Alves VC, Figueiro-Silva J, Ferrer I, Carro E. Epigenetic silencing of OR and TAS2R genes expression in human orbitofrontal cortex at early stages of sporadic Alzheimer's disease. Cell Mol Life Sci 2023; 80:196. [PMID: 37405535 PMCID: PMC10322771 DOI: 10.1007/s00018-023-04845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Modulation of brain olfactory (OR) and taste receptor (TASR) expression was recently reported in neurological diseases. However, there is still limited evidence of these genes' expression in the human brain and the transcriptional regulation mechanisms involved remain elusive. We explored the possible expression and regulation of selected OR and TASR in the human orbitofrontal cortex (OFC) of sporadic Alzheimer's disease (AD) and non-demented control specimens using quantitative real-time RT-PCR and ELISA. Global H3K9me3 amounts were measured on OFC total histone extracts, and H3K9me3 binding at each chemoreceptor locus was examined through native chromatin immunoprecipitation. To investigate the potential interactome of the repressive histone mark H3K9me3 in OFC specimens, native nuclear complex co-immunoprecipitation (Co-IP) was combined with reverse phase-liquid chromatography coupled to mass spectrometry analysis. Interaction between H3K9me3 and MeCP2 was validated by reciprocal Co-IP, and global MeCP2 levels were quantitated. We found that OR and TAS2R genes are expressed and markedly downregulated in OFC at early stages of sporadic AD, preceding the progressive reduction in their protein levels and the appearance of AD-associated neuropathology. The expression pattern did not follow disease progression suggesting transcriptional regulation through epigenetic mechanisms. We discovered an increase of OFC global H3K9me3 levels and a substantial enrichment of this repressive signature at ORs and TAS2Rs proximal promoter at early stages of AD, ultimately lost at advanced stages. We revealed the interaction between H3K9me3 and MeCP2 at early stages and found that MeCP2 protein is increased in sporadic AD. Findings suggest MeCP2 might be implicated in OR and TAS2R transcriptional regulation through interaction with H3K9me3, and as an early event, it may uncover a novel etiopathogenetic mechanism of sporadic AD.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Joana Figueiro-Silva
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| | - Isidre Ferrer
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Eva Carro
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Present Address: Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics. Antibiotics (Basel) 2022; 11:653. [PMID: 35625297 PMCID: PMC9137636 DOI: 10.3390/antibiotics11050653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Phages have certain features, such as their ability to form protein-protein interactions, that make them good candidates for use in a variety of beneficial applications, such as in human or animal health, industry, food science, food safety, and agriculture. It is essential to identify and characterize the proteins produced by particular phages in order to use these viruses in a variety of functional processes, such as bacterial detection, as vehicles for drug delivery, in vaccine development, and to combat multidrug resistant bacterial infections. Furthermore, phages can also play a major role in the design of a variety of cheap and stable sensors as well as in diagnostic assays that can either specifically identify specific compounds or detect bacteria. This article reviews recently developed phage-based techniques, such as the use of recombinant tempered phages, phage display and phage amplification-based detection. It also encompasses the application of phages as capture elements, biosensors and bioreceptors, with a special emphasis on novel bacteriophage-based mass spectrometry (MS) applications.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Vicente Notario
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| |
Collapse
|
3
|
Albentosa-González L, Jimenez de Oya N, Arias A, Clemente-Casares P, Martin-Acebes MÁ, Saiz JC, Sabariegos R, Mas A. Akt Kinase Intervenes in Flavivirus Replication by Interacting with Viral Protein NS5. Viruses 2021; 13:v13050896. [PMID: 34066055 PMCID: PMC8151281 DOI: 10.3390/v13050896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
Arthropod-borne flaviviruses, such as Zika virus (ZIKV), Usutu virus (USUV), and West Nile virus (WNV), are a growing cause of human illness and death around the world. Presently, no licensed antivirals to control them are available and, therefore, search for broad-spectrum antivirals, including host-directed compounds, is essential. The PI3K/Akt pathway controls essential cellular functions involved in cell metabolism and proliferation. Moreover, Akt has been found to participate in modulating replication in different viruses including the flaviviruses. In this work we studied the interaction of flavivirus NS5 polymerases with the cellular kinase Akt. In vitro NS5 phosphorylation experiments with Akt showed that flavivirus NS5 polymerases are phosphorylated and co-immunoprecipitate by Akt. Polymerase activity assays of Ala- and Glu-generated mutants for the Akt-phosphorylated residues also indicate that Glu mutants of ZIKV and USUV NS5s present a reduced primer-extension activity that was not observed in WNV mutants. Furthermore, treatment with Akt inhibitors (MK-2206, honokiol and ipatasertib) reduced USUV and ZIKV titers in cell culture but, except for honokiol, not WNV. All these findings suggest an important role for Akt in flavivirus replication although with specific differences among viruses and encourage further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral potential target.
Collapse
Affiliation(s)
- Laura Albentosa-González
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
| | - Nereida Jimenez de Oya
- ZOOVIR, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (N.J.d.O.); (M.Á.M.-A.); (J.C.S.)
| | - Armando Arias
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Pilar Clemente-Casares
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Miguel Ángel Martin-Acebes
- ZOOVIR, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (N.J.d.O.); (M.Á.M.-A.); (J.C.S.)
| | - Juan Carlos Saiz
- ZOOVIR, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (N.J.d.O.); (M.Á.M.-A.); (J.C.S.)
| | - Rosario Sabariegos
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence: (R.S.); (A.M.)
| | - Antonio Mas
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence: (R.S.); (A.M.)
| |
Collapse
|
4
|
Carrera M, Pazos M, Gasset M. Proteomics-Based Methodologies for the Detection and Quantification of Seafood Allergens. Foods 2020; 9:E1134. [PMID: 32824679 PMCID: PMC7465946 DOI: 10.3390/foods9081134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Seafood is considered one of the main food allergen sources by the European Food Safety Authority (EFSA). It comprises several distinct groups of edible aquatic animals, including fish and shellfish, such as crustacean and mollusks. Recently, the EFSA recognized the high risk of food allergy over the world and established the necessity of developing new methodologies for its control. Consequently, accurate, sensitive, and fast detection methods for seafood allergy control and detection in food products are highly recommended. In this work, we present a comprehensive review of the applications of the proteomics methodologies for the detection and quantification of seafood allergens. For this purpose, two consecutive proteomics strategies (discovery and targeted proteomics) that are applied to the study and control of seafood allergies are reviewed in detail. In addition, future directions and new perspectives are also provided.
Collapse
Affiliation(s)
- Mónica Carrera
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.C.); (M.P.)
| | - Manuel Pazos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.C.); (M.P.)
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| |
Collapse
|
5
|
Carrera M, Piñeiro C, Martinez I. Proteomic Strategies to Evaluate the Impact of Farming Conditions on Food Quality and Safety in Aquaculture Products. Foods 2020; 9:E1050. [PMID: 32759674 PMCID: PMC7466198 DOI: 10.3390/foods9081050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
This review presents the primary applications of various proteomic strategies to evaluate the impact of farming conditions on food quality and safety in aquaculture products. Aquaculture is a quickly growing sector that represents 47% of total fish production. Food quality, dietary management, fish welfare, the stress response, food safety, and antibiotic resistance, which are covered by this review, are among the primary topics in which proteomic techniques and strategies are being successfully applied. The review concludes by outlining future directions and potential perspectives.
Collapse
Affiliation(s)
- Mónica Carrera
- Food Technology Department, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain
| | - Carmen Piñeiro
- Scientific Instrumentation and Quality Service (SICIM), Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain;
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology—Plentzia Marine Station (PiE), University of the Basque Country UPV/EHU, 48620 Plentzia, Spain;
- IKERBASQUE Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Santos AI, Lourenço AS, Simão S, Marques da Silva D, Santos DF, Onofre de Carvalho AP, Pereira AC, Izquierdo-Álvarez A, Ramos E, Morato E, Marina A, Martínez-Ruiz A, Araújo IM. Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics. Redox Biol 2020; 32:101457. [PMID: 32088623 PMCID: PMC7038503 DOI: 10.1016/j.redox.2020.101457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) is well established as a regulator of neurogenesis. NO increases the proliferation of neural stem cells (NSC), and is essential for hippocampal injury-induced neurogenesis following an excitotoxic lesion. One of the mechanisms underlying non-classical NO cell signaling is protein S-nitrosylation. This post-translational modification consists in the formation of a nitrosothiol group (R-SNO) in cysteine residues, which can promote formation of other oxidative modifications in those cysteine residues. S-nitrosylation can regulate many physiological processes, including neuronal plasticity and neurogenesis. In this work, we aimed to identify S-nitrosylation targets of NO that could participate in neurogenesis. In NSC, we identified a group of proteins oxidatively modified using complementary techniques of thiol redox proteomics. S-nitrosylation of some of these proteins was confirmed and validated in a seizure mouse model of hippocampal injury and in cultured hippocampal stem cells. The identified S-nitrosylated proteins are involved in the ERK/MAPK pathway and may be important targets of NO to enhance the proliferation of NSC.
Collapse
Affiliation(s)
- Ana Isabel Santos
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-527, Coimbra, Portugal
| | - Ana Sofia Lourenço
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-527, Coimbra, Portugal
| | - Sónia Simão
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | - Dorinda Marques da Silva
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | - Daniela Filipa Santos
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | | | - Ana Catarina Pereira
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) & Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) & Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28009, Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Inês Maria Araújo
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
7
|
Garcés-Parada T, Arbeláez-Ramírez LF. Caracterización de la proteína no capsidal 3D, del virus de la fiebre aftosa y producción de anticuerpos policlonales. INFECTIO 2019. [DOI: 10.22354/in.v23i4.814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Las proteínas no capsidales del virus de la fiebre aftosa se utilizan como marcadoras en la evaluación de animales que han estado en contacto con el virus, a diferencia de los inmunizados, ya que la vacuna no debe tener estas proteínas, por lo tanto los animales no deben presentar anticuerpos contra ellas. El objetivo de esta investigación fue la caracterización de la proteína no capsidal 3D y la producción de anticuerpos policlonales in vivo. La proteína se purificó del cultivo de virus inactivo, por cromatografía de intercambio iónico. La elución de los picos fue sometida a electroforesis uni-bidimensional; demostrándose un alto grado de pureza (>90%) en el pico tres, donde se identifico la proteína 3D, por la técnica de MALDI-TOF y electroespray de trampa iónica. La proteína purificada, se inoculó en cabras y el suero hiperinmune fue precipitado y sometido a cromatografía de afinidad para la obtención de inmunoglobulinas; la reacción inmunitaria se confirmó por medio de inmunodifusión y Western blot. El proceso de purificación demostró ser eficiente y útil para la obtención de anticuerpos específicos, los cuales tendrán utilidad en la elaboración de un ensayo inmunoenzimático que mida la pureza de la vacuna frente al contenido de estas proteínas.
Collapse
|
8
|
Carrera M, Cañas B, Gallardo JM. Advanced proteomics and systems biology applied to study food allergy. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Regulation of SCF TIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol 2018; 18:200-210. [PMID: 30031268 PMCID: PMC6076216 DOI: 10.1016/j.redox.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1–cullin–F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2 assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifications might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction. ASK1 adaptor protein of the SCFTIR1/AFB E3 ligase complex is redox regulated. NO regulates ASK1 function by S-nitrosylation in Cys37 and Cys118 residues. NO enhances ASK1-CUL1 and ASK1-TIR1/AFB2 protein-protein interactions required for SCFTIR1/AFB2 assembly in vitro and in vivo. S-nitrosylated residues in ASK1 are essential for activation of auxin signaling pathway in plants.
Collapse
|
10
|
Garrido F, Pacheco M, Vargas-Martínez R, Velasco-García R, Jorge I, Serrano H, Portillo F, Vázquez J, Pajares MÁ. Identification of hepatic protein-protein interaction targets for betaine homocysteine S-methyltransferase. PLoS One 2018; 13:e0199472. [PMID: 29924862 PMCID: PMC6010280 DOI: 10.1371/journal.pone.0199472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interactions are an important mechanism for the regulation of enzyme function allowing metabolite channeling, crosstalk between pathways or the introduction of post-translational modifications. Therefore, a number of high-throughput studies have been carried out to shed light on the protein networks established under different pathophysiological settings. Surprisingly, this type of information is quite limited for enzymes of intermediary metabolism such as betaine homocysteine S-methyltransferase, despite its high hepatic abundancy and its role in homocysteine metabolism. Here, we have taken advantage of two approaches, affinity purification combined with mass spectrometry and yeast two-hybrid, to further uncover the array of interactions of betaine homocysteine S-methyltransferase in normal liver of Rattus norvegicus. A total of 131 non-redundant putative interaction targets were identified, out of which 20 were selected for further validation by coimmunoprecipitation. Interaction targets validated by two different methods include: S-methylmethionine homocysteine methyltransferase or betaine homocysteine methyltransferase 2, methionine adenosyltransferases α1 and α2, cAMP-dependent protein kinase catalytic subunit alpha, 4-hydroxyphenylpyruvic acid dioxygenase and aldolase b. Network analysis identified 122 nodes and 165 edges, as well as a limited number of KEGG pathways that comprise: the biosynthesis of amino acids, cysteine and methionine metabolism, the spliceosome and metabolic pathways. These results further expand the connections within the hepatic methionine cycle and suggest putative cross-talks with additional metabolic pathways that deserve additional research.
Collapse
Affiliation(s)
- Francisco Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - María Pacheco
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Rocío Vargas-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Roberto Velasco-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Group, Spanish National Center for Cardiovascular Research (CNIC) and CIBERCV, Melchor Fernández de Almagro 3, Madrid, Spain
| | - Horacio Serrano
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Francisco Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Group, Spanish National Center for Cardiovascular Research (CNIC) and CIBERCV, Melchor Fernández de Almagro 3, Madrid, Spain
| | - María Ángeles Pajares
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, Madrid, Spain
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
| |
Collapse
|
11
|
Santos AI, Carreira BP, Izquierdo-Álvarez A, Ramos E, Lourenço AS, Filipa Santos D, Morte MI, Ribeiro LF, Marreiros A, Sánchez-López N, Marina A, Carvalho CM, Martínez-Ruiz A, Araújo IM. S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model. Antioxid Redox Signal 2018. [PMID: 28648093 DOI: 10.1089/ars.2016.6858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). RESULTS We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. INNOVATION Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. CONCLUSION Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.
Collapse
Affiliation(s)
- Ana Isabel Santos
- 1 Centre for Biomedical Research (CBMR), University of Algarve , Faro, Portugal .,2 Department of Biomedical Sciences and Medicine, University of Algarve , Faro, Portugal .,3 Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal
| | | | - Alicia Izquierdo-Álvarez
- 4 Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Elena Ramos
- 4 Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Ana Sofia Lourenço
- 1 Centre for Biomedical Research (CBMR), University of Algarve , Faro, Portugal .,2 Department of Biomedical Sciences and Medicine, University of Algarve , Faro, Portugal .,3 Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Daniela Filipa Santos
- 1 Centre for Biomedical Research (CBMR), University of Algarve , Faro, Portugal .,2 Department of Biomedical Sciences and Medicine, University of Algarve , Faro, Portugal
| | - Maria Inês Morte
- 3 Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Luís Filipe Ribeiro
- 5 VIB Center for the Biology of Disease , Leuven, Belgium .,6 KU Leuven, Center for Human Genetics , Leuven, Belgium
| | - Ana Marreiros
- 2 Department of Biomedical Sciences and Medicine, University of Algarve , Faro, Portugal
| | - Nuria Sánchez-López
- 4 Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,7 Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC) , Madrid, Spain
| | - Anabel Marina
- 7 Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC) , Madrid, Spain
| | | | - Antonio Martínez-Ruiz
- 4 Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,8 Centro de Investigación Biomédica en Red de Enfermedades Cardiovaculares (CIBERCV) , Madrid, Spain
| | - Inês Maria Araújo
- 1 Centre for Biomedical Research (CBMR), University of Algarve , Faro, Portugal .,2 Department of Biomedical Sciences and Medicine, University of Algarve , Faro, Portugal .,3 Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal .,9 Algarve Biomedical Centre , Faro, Portugal
| |
Collapse
|
12
|
Hernansanz-Agustín P, Ramos E, Navarro E, Parada E, Sánchez-López N, Peláez-Aguado L, Cabrera-García JD, Tello D, Buendia I, Marina A, Egea J, López MG, Bogdanova A, Martínez-Ruiz A. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol 2017; 12:1040-1051. [PMID: 28511347 PMCID: PMC5430576 DOI: 10.1016/j.redox.2017.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to ‘deactive’ form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia. Complex I is involved in the superoxide burst produced by cells in acute hypoxia. Complex I is deactivated in acute hypoxia. Deactive complex I is involved in superoxide production in acute hypoxia, probably through its Na+/H+ antiporter activity. Complex I deactivation occurs in brain tissue hypoxia ex vivo and in vivo.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, E-28029 Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | - Elisa Navarro
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Esther Parada
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Nuria Sánchez-López
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - Laura Peláez-Aguado
- Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - J Daniel Cabrera-García
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | - Daniel Tello
- Unidad de Investigación, Hospital Santa Cristina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IP), E-28009 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - Javier Egea
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8057 Zurich, Switzerland
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
13
|
Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry. J Proteomics 2016; 142:130-7. [PMID: 27195811 DOI: 10.1016/j.jprot.2016.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/13/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in <2h. An affordable assay utilizing this methodology will facilitate testing for regulatory and safety applications. SIGNIFICANCE The work describes for the first time, the Protein Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers.
Collapse
|
14
|
Mazzeo MF, Siciliano RA. Proteomics for the authentication of fish species. J Proteomics 2016; 147:119-124. [PMID: 26947551 DOI: 10.1016/j.jprot.2016.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Assessment of seafood authenticity and origin, mainly in the case of processed products (fillets, sticks, baby food) represents the crucial point to prevent fraudulent deceptions thus guaranteeing market transparency and consumers health. The most dangerous practice that jeopardies fish safety is intentional or unintentional mislabeling, originating from the substitution of valuable fish species with inferior ones. Conventional analytical methods for fish authentication are becoming inadequate to comply with the strict regulations issued by the European Union and with the increase of mislabeling due to the introduction on the market of new fish species and market globalization. This evidence prompts the development of high-throughput approaches suitable to identify unambiguous biomarkers of authenticity and screen a large number of samples with minimal time consumption. Proteomics provides suitable and powerful tools to investigate main aspects of food quality and safety and has given an important contribution in the field of biomarkers discovery applied to food authentication. This report describes the most relevant methods developed to assess fish identity and offers a perspective on their potential in the evaluation of fish quality and safety thus depicting the key role of proteomics in the authentication of fish species and processed products. BIOLOGICAL SIGNIFICANCE The assessment of fishery products authenticity is a main issue in the control quality process as deceptive practices could imply severe health risks. Proteomics based methods could significantly contribute to detect falsification and frauds, thus becoming a reliable operative first-line testing resource in food authentication.
Collapse
Affiliation(s)
- Maria Fiorella Mazzeo
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100 Avellino, Italy.
| | - Rosa Anna Siciliano
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
15
|
Perea GB, Solanas C, Plaza GR, Guinea GV, Jorge I, Vázquez J, Pérez Mateos JM, Marí-Buyé N, Elices M, Pérez-Rigueiro J. Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance. SOFT MATTER 2015; 11:4868-4878. [PMID: 25994594 DOI: 10.1039/c5sm00395d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silk fibers from Argiope trifasciata and Nephila inaurata orb-web weaving spiders were UV irradiated to modify the molecular weight of the constituent proteins. Fibers were characterized either as forcibly silked or after being subjected to maximum supercontraction. The effect of irradiation on supercontraction was also studied, both in terms of the percentage of supercontraction and the tensile properties exhibited by irradiated and subsequently supercontracted fibers. The effects of UV exposure at the molecular level were assessed by polyacrylamide gel electrophoresis and mass spectrometry. It is shown that UV-irradiated fibers show a steady decrease in their main tensile parameters, most notably, tensile strength and strain. The combination of the mechanical and biochemical data suggests that the restricted conformational freedom of the proteins after UV irradiation is critical in the reduction of these properties. Consequently, an adequate topological organization of the protein chains emerges as a critical design principle in the performance of spider silk.
Collapse
Affiliation(s)
- G Belén Perea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J. Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Crit Rev Food Sci Nutr 2015; 56:2511-2542. [DOI: 10.1080/10408398.2013.873767] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Bignardi C, Cavazza A, Corradini C. Selected product ion monitoring for quantification of 5-hydroxymethylfurfural in food products by capillary zone electrophoresis-tandem ion trap mass spectrometry. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Bauer M, Ahrné E, Baron AP, Glatter T, Fava LL, Santamaria A, Nigg EA, Schmidt A. Evaluation of Data-Dependent and -Independent Mass Spectrometric Workflows for Sensitive Quantification of Proteins and Phosphorylation Sites. J Proteome Res 2014; 13:5973-88. [DOI: 10.1021/pr500860c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manuel Bauer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Erik Ahrné
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Anna P. Baron
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Timo Glatter
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Luca L. Fava
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Anna Santamaria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
19
|
The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol 2014; 34:2479-87. [PMID: 24752896 DOI: 10.1128/mcb.00348-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD69 is involved in immune cell homeostasis, regulating the T cell-mediated immune response through the control of Th17 cell differentiation. However, natural ligands for CD69 have not yet been described. Using recombinant fusion proteins containing the extracellular domain of CD69, we have detected the presence of a ligand(s) for CD69 on human dendritic cells (DCs). Pulldown followed by mass spectrometry analyses of CD69-binding moieties on DCs identified galectin-1 as a CD69 counterreceptor. Surface plasmon resonance and anti-CD69 blocking analyses demonstrated a direct and specific interaction between CD69 and galectin-1 that was carbohydrate dependent. Functional assays with both human and mouse T cells demonstrated the role of CD69 in the negative effect of galectin-1 on Th17 differentiation. Our findings identify CD69 and galectin-1 to be a novel regulatory receptor-ligand pair that modulates Th17 effector cell differentiation and function.
Collapse
|
20
|
Martínez-Acedo P, Gupta V, Carroll KS. Proteomic analysis of peptides tagged with dimedone and related probes. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:257-65. [PMID: 24719340 PMCID: PMC4070747 DOI: 10.1002/jms.3336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 05/04/2023]
Abstract
Owing to its labile nature, a new role for cysteine sulfenic acid (-SOH) modification has emerged. This oxidative modification modulates protein function by acting as a redox switch during cellular signaling. The identification of proteins that undergo this modification represents a methodological challenge, and its resolution remains a matter of current interest. The development of strategies to chemically modify cysteinyl-containing peptides for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has increased significantly within the past decade. The method of choice to selectively label sulfenic acid is based on the use of dimedone or its derivatives. For these chemical probes to be effective on a proteome-wide level, their reactivity toward -SOH must be high to ensure reaction completion. In addition, the presence of an adduct should not interfere with electrospray ionization, the efficiency of induced dissociation in MS/MS experiments or with the identification of Cys-modified peptides by automated database searching algorithms. Herein, we employ a targeted proteomics approach to study the electrospray ionization and fragmentation effects of different -SOH specific probes and compared them to commonly used alkylating agents. We then extend our study to a whole proteome extract using shotgun proteomic approaches. These experiments enable us to demonstrate that dimedone adducts do not interfere with electrospray by suppressing the ionization nor impede product ion assignment by automated search engines, which detect a + 138 Da increase from unmodified peptides. Collectively, these results suggest that dimedone can be a powerful tool to identify sulfenic acid modifications by high-throughput shotgun proteomics of a whole proteome.
Collapse
|
21
|
|
22
|
Gallardo JM, Ortea I, Carrera M. Proteomics and its applications for food authentication and food-technology research. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Carrera M, Cañas B, Gallardo JM. Proteomics for the assessment of quality and safety of fishery products. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Quantitative proteomics analysis of high-density lipoproteins by stable 18O-isotope labeling. Methods Mol Biol 2013; 1000:139-56. [PMID: 23585090 DOI: 10.1007/978-1-62703-405-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
For the large-scale study of dynamic proteomes, quantitative proteomic approaches based on stable isotope labeling and mass spectrometry (MS) have been developed as a high-throughput, reproducible, and robust alternative to conventional gel-based techniques. In this chapter, we describe in detail a quantitative proteomic strategy based on HDL isolation by affinity chromatography, in-gel trypsin digestion of protein extracts, peptide (18)O labeling, separation by off-gel isoelectric focusing, and peptide analysis on a linear ion trap mass spectrometer, followed by the application of a robust multilayered statistical model. This protocol is of universal applicability and has been successfully applied to the global characterization of the HDL proteome with some specific considerations for this particle, paving the way to the in-depth study of the protein cargo of HDL and its implication in cardiovascular diseases.
Collapse
|
25
|
Mendes M, Pérez-Hernandez D, Vázquez J, Coelho AV, Cunha C. Proteomic changes in HEK-293 cells induced by hepatitis delta virus replication. J Proteomics 2013; 89:24-38. [PMID: 23770296 DOI: 10.1016/j.jprot.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hepatitis delta virus (HDV) infection greatly increases the risk of hepatocellular carcinoma in hepatitis B virus chronically infected patients. HDV is highly dependent on host factors for accomplishment of the replication cycle. However, these factors are largely unknown and the mechanisms involved in the pathogenicity of the virus still remain elusive. Here, we made use of the HEK-293 cell line, which was engineered in order to mimic HDV replication. Five different proteomes were analyzed and compared using a MS-based quantitative proteomics approach by (18)O/(16)O stable isotope labeling. About 3000 proteins were quantified and 89 found to be differentially expressed as a consequence HDV RNA replication. The down-regulation of p53 , HSPE, and ELAV as well as the up-regulation of Transportin 1 , EIF3D, and Cofilin 1 were validated by Western blot. A systems biology approach was additionally used to analyze altered pathways and networks. The G2/M DNA damage checkpoint and pyruvate metabolism were among the most affected pathways, and Cancer was the most likely disease associated to HDV replication. Western blot analysis allowed identifying 14-3-3 σ interactor as down-regulated protein acting in the G2/M cell cycle control checkpoint. This evidence supports deregulation of G2/M checkpoint as a possible mechanism involved in the promotion of HDV associated hepatocellular carcinoma. BIOLOGICAL SIGNIFICANCE This manuscript provides a description of changes observed in the cellular proteome that arise as result of expression of the hepatitis delta virus (HDV) antigen as well as virus genome replication. Using a systems biology approach cancer was found to be the most probable disease associated with HDV replication. Additionally, results show that HDV alters the regulation of G2/M cell cycle control checkpoint. Taken together, our data provide new insights into probable mechanisms associated with the increased incidence of hepatocellular carcinoma observed in HDV infected patients.
Collapse
Affiliation(s)
- Marta Mendes
- Unidade de Microbiologia Médica, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
26
|
Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, Vázquez J, Yáñez-Mó M. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 2013; 288:11649-61. [PMID: 23463506 DOI: 10.1074/jbc.m112.445304] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles are emerging as a potent mechanism of intercellular communication because they can systemically exchange genetic and protein material between cells. Tetraspanin molecules are commonly used as protein markers of extracellular vesicles, although their role in the unexplored mechanisms of cargo selection into exosomes has not been addressed. For that purpose, we have characterized the intracellular tetraspanin-enriched microdomain (TEM) interactome by high throughput mass spectrometry, in both human lymphoblasts and their derived exosomes, revealing a clear pattern of interaction networks. Proteins interacting with TEM receptors cytoplasmic regions presented a considerable degree of overlap, although some highly specific CD81 tetraspanin ligands, such as Rac GTPase, were detected. Quantitative proteomics showed that TEM ligands account for a great proportion of the exosome proteome and that a selective repertoire of CD81-associated molecules, including Rac, is not correctly routed to exosomes in cells from CD81-deficient animals. Our data provide evidence that insertion into TEM may be necessary for protein inclusion into the exosome structure.
Collapse
Affiliation(s)
- Daniel Perez-Hernandez
- Laboratory of Protein Chemistry and Proteomics, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dinkova-Kostova AT. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response. SCIENTIFICA 2012; 2012:606104. [PMID: 24278719 PMCID: PMC3820647 DOI: 10.6064/2012/606104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 05/28/2023]
Abstract
The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers), both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, James Arrott Drive, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Ortea I, Pascoal A, Cañas B, Gallardo JM, Barros-Velázquez J, Calo-Mata P. Food authentication of commercially-relevant shrimp and prawn species: From classical methods to Foodomics. Electrophoresis 2012; 33:2201-11. [DOI: 10.1002/elps.201100576] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ignacio Ortea
- Department of Food Technology; Institute for Marine Research; Spanish National Research Council (CSIC); Vigo; Spain
| | - Ananías Pascoal
- Department of Analytical Chemistry; Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology; University of Santiago de Compostela; Lugo; Spain
| | - Benito Cañas
- Department of Analytical Chemistry; University Complutense of Madrid; Madrid; Spain
| | - José M. Gallardo
- Department of Food Technology; Institute for Marine Research; Spanish National Research Council (CSIC); Vigo; Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry; Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology; University of Santiago de Compostela; Lugo; Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry; Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology; University of Santiago de Compostela; Lugo; Spain
| |
Collapse
|
29
|
Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:514847. [PMID: 22844595 PMCID: PMC3403169 DOI: 10.1155/2012/514847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022]
Abstract
Cysteines are one of the most rarely used amino acids, but when conserved in proteins they often play critical roles in structure, function, or regulation. Reversible cysteine modifications allow for potential redox regulation of proteins. Traditional measurement of the relative absolute quantity of a protein between two samples is not always necessarily proportional to the activity of the protein. We propose application of iTRAQ reagents in combination with a previous thiol selection method to relatively quantify the redox state of cysteines both within and between samples in a single analysis. Our method allows for the identification of the proteins, identification of redox-sensitive cysteines within proteins, and quantification of the redox status of individual cysteine-containing peptides. As a proof of principle, we applied this technique to yeast alcohol dehydrogenase-1 exposed in vitro to H2O2 and also in vivo to the complex proteome of the Gram-negative bacterium Bacillus subtilis.
Collapse
|
30
|
Carrera M, Cañas B, Gallardo JM. Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J Proteomics 2012; 75:3211-20. [PMID: 22498884 DOI: 10.1016/j.jprot.2012.03.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/09/2012] [Accepted: 03/18/2012] [Indexed: 11/27/2022]
Abstract
Parvalbumins beta (β-PRVBs) are considered the major fish allergens. A new strategy for the rapid and direct detection of these allergens in any foodstuff is presented in this work. The proposed methodology is based on the purification of β-PRVBs by treatment with heat, the use of accelerated in-solution trypsin digestion under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of only nineteen β-PRVB peptide biomarkers by Selected MS/MS Ion Monitoring (SMIM) in a linear ion trap (LIT) mass spectrometer. The present strategy allows the direct detection of the presence of fish β-PRVBs in any food product in less than 2 hours.
Collapse
Affiliation(s)
- Mónica Carrera
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Strasse 16, Zürich, Switzerland.
| | | | | |
Collapse
|
31
|
Bonzon-Kulichenko E, Martínez-Martínez S, Trevisan-Herraz M, Navarro P, Redondo JM, Vázquez J. Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. J Proteomics 2011; 75:561-71. [PMID: 21920478 DOI: 10.1016/j.jprot.2011.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/22/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
32
|
Carrera M, Cañas B, López-Ferrer D, Piñeiro C, Vázquez J, Gallardo JM. Fast Monitoring of Species-Specific Peptide Biomarkers Using High-Intensity-Focused-Ultrasound-Assisted Tryptic Digestion and Selected MS/MS Ion Monitoring. Anal Chem 2011; 83:5688-95. [DOI: 10.1021/ac200890w] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mónica Carrera
- Marine Research Institute, Spanish National Research Council, Vigo, Pontevedra, Spain
| | | | - Daniel López-Ferrer
- Severo Ochoa Molecular Biology Centre, Spanish National Research Council, Madrid, Spain
| | - Carmen Piñeiro
- Marine Research Institute, Spanish National Research Council, Vigo, Pontevedra, Spain
| | - Jesús Vázquez
- Severo Ochoa Molecular Biology Centre, Spanish National Research Council, Madrid, Spain
| | - José M. Gallardo
- Marine Research Institute, Spanish National Research Council, Vigo, Pontevedra, Spain
| |
Collapse
|
33
|
Ortea I, Cañas B, Gallardo JM. Selected tandem mass spectrometry ion monitoring for the fast identification of seafood species. J Chromatogr A 2011; 1218:4445-51. [PMID: 21621784 DOI: 10.1016/j.chroma.2011.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/22/2011] [Accepted: 05/09/2011] [Indexed: 11/16/2022]
Abstract
Selected tandem mass spectrometry (MS/MS) ion monitoring (SMIM) is the most suitable scanning mode to detect known peptides in complex samples when an ion-trap mass spectrometer is the instrument used for the analysis. In this mode, the MS detector is programmed to perform continuous MS/MS scans on one or more selected precursors, either during a selected time interval, or along the whole chromatographic run. MS/MS spectra are recorded, so virtual multiple reaction monitoring chromatogram traces for the different fragment ions can be plotted. In this work, a shotgun proteomics approach was applied to the detection of previously characterized species-specific peptides from different seafood species. The proposed methodology makes use of high intensity focused ultrasound-assisted trypsin digestion for ultra fast sample preparation, peptide separation and identification by reverse phase capillary LC coupled to an ion-trap working in the SMIM scanning mode. This methodology was applied to the differential classification of seven commercial, closely related, species of Decapoda shrimps proving to be an excellent tool for seafood product authentication, which may be used by fisheries and manufacturers to provide a fast and effective identification of the specimens, guaranteeing the quality and safety of foodstuffs to consumers.
Collapse
Affiliation(s)
- Ignacio Ortea
- Marine Research Institute, Spanish National Research Council (CSIC), Vigo, Spain.
| | | | | |
Collapse
|
34
|
Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). J Mol Biol 2011; 410:268-79. [PMID: 21601578 DOI: 10.1016/j.jmb.2011.04.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
Abstract
The hypoxic response in animals is mediated via the transcription factor hypoxia-inducible factor (HIF). An oxygen-sensing component of the HIF system is provided by Fe(II) and 2-oxoglutarate-dependent oxygenases that catalyse the posttranslational hydroxylation of the HIF-α subunit. It is proposed that the activity of the HIF hydroxylases can be regulated by their reaction with nitric oxide. We describe biochemical and biophysical studies on the reaction of prolyl hydroxylase domain-containing enzyme (PHD) isoform 2 (EGLN1) with nitric oxide and a nitric oxide transfer reagent. The combined results reveal the potential for the catalytic domain of PHD2 to react with nitric oxide both at its Fe(II) and at cysteine residues. Although the biological significance is unclear, the results suggest that the reaction of PHD2 with nitric oxide has the potential to be complex and are consistent with proposals based on cellular studies that nitric oxide may regulate the hypoxic response by direct reaction with the HIF hydroxylases.
Collapse
|
35
|
Meléndez LM, Colon K, Rivera L, Rodriguez-Franco E, Toro-Nieves D. Proteomic analysis of HIV-infected macrophages. J Neuroimmune Pharmacol 2011; 6:89-106. [PMID: 21153888 PMCID: PMC3028070 DOI: 10.1007/s11481-010-9253-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/23/2010] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes (monocytes, macrophages, and microglia) play an important role in innate immunity against pathogens including HIV. These cells are also important viral reservoirs in the central nervous system and secrete inflammatory mediators and toxins that affect the tissue environment and function of surrounding cells. In the era of antiretroviral therapy, there are fewer of these inflammatory mediators. Proteomic approaches including surface enhancement laser desorption ionization, one- and two-dimensional difference in gel electrophoresis, and liquid chromatography tandem mass spectrometry have been used to uncover the proteins produced by in vitro HIV-infected monocytes, macrophages, and microglia. These approaches have advanced the understanding of novel mechanisms for HIV replication and neuronal damage. They have also been used in tissue macrophages that restrict HIV replication to understand the mechanisms of restriction for future therapies. In this review, we summarize the proteomic studies on HIV-infected mononuclear phagocytes and discuss other recent proteomic approaches that are starting to be applied to this field. As proteomic instruments and methods evolve to become more sensitive and quantitative, future studies are likely to identify more proteins that can be targeted for diagnosis or therapy and to uncover novel disease mechanisms.
Collapse
Affiliation(s)
- Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan 00935, Puerto Rico.
| | | | | | | | | |
Collapse
|
36
|
Bonzon-Kulichenko E, Pérez-Hernández D, Núñez E, Martínez-Acedo P, Navarro P, Trevisan-Herraz M, Ramos MDC, Sierra S, Martínez-Martínez S, Ruiz-Meana M, Miró-Casas E, García-Dorado D, Redondo JM, Burgos JS, Vázquez J. A robust method for quantitative high-throughput analysis of proteomes by 18O labeling. Mol Cell Proteomics 2010; 10:M110.003335. [PMID: 20807836 DOI: 10.1074/mcp.m110.003335] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MS-based quantitative proteomics plays an increasingly important role in biological and medical research and the development of these techniques remains one of the most important challenges in mass spectrometry. Numerous stable isotope labeling approaches have been proposed. However, and particularly in the case of (18)O-labeling, a standard protocol of general applicability is still lacking, and statistical issues associated to these methods remain to be investigated. In this work we present an improved high-throughput quantitative proteomics method based on whole proteome concentration by SDS-PAGE, optimized in-gel digestion, peptide (18)O-labeling, and separation by off-gel isoelectric focusing followed by liquid chromatography-LIT-MS. We demonstrate that the off-gel technique is fully compatible with (18)O peptide labeling in any pH range. A recently developed statistical model indicated that partial digestions and methionine oxidation do not alter protein quantification and that variances at the scan, peptide, and protein levels are stable and reproducible in a variety of proteomes of different origin. We have also analyzed the dynamic range of quantification and demonstrated the practical utility of the method by detecting expression changes in a model of activation of Jurkat T-cells. Our protocol provides a general approach to perform quantitative proteomics by (18)O-labeling in high-throughput studies, with the added value that it has a validated statistical model for the null hypothesis. To the best of our knowledge, this is the first report where a general protocol for stable isotope labeling is tested in practice using a collection of samples and analyzed at this degree of statistical detail.
Collapse
Affiliation(s)
- Elena Bonzon-Kulichenko
- Laboratory of Protein Chemistry and Proteomics, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, E-28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Redondo-Horcajo M, Romero N, Martínez-Acedo P, Martínez-Ruiz A, Quijano C, Lourenço CF, Movilla N, Enríquez JA, Rodríguez-Pascual F, Rial E, Radi R, Vázquez J, Lamas S. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovasc Res 2010; 87:356-65. [PMID: 20106845 DOI: 10.1093/cvr/cvq028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cyclosporine A (CsA) has represented a fundamental therapeutic weapon in immunosuppression for the past three decades. However, its clinical use is not devoid of side effects, among which hypertension and vascular injury represent a major drawback. Endothelial cells are able to generate reactive oxygen and nitrogen species upon exposure to CsA, including formation of peroxynitrite. This may result in endothelial cell toxicity and increased tyrosine nitration. We have now studied the subcellular origin of superoxide formation in endothelial cells treated with CsA and the biochemical consequences for the function of mitochondrial enzymes. METHODS AND RESULTS By using electron spin resonance and endothelial cells lacking functional mitochondria, we showed that superoxide anion is generated in mitochondria. This was associated with an effect of CsA on bioenergetic parameters: increased mitochondrial membrane potential and inhibition of cellular respiration. In addition, CsA inhibited the activity of the mitochondrial enzymes aconitase and manganese superoxide dismutase (MnSOD). The use of murine lung endothelial cells deficient in endothelial nitric oxide synthase (eNOS) and NOS/peroxynitrite inhibitors allowed us to establish that the presence of eNOS and concomitant NO synthesis and peroxynitrite formation were essential for CsA induced nitration and inhibition of MnSOD activity. As the latter has been shown to become inactivated by nitration, we sought to identify this modification by mass spectrometry analysis. We found that CsA induced specific MnSOD tyrosine 34 nitration both in the recombinant protein and in endothelial cells overexpressing MnSOD. CONCLUSION We propose that CsA induced endothelial damage may be related to increased mitochondrial superoxide formation and subsequent peroxynitrite-dependent nitroxidative damage, specifically targeting MnSOD. The inactivation of this key antioxidant enzyme by tyrosine nitration represents a pathophysiological cellular mechanism contributing to self-perpetuation and amplification of CsA-related vascular toxicity.
Collapse
Affiliation(s)
- Mariano Redondo-Horcajo
- Departamento Medicina Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Torta F, Elviri L, Bachi A. Direct and indirect detection methods for the analysis of S-nitrosylated peptides and proteins. Methods Enzymol 2010; 473:265-80. [PMID: 20513483 DOI: 10.1016/s0076-6879(10)73014-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Covalent binding of nitric oxide to specific cysteine residues in proteins is a key event in cellular redox signal transduction. This modification influences both physiological and pathological processes, such as cardiovascular, neurological, and cancer-associated events. Even though, since its introduction, the biotin switch technique is the most used indirect method for the study of S-nitrosylation both in vivo and in vitro, during the last years modifications of this method have emerged, allowing more efficient sample enrichment and the precise identification of the modified aminoacidic sites. At the same time, to bypass the difficulties generated by the multiple chemical reaction steps required by these labeling methods, the direct identification of the SNO groups by mass spectrometry is emerging as a useful tool in this field, although, until now, it has been limited to the study of synthetic or purified recombinant proteins. Here we present two different techniques, developed in our laboratories, for detection of S-nitrosylation: the first is based on a modification of the biotin switch technique and is called His-tag switch, and the second is a direct mass spectrometry-based method used to detect in vivo generated SNO groups.
Collapse
Affiliation(s)
- Federico Torta
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
39
|
Casanovas A, Carrascal M, Abián J, López-Tejero MD, Llobera M. Lipoprotein lipase is nitrated in vivo after lipopolysaccharide challenge. Free Radic Biol Med 2009; 47:1553-60. [PMID: 19715756 DOI: 10.1016/j.freeradbiomed.2009.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/29/2009] [Accepted: 08/20/2009] [Indexed: 01/22/2023]
Abstract
Lipopolysaccharide (LPS) administration down-regulates lipoprotein lipase (LPL) activity at the posttranscriptional level. Hypertriglyceridemia is the main metabolic consequence of this fall in LPL activity and is presumably involved in the innate immune response to infection. Nitric oxide (NO) has been implicated in LPS-induced down-regulation of LPL activity, but whether its effects are direct or indirect remains unclear. Here we examined the potential nitration of LPL in vivo in response to LPS challenge in rats. We found hypertriglyceridemia, iNOS expression, NO overproduction, and a generalized decrease in LPL activity in tissues 6 h after LPS administration. LPL sensitivity to nitration was first explored by in vitro exposure of bovine LPL to peroxynitrite, a reactive nitrogen species (RNS). Nitration was confirmed by anti-nitrotyrosine Western blot and subsequent identification of specific nitrotyrosine-containing LPL sequences by tandem mass spectrometry. Further analysis by targeted mass spectrometry revealed three in vivo-nitrated tyrosine residues in heart LPL from LPS-challenged rats. This is the first study to identify nitrated tyrosine residues in LPL, both in vitro and in vivo, and it demonstrates that LPL is a target for RNS in endotoxemia. These results indicate that LPL nitration may be a new mechanism of LPL activity regulation in vivo.
Collapse
Affiliation(s)
- Albert Casanovas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodríguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia-Dorado D. Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 2009; 83:747-56. [PMID: 19460776 DOI: 10.1093/cvr/cvp157] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIMS Connexin43 is present at the inner membrane of cardiomyocyte mitochondria (mCx43), but its function remains unknown. METHODS AND RESULTS In this study we verified the presence of mCx43 by a mass spectrometry-based proteomic approach in purified mitochondrial preparations from mouse myocardium and determined by western blot analysis that the C-terminus of mCx43 is oriented towards the intermembrane space. Cross-linking studies with dimethylsuberimidate indicated the presence of Cx43 hexamers in mitochondrial membranes. The contribution of Cx43 to both mitochondrial dye uptake and K(+) flux was assessed in wild-type mice using hemichannel blockers and Cx43KI32 mice in which Cx43 had been replaced by Cx32. Uptake of the Cx43 hemichannel-permeant dye Lucifer Yellow was reduced in mitochondria from wild-type mice by two hemichannel blockers (carbenoxolone and heptanol) and in Cx43KI32 compared with wild-type mice. Mitochondrial K(+) influx (PBFI fluorescence) was decreased in digitonin-permeabilized cardiomyocytes from Cx32 mutants compared with wild-type mice, and addition of the Cx43 hemichannel blocker 18alpha-glycyrrhetinic acid had an inhibitory effect on mitochondrial K(+) influx in wild-type cardiomyocytes, but not in cardiomyocytes from Cx32 mutants. CONCLUSION These results indicate that mCx43 contributes to mitochondrial K(+) flux in cardiomyocytes, potentially by forming hemichannel-like structures.
Collapse
Affiliation(s)
- Elisabet Miro-Casas
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119, Barcelona 08035, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J. Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 2009; 10:1147-53. [PMID: 19696785 DOI: 10.1038/embor.2009.153] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 11/09/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an abundant, dimeric ATP-dependent molecular chaperone, and ATPase activity is essential for its in vivo functions. S-nitrosylation of a residue located in the carboxy-terminal domain has been shown to affect Hsp90 activity in vivo. To understand how variation of a specific amino acid far away from the amino-terminal ATP-binding site regulates Hsp90 functions, we mutated the corresponding residue and analysed yeast and human Hsp90 variants both in vivo and in vitro. Here, we show that this residue is a conserved, strong regulator of Hsp90 functions, including ATP hydrolysis and chaperone activity. Unexpectedly, the variants alter both the C-terminal and N-terminal association properties of Hsp90, and shift its conformational equilibrium within the ATPase cycle. Thus, S-nitrosylation of this residue allows the fast and efficient fine regulation of Hsp90.
Collapse
Affiliation(s)
- Marco Retzlaff
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Rodthongkum N, Washington JD, Savariar EN, Thayumanavan S, Vachet RW. Generating peptide titration-type curves using polymeric reverse micelles as selective extraction agents along with matrix-assisted laser desorption ionization-mass spectrometry detection. Anal Chem 2009; 81:5046-53. [PMID: 19459656 DOI: 10.1021/ac900661e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphiphilic homopolymers that self-assemble into reverse micelles in nonpolar solvents have been used by us in the context of a two-phase liquid-liquid extraction protocol to selectively extract peptides from aqueous solution for MALDI-MS detection. In this manuscript, we investigate the scope of these materials in terms of its extraction capabilities, using compounds with varying isoelectric points (pI) and pK(a) values over a range of aqueous solution pHs. We find that the aqueous solution pH and analyte pK(a) values are the major factors controlling extraction selectivity. We also find that the experimental extraction efficiencies correspond very well with the fractional compositions of species calculated using analyte pK(a) values, indicating that these extraction materials can be used to simultaneously generate titration-type curves for each individual peptide in a mixture. We predict that such titration curves, along with accurate mass measurements, could represent a new way of improving protein identification procedures.
Collapse
Affiliation(s)
- Nadnudda Rodthongkum
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
43
|
Lee HJ, Na K, Kwon MS, Kim H, Kim KS, Paik YK. Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen. Proteomics 2009; 9:3395-408. [DOI: 10.1002/pmic.200800943] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Jorge I, Navarro P, Martínez-Acedo P, Núñez E, Serrano H, Alfranca A, Redondo JM, Vázquez J. Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells. Mol Cell Proteomics 2009; 8:1130-49. [PMID: 19181660 PMCID: PMC2689778 DOI: 10.1074/mcp.m800260-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 01/14/2009] [Indexed: 01/25/2023] Open
Abstract
Statistical models for the analysis of protein expression changes by stable isotope labeling are still poorly developed, particularly for data obtained by 16O/18O labeling. Besides large scale test experiments to validate the null hypothesis are lacking. Although the study of mechanisms underlying biological actions promoted by vascular endothelial growth factor (VEGF) on endothelial cells is of considerable interest, quantitative proteomics studies on this subject are scarce and have been performed after exposing cells to the factor for long periods of time. In this work we present the largest quantitative proteomics study to date on the short term effects of VEGF on human umbilical vein endothelial cells by 18O/16O labeling. Current statistical models based on normality and variance homogeneity were found unsuitable to describe the null hypothesis in a large scale test experiment performed on these cells, producing false expression changes. A random effects model was developed including four different sources of variance at the spectrum-fitting, scan, peptide, and protein levels. With the new model the number of outliers at scan and peptide levels was negligible in three large scale experiments, and only one false protein expression change was observed in the test experiment among more than 1000 proteins. The new model allowed the detection of significant protein expression changes upon VEGF stimulation for 4 and 8 h. The consistency of the changes observed at 4 h was confirmed by a replica at a smaller scale and further validated by Western blot analysis of some proteins. Most of the observed changes have not been described previously and are consistent with a pattern of protein expression that dynamically changes over time following the evolution of the angiogenic response. With this statistical model the 18O labeling approach emerges as a very promising and robust alternative to perform quantitative proteomics studies at a depth of several thousand proteins.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Centro de Biología Molecular Severo Ochoa, E-28049 Madrid, Spain and ||Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Carrera M, Barros L, Cañas B, Gallardo JM. Discrimination of South African Commercial Fish Species (Merluccius capensisandMerluccius paradoxus) by LC-MS/MS Analysis of the Protein Aldolase. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2009. [DOI: 10.1080/10498850802581369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Yocum AK, Chinnaiyan AM. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:145-57. [PMID: 19279071 DOI: 10.1093/bfgp/eln056] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantitative targeted proteomics has recently taken front stage in the proteomics community. Centered on multiple reaction monitoring-mass spectrometry (MRM-MS) methodologies, quantitative targeted proteomics is being used in the verification of global proteomics data, the discovery of lower abundance proteins, protein post-translational modifications, discrimination of select highly homologous protein isoforms and as the final step in biomarker discovery. An older methodology utilized with small molecule analysis, the proteomics community is making great technological strides to develop MRM-MS as the next method to address previously challenging issues in global proteomics experimentation, namely dynamic range, identification of post-translational modifications, sensitivity and selectivity of measurement which will undoubtedly further biomedical knowledge. This brief review will provide a general introduction of MRM-MS and highlight its novel application for targeted quantitative proteomic experimentations.
Collapse
Affiliation(s)
- Anastasia K Yocum
- Michigan Center for Translational Pathology University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
47
|
Lee HJ, Kang MJ, Lee EY, Cho SY, Kim H, Paik YK. Application of a peptide-based PF2D platform for quantitative proteomics in disease biomarker discovery. Proteomics 2008; 8:3371-81. [PMID: 18651672 DOI: 10.1002/pmic.200800111] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A peptide-based 2-D liquid phase fractionation (PF2D) system was used in a quantitative proteomic analysis of hepatocellular carcinoma. 2-D liquid maps of peptide specimens showed better resolution than those of proteins, leading to the identification of differentially expressed proteins. Peptide-based PF2D gave well-matched theoretical and experimental pI values and was proven to be a very efficient and versatile analytical tool for both large-scale profiling and quantification of phosphoproteins in disease biomarker discovery.
Collapse
Affiliation(s)
- Hyoung-Joo Lee
- Department of Biochemistry, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Torta F, Usuelli V, Malgaroli A, Bachi A. Proteomic analysis of protein S-nitrosylation. Proteomics 2008; 8:4484-94. [PMID: 18846506 DOI: 10.1002/pmic.200800089] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) produces covalent PTMs of specific cysteine residues, a process known as S-nitrosylation. This route is dynamically regulated and is one of the major NO signalling pathways known to have strong and dynamic interactions with redox signalling. In agreement with this scenario, binding of NO to key cysteine groups can be linked to a broad range of physiological and pathological cellular events, such as smooth muscle relaxation, neurotransmission and neurodegeneration. The characterization of S-nitrosylated residues and the functional relevance of this protein modification are both essential information needed to understand the action of NO in living organisms. In this review, we focus on recent advances in this field and on state-of-the-art proteomic approaches which are aimed at characterizing the S-nitrosylome in different biological backgrounds.
Collapse
Affiliation(s)
- Federico Torta
- Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | |
Collapse
|
49
|
Pienaar IS, Daniels WMU, Götz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm (Vienna) 2008; 115:1413-30. [PMID: 18523721 PMCID: PMC2862282 DOI: 10.1007/s00702-008-0070-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
Despite the vast number of studies on Parkinson's disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Department of Medical Physiology, University of Stellenbosch, Matieland, South Africa.
| | | | | |
Collapse
|
50
|
Agudo R, Arias A, Pariente N, Perales C, Escarmís C, Jorge A, Marina A, Domingo E. Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. J Mol Biol 2008; 382:652-66. [PMID: 18662697 DOI: 10.1016/j.jmb.2008.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 02/05/2023]
Abstract
The basis for a dual inhibitory and mutagenic activity of 5-fluorouracil (5-FU) on foot-and-mouth disease virus (FMDV) RNA replication has been investigated with purified viral RNA-dependent RNA polymerase (3D) in vitro. 5-Fluorouridine triphosphate acted as a potent competitive inhibitor of VPg uridylylation, the initial step of viral replication. Peptide analysis by mass spectrometry has identified a VPg fragment containing 5-fluorouridine monophosphate (FUMP) covalently attached to Tyr3, the amino acid target of the uridylylation reaction. During RNA elongation, FUMP was incorporated in the place of UMP or CMP by FMDV 3D, using homopolymeric and heteropolymeric templates. Incorporation of FUMP did not prevent chain elongation, and, in some sequence contexts, it favored misincorporations at downstream positions. When present in the template, FUMP directed the incorporation of AMP and GMP, with ATP being a more effective substrate than GTP. The misincorporation of GMP was 17-fold faster opposite FU than opposite U in the template. These results in vitro are consistent with the mutational bias observed in the mutant spectra of 5-FU-treated FMDV populations. The dual mutagenic and inhibitory activity of 5-fluorouridine triphosphate may contribute to the effective extinction of FMDV by 5-FU through virus entry into error catastrophe.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|