1
|
Raguindin RKM, Mercado CC. Localized surface plasmon resonance shift of biosynthesized and functionalized quasi-spherical gold nanoparticle systems. RSC Adv 2023; 13:24211-24227. [PMID: 37583667 PMCID: PMC10424193 DOI: 10.1039/d3ra04092e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Rapid and more environment-friendly means of gold nanoparticle synthesis is necessary in many applications, as in ion detection. Leaf extracts have become effective and economical reducing agents for gold nanoparticle formation, however, effects of extract combinations have not been thoroughly investigated. With the exploitation of combined extract effects, gold nanoparticles were synthesized then functionalized and investigated to produce selected nanoparticle systems which are capable of detecting aqueous lead(ii) ions with minimum detection limits of 10-11 ppm. The measured localized surface plasmon resonance absorption peaks of the gold nanoparticles were 541-800 nm for the synthesis and 549 nm for the functionalization. The diameters of different gold nanoparticle systems were 17-37 nm. These were mostly quasi-spherical in morphology with some rod-, triangular-, and hexagonal plate-like particles. The biosynthesis used polyphenols and acids present in the extracts in the reduction of gold ions into gold nanoparticles, and in the nanoparticle capping and stabilization. Functionalization replaced the capping compounds with alliin, S-allylcysteine, allicin, and ajoene. Gold nanoparticle stability in aqueous systems was verified for two weeks up to five months. The investigations concluded the practicability of the gold nanoparticles in lead(ii) ion detection with selectivity initially verified for other divalent cations.
Collapse
Affiliation(s)
- Ricky Kristan M Raguindin
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman Quezon City 1101 Philippines
| | - Candy C Mercado
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman Quezon City 1101 Philippines
| |
Collapse
|
2
|
Osipenko S, Nikolaev E, Kostyukevich Y. Amine additives for improved in-ESI H/D exchange. Analyst 2022; 147:3180-3185. [DOI: 10.1039/d2an00081d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-ESI H/D exchange is a convenient technique for analyzing small-molecular complex mixtures.
Collapse
Affiliation(s)
- Sergey Osipenko
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Eugene Nikolaev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Yury Kostyukevich
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| |
Collapse
|
3
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
4
|
Stone EA, Cutrona KJ, Miller SJ. Asymmetric Catalysis upon Helically Chiral Loratadine Analogues Unveils Enantiomer-Dependent Antihistamine Activity. J Am Chem Soc 2020; 142:12690-12698. [PMID: 32579347 DOI: 10.1021/jacs.0c03904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analogues of the conformationally dynamic Claritin (loratadine) and Clarinex (desloratadine) scaffolds have been enantio- and chemoselectively N-oxidized using an aspartic acid containing peptide catalyst to afford stable, helically chiral products in up to >99:1 er. The conformational dynamics and enantiomeric stability of the N-oxide products have been investigated experimentally and computationally with the aid of crystallographic data. Furthermore, biological assays show that rigidifying the core structure of loratadine and related analogues through N-oxidation affects antihistamine activity in an enantiomer-dependent fashion. Computational docking studies illustrate the observed activity differences.
Collapse
Affiliation(s)
- Elizabeth A Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Kara J Cutrona
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
5
|
Sharma MK, Shah RP, Sengupta P. Amalgamation of stress degradation and metabolite profiling in rat urine and feces for characterization of oxidative metabolites of flibanserin using UHPLC-Q-TOF-MS/MS, H/D exchange and NMR technique. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1139:121993. [DOI: 10.1016/j.jchromb.2020.121993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
6
|
Rudolph W, Remane D, Wissenbach DK, Peters FT. Comparative study on the metabolism of the ergot alkaloids ergocristine, ergocryptine, ergotamine, and ergovaline in equine and human S9 fractions and equine liver preparations. Xenobiotica 2019; 49:1149-1157. [PMID: 30623698 DOI: 10.1080/00498254.2018.1542187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. Ergopeptine alkaloids like ergovaline and ergotamine are suspected to be associated with fescue toxicosis and ergotism in horses. Information on the metabolism of ergot alkaloids is scarce, especially in horses, but needed for toxicological analysis of these drugs in urine/feces of affected horses. The aim of this study was to investigate the metabolism of ergovaline, ergotamine, ergocristine, and ergocryptine in horses and comparison to humans. 2. Supernatants of alkaloid incubations with equine and human liver S9 fractions were analyzed by reversed-phase liquid-chromatography coupled to high-resolution tandem mass spectrometry with full scan and MS2 acquisition. Metabolite structures were postulated based on their MS2 spectra in comparison to those of the parent alkaloids. All compounds were extensively metabolized yielding nor-, N-oxide, hydroxy and dihydro-diole metabolites with largely overlapping patterns in equine and human liver S9 fractions. However, some metabolic steps e.g. the formation of 8'-hydroxy metabolites were unique for human metabolism, while formation of the 13/14-hydroxy and 13,14-dihydro-diol metabolites were unique for equine metabolism. Incubations with equine whole liver preparations yielded less metabolites than the S9 fractions. 3. The acquired data can be used to develop metabolite-based screenings for these alkaloids, which will likely extend their detection windows in urine/feces from affected horses.
Collapse
Affiliation(s)
- Wiebke Rudolph
- a Institute of Forensic Medicine , Jena University Hospital , Jena , Germany
| | - Daniela Remane
- a Institute of Forensic Medicine , Jena University Hospital , Jena , Germany
| | - Dirk K Wissenbach
- a Institute of Forensic Medicine , Jena University Hospital , Jena , Germany
| | - Frank T Peters
- a Institute of Forensic Medicine , Jena University Hospital , Jena , Germany
| |
Collapse
|
7
|
Sun Y, Wang S, Ji J, Zhai G, Xing J. Metabolite identification of the antimalarial naphthoquine using liquid chromatography-tandem high-resolution mass spectrometry in combination with multiple data-mining tools. Biomed Chromatogr 2018; 32:e4207. [DOI: 10.1002/bmc.4207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yanhong Sun
- School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Shuqi Wang
- School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Jianbo Ji
- School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Jie Xing
- School of Pharmaceutical Sciences; Shandong University; Jinan China
| |
Collapse
|
8
|
Do JA, Noh E, Yoon SB, Lee JH, Park SK, Mandava S, Baek SY, Lee J. Collision-induced dissociation pathways of H 1-antihistamines by electrospray ionization quadrupole time-of-flight mass spectrometry. Arch Pharm Res 2017; 40:736-745. [PMID: 28601982 DOI: 10.1007/s12272-017-0921-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/14/2017] [Indexed: 11/25/2022]
Abstract
Over the past decades, mass spectrometry technologies have been developed to obtain mass accuracies of one ppm or less. Of the newly developed technologies, quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has emerged as being well suited to routine and high-throughput analyses of pharmaceuticals. Dietary supplements and functional foods have frequently been found to be contaminated with pharmaceuticals. In our continuous efforts to develop methodologies to protect public health against adulterated dietary supplements, we have constructed a mass spectral database for 21 H1-antihistamines encountered as adulterants by using liquid chromatography-electrospray ionization (LC-ESI)/Q-TOF-MS, and have proposed their possible collision-induced dissociation pathways. This database will be very useful for the rapid and accurate detection of H1-antihistamines (known) and their analogues (unknown) illegally added to dietary supplements as well as in other sample matrices.
Collapse
Affiliation(s)
- Jung-Ah Do
- Advanced Analysis Team, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, 28159, Republic of Korea
| | - Eunyoung Noh
- Advanced Analysis Team, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, 28159, Republic of Korea
| | - Soon-Byung Yoon
- Advanced Analysis Team, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, 28159, Republic of Korea
| | - Ji Hyun Lee
- Advanced Analysis Team, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, 28159, Republic of Korea
| | - Sung-Kwan Park
- Advanced Analysis Team, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, 28159, Republic of Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Sun Young Baek
- Advanced Analysis Team, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, 28159, Republic of Korea.
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
9
|
Validation of stability indicating high performance liquid chromatographic method for estimation of Desloratadine in tablet formulation. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2012.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Multiple stage MS in analysis of plasma, serum, urine and in vitro samples relevant to clinical and forensic toxicology. Bioanalysis 2016; 8:457-81. [DOI: 10.4155/bio.16.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper reviews MS approaches applied to metabolism studies, structure elucidation and qualitative or quantitative screening of drugs (of abuse) and/or their metabolites. Applications in clinical and forensic toxicology were included using blood plasma or serum, urine, in vitro samples, liquids, solids or plant material. Techniques covered are liquid chromatography coupled to low-resolution and high-resolution multiple stage mass analyzers. Only PubMed listed studies published in English between January 2008 and January 2015 were considered. Approaches are discussed focusing on sample preparation and mass spectral settings. Comments on advantages and limitations of these techniques complete the review.
Collapse
|
11
|
Ladumor M, Tiwari S, Patil A, Bhavsar K, Jhajra S, Prasad B, Singh S. High-Resolution Mass Spectrometry in Metabolite Identification. APPLICATIONS OF TIME-OF-FLIGHT AND ORBITRAP MASS SPECTROMETRY IN ENVIRONMENTAL, FOOD, DOPING, AND FORENSIC ANALYSIS 2016. [DOI: 10.1016/bs.coac.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Attygalle AB, Gangam R, Pavlov J. Real-Time Monitoring of In Situ Gas-Phase H/D Exchange Reactions of Cations by Atmospheric Pressure Helium Plasma Ionization Mass Spectrometry (HePI-MS). Anal Chem 2013; 86:928-35. [DOI: 10.1021/ac403634t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Athula B. Attygalle
- Center for
Mass Spectrometry, Department of Chemistry, Chemical Biology and Biomedical
Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Rekha Gangam
- Center for
Mass Spectrometry, Department of Chemistry, Chemical Biology and Biomedical
Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Julius Pavlov
- Center for
Mass Spectrometry, Department of Chemistry, Chemical Biology and Biomedical
Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
13
|
Shah RP, Garg A, Putlur SP, Wagh S, Kumar V, Rao V, Singh S, Mandlekar S, Desikan S. Practical and Economical Implementation of Online H/D Exchange in LC-MS. Anal Chem 2013; 85:10904-12. [DOI: 10.1021/ac402339s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ravi P. Shah
- Analytical Research and Development, Pharmaceutical Development, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Bangalore, India
| | - Amit Garg
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Bangalore, India
| | - Siva Prasad Putlur
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Bangalore, India
| | - Santosh Wagh
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Bangalore, India
| | - Vineet Kumar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Bangalore, India
| | - Venugopala Rao
- Analytical Research and Development, Pharmaceutical Development, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd., Bangalore, India
| | - Saranjit Singh
- Department
of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center, Bristol-Myers Squibb India Pvt. Ltd., Bangalore, India
| | - Sridhar Desikan
- Analytical Research and Development, Pharmaceutical Development, Biocon Bristol-Myers Squibb R&D Center, Bristol-Myers Squibb India Pvt. Ltd., Bangalore, India
| |
Collapse
|
14
|
Raju B, Ramesh M, Borkar RM, Srinivas R, Padiya R, Banerjee SK. In vivo metabolic investigation of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry in combination with online hydrogen/deuterium exchange experiments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1817-1831. [PMID: 22777784 DOI: 10.1002/rcm.6288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Tuberculosis is a leading cause of death from an infectious disease and moxifloxacin is an effective drug as compared to other fluoroquinolones. To date only two metabolites of the drug are known. Therefore, the present study on characterization of hitherto unknown in vivo metabolites of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is undertaken. METHODS In vivo metabolites of moxifloxacin have been identified and characterized by using LC/ESI-MS/MS in combination with an online hydrogen/deuterium (H/D) exchange technique. To identify in vivo metabolites, blood, urine and faeces samples were collected after oral administration of moxifloxacin to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation, liquid-liquid extraction followed by solid-phase extraction and LC/MS/MS analysis. RESULTS A total of nine phase I and ten phase II metabolites of moxifloxacin have been identified in urine samples including N-sulphated, glucuronide and hydroxylated metabolites which are also observed in plasma samples. In faeces samples, only the N-sulphated metabolite is observed. The structures of metabolites have been elucidated based on fragmentation patterns, accurate mass measurements and online H/D exchange LC/MS/MS experiments. Online H/D exchange experiments are used to support the identification and structural characterization of drug metabolites. CONCLUSIONS A total of 19 in vivo metabolites of moxifloxacin have been characterized using LC/ESI-MS/MS in combination with accurate mass measurements and online H/D exchange experiments. The main phase I metabolites of moxifloxacin are hydroxylated, decarbonylated, desmethylated and desmethylhydroxylated metabolites which undergo subsequent phase II glucuronidation pathways.
Collapse
Affiliation(s)
- B Raju
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | | | | | | | | | | |
Collapse
|
15
|
Raju B, Ramesh M, Borkar RM, Padiya R, Banerjee SK, Srinivas R. Identification and structural characterization of in vivo metabolites of ketorolac using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:919-931. [PMID: 22791260 DOI: 10.1002/jms.3043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI-HR-MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid-phase extraction and then subjected to LC/HR-MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O-sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC-MS/MS and MS(n) experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways.
Collapse
Affiliation(s)
- B Raju
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | | | | | | | | | | |
Collapse
|
16
|
Meyer MR, Maurer HH. Current applications of high-resolution mass spectrometry in drug metabolism studies. Anal Bioanal Chem 2012; 403:1221-31. [DOI: 10.1007/s00216-012-5807-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/28/2012] [Indexed: 12/31/2022]
|
17
|
Ponnuru VS, Challa BR, Nadendla R. Quantification of desloratadine in human plasma by LC-ESI-MS/MS and application to a pharmacokinetic study. J Pharm Anal 2012; 2:180-187. [PMID: 29403740 PMCID: PMC5760887 DOI: 10.1016/j.jpha.2012.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 11/05/2022] Open
Abstract
A simple, sensitive, and specific liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of desloratadine (DL) in human plasma using desloratadine-d5 (DLD5) as an internal standard (IS). Chromatographic separation was performed using an Xbridge C18 column (50 mm×4.6 mm, 5 μm) with an isocratic mobile phase composed of 10 mM ammonium formate: methanol (20:80, v/v), at a flow rate of 0.7 mL/min. DL and DLD5 were detected with proton adducts at m/z 311.2→259.2 and 316.2→264.3 in multiple reaction monitoring (MRM) positive modes, respectively. Liquid–liquid extraction (LLE) method was used to extract the drug and the IS. The method was validated over a linear concentration range of 5.0–5000.0 pg/mL with a correlation coefficient of (r2)≥0.9994. This method demonstrated intra- and inter-day precision within 0.7–2.0% and 0.7–2.7%, and an accuracy within 101.4–102.4%, and 99.5–104.8%. DL was found to be stable throughout the freeze–thaw cycles, bench-top, and postoperative stability studies. This method was successfully applied in the analysis of plasma samples following oral administration of DL (5 mg) in 35 healthy Indian male human volunteers under fasting conditions.
Collapse
Affiliation(s)
- Venkata Suresh Ponnuru
- Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh 522034, India.,Krishna University, Machilipatnam, Andhra Pradesh 521001, India
| | - B R Challa
- Nirmala College of Pharmacy, Kadapa, Andhra Pradesh 516002, India
| | - Ramarao Nadendla
- Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh 522034, India
| |
Collapse
|
18
|
Eichhorn P, Pérez S, Barceló D. Time-of-Flight Mass Spectrometry Versus Orbitrap-Based Mass Spectrometry for the Screening and Identification of Drugs and Metabolites. TOF-MS WITHIN FOOD AND ENVIRONMENTAL ANALYSIS - COMPREHENSIVE ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-444-53810-9.00009-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Liu T, Du F, Zhu F, Xing J. Metabolite identification of artemether by data-dependent accurate mass spectrometric analysis using an LTQ-Orbitrap hybrid mass spectrometer in combination with the online hydrogen/deuterium exchange technique. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3303-3313. [PMID: 22006394 DOI: 10.1002/rcm.5214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Artemether (ARM), the O-methyl ether prodrug of dihydroartemisinin (DHA), is a first-line antimalarial drug used in areas of multi-drug resistance. Artemisinin drugs can be metabolized extensively in vivo and this seems related to their autoinduction pharmacokinetics. In the present study, the metabolite identification of ARM was performed by the generic data-dependent accurate mass spectrometric analysis, using high-resolution (HR) liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) and tandem mass spectrometry (MS/MS) LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange for rapid structural characterization. The LC separation was improved allowing the separation of ARM parent drugs and their metabolites from their diastereomers. A total of 77 phase I metabolites of ARM were identified in rat liver microsomal incubates and rat urine, including dihydroartemisinin and artemisinin. In rat bile, 12 phase II metabolites were found. Accurate mass data were obtained in both full scan and HR-MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC/HR-ESI-MS experiments provided additional evidence in differentiating dihydroxylated deoxy-ARM from mono-hydroxylated ARM. The results showed the main phase I metabolites of artemether are hydroxylated, dehydro, demethylated and deoxy products, and they will undergo subsequent phase II glucuronidation processes. Most metabolites were reported for the first time. This study also demonstrated the effectiveness of high-resolution mass spectrometry in combination with an online H/D exchange LC/HR-MS(n) technique in rapid identification of drug metabolites.
Collapse
Affiliation(s)
- Tian Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | |
Collapse
|
20
|
Du F, Liu T, Liu T, Wang Y, Wan Y, Xing J. Metabolite identification of triptolide by data-dependent accurate mass spectrometric analysis in combination with online hydrogen/deuterium exchange and multiple data-mining techniques. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3167-3177. [PMID: 21953973 DOI: 10.1002/rcm.5211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites.
Collapse
Affiliation(s)
- Fuying Du
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
21
|
Liu T, Du F, Wan Y, Zhu F, Xing J. Rapid identification of phase I and II metabolites of artemisinin antimalarials using LTQ-Orbitrap hybrid mass spectrometer in combination with online hydrogen/deuterium exchange technique. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:725-33. [PMID: 21766391 DOI: 10.1002/jms.1943] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Artemisinin drugs have become the first-line antimalarials in areas of multi-drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP-mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing-hao-su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high-resolution (HR)-LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full-scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC-HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono-hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC-HR/MS(n) technique in rapid identification of drug metabolites.
Collapse
Affiliation(s)
- Tian Liu
- School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, China
| | | | | | | | | |
Collapse
|
22
|
Niessen WMA. Fragmentation of toxicologically relevant drugs in positive-ion liquid chromatography-tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:626-663. [PMID: 21294151 DOI: 10.1002/mas.20332] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
The identification of drugs and related compounds by LC-MS-MS is an important analytical challenge in several application areas, including clinical and forensic toxicology, doping control analysis, and environmental analysis. Although target-compound based analytical strategies are most frequently applied, at some point the information content of the MS-MS spectra becomes relevant. In this article, the positive-ion MS-MS spectra of a wide variety of drugs and related substances are discussed. Starting point was an MS-MS mass spectral library of toxicologically relevant compounds, available on the internet. The positive-ion MS-MS spectra of ∼570 compounds were interpreted by chemical and therapeutic class, thus involving a wide variety of drug compound classes, such benzodiazepines, beta-blockers, angiotensin-converting enzyme inhibitors, phenothiazines, dihydropyridine calcium channel blockers, diuretics, local anesthetics, vasodilators, as well as various subclasses of anti-diabetic, antidepressant, analgesic, and antihistaminic drugs. In addition, the scientific literature was searched for available MS-MS data of these compound classes and the interpretation thereof. The results of this elaborate study are presented in this article. For each individual compound class, the emphasis is on class-specific fragmentation, as discussing fragmentation of all individual compounds would take far too much space. The recognition of class-specific fragmentation may be quite informative in determining the compound class of a specific unknown, which may further help in the identification. In addition, knowledge on (class-specific) fragmentation may further help in the optimization of the selectivity in targeted analytical approaches of compounds of one particular class.
Collapse
|
23
|
Zhu M, Zhang H, Humphreys WG. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 2011; 286:25419-25. [PMID: 21632546 DOI: 10.1074/jbc.r110.200055] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mass spectrometry plays a key role in drug metabolite identification, an integral part of drug discovery and development. The development of high-resolution (HR) MS instrumentation with improved accuracy and stability, along with new data processing techniques, has improved the quality and productivity of metabolite identification processes. In this minireview, HR-MS-based targeted and non-targeted acquisition methods and data mining techniques (e.g. mass defect, product ion, and isotope pattern filters and background subtraction) that facilitate metabolite identification are examined. Methods are presented that enable multiple metabolite identification tasks with a single LC/HR-MS platform and/or analysis. Also, application of HR-MS-based strategies to key metabolite identification activities and future developments in the field are discussed.
Collapse
Affiliation(s)
- Mingshe Zhu
- Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|
24
|
Penner NA, Ho G, Bercovici A, Chowdhury SK, Alton KB. Identification of two novel metabolites of SCH 486757, a nociceptin/orphanin FQ peptide receptor agonist, in humans. Drug Metab Dispos 2010; 38:2067-74. [PMID: 20671096 DOI: 10.1124/dmd.110.032516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The study of human metabolism of endo-8[bis(2-chlorophenyl)methyl]-3-(2-pyrimidinyl)-8-azabicyclo[3.2.1]octan-3-ol (SCH 486757) after a 200-mg oral dose of the drug to healthy volunteers in the first-in-human study is presented. The structural elucidation of two unique metabolites, which were detected in the process of metabolite characterization in human plasma and urine by liquid chromatography-mass spectrometry (LC-MS), is described. These metabolites (M27 and M34) were initially detected in human plasma at high levels (>35% of the LC-MS response of the parent drug). Additional LC-MS experiments (hydrogen/deuterium exchange and accurate mass measurement) were used to determine structures of metabolites. It was found that both metabolites were formed through a loss of the C-C bridge from the tropane moiety with the conversion into a substituted pyridinium compound. This metabolic process has not been reported previously. Because of the apparent high abundance of metabolites based on the LC-MS response, actual circulating amounts of these metabolites relative to the parent drug were determined semiquantitatively to evaluate their coverage in preclinical species. With the use of reference standards, it was shown that the LC-MS response of M27 and M34 in human plasma was much higher than that of the parent compound. Actual amounts of M27 and M34 metabolites were less than 5% of the level of the parent drug; therefore, additional assessment was not required.
Collapse
Affiliation(s)
- Natalia A Penner
- Departments, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | | | | | | | | |
Collapse
|
25
|
Pan C, Liu F, Motto M. Identification of pharmaceutical impurities in formulated dosage forms. J Pharm Sci 2010; 100:1228-59. [PMID: 24081463 DOI: 10.1002/jps.22376] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 02/06/2023]
Abstract
Structure elucidation of pharmaceutical impurities is an important part of the drug product development process. Impurities can have unwanted pharmacological or toxicological effects that seriously impact product quality and patient safety. This review focuses on current analytical strategies for chemical and structural identification of pharmaceutical impurities. Potential sources and mechanisms of impurity formation are discussed for both drug substance and drug product applications. The utility of liquid chromatography-mass spectrometry (LC/MS) for providing structure-rich information is highlighted throughout this review. Other hyphenated analytical techniques including LC/nuclear magnetic resonance, gas chromatography/MS, and size-exclusion chromatography/chemiluminescent nitrogen detectors are also discussed, as LC/MS alone sometimes cannot reveal or confirm the final structures as required during dosage form development.
Collapse
Affiliation(s)
- Changkang Pan
- Pharmaceutical and Analytical Development, Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936.
| | | | | |
Collapse
|
26
|
Tevell Aberg A, Löfgren H, Bondesson U, Hedeland M. Structural elucidation of N-oxidized clemastine metabolites by liquid chromatography/tandem mass spectrometry and the use of Cunninghamella elegans to facilitate drug metabolite identification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1447-1456. [PMID: 20411584 DOI: 10.1002/rcm.4535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cunninghamella elegans is a filamentous fungus that has been shown to biotransform drugs into the same metabolites as mammals. In this paper we describe the use of C. elegans to aid the identification of clemastine metabolites since high concentrations of the metabolites were produced and MS(n) experiments were facilitated. The combination of liquid chromatography and tandem mass spectrometry with two different ionization techniques and hydrogen/deuterium exchange were used for structural elucidation of the clemastine metabolites. Norclemastine, four isomers of hydroxylated clemastine, and two N-oxide metabolites were described for the first time in C. elegans incubations. The N-oxidations were confirmed by hydrogen/deuterium exchange and deoxygenation (-16 Da) upon atmospheric pressure chemical ionization mass spectrometry. By MS(n) fragmentation it was concluded that two of the hydroxylated metabolites were oxidized on the methylpyrridyl moiety, one on the aromatic ring with the chloro substituent, and one on the aromatic ring without the chlorine.
Collapse
Affiliation(s)
- Annica Tevell Aberg
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden.
| | | | | | | |
Collapse
|
27
|
Liu ZY, Huang LL, Chen DM, Dai MH, Tao YF, Wang YL, Yuan ZH. Application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry in the rapid characterization of quinocetone metabolites formed in vitro. Anal Bioanal Chem 2009; 396:1259-71. [DOI: 10.1007/s00216-009-3245-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 11/28/2022]
|
28
|
Zhong W, Yang J. Determination of a trace level enol impurity by on-line hydrogen/deuterium exchange combined with ultra-high mass resolution and ultra-high mass accuracy Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3255-3258. [PMID: 19725022 DOI: 10.1002/rcm.4229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|