1
|
Li Y, Qin Y, Wei S, Ling L, Ding CF. Differentiation of steroid isomers by steroid analogues adducted trapped ion mobility spectrometry-mass spectrometry. Anal Bioanal Chem 2024; 416:313-319. [PMID: 37940728 DOI: 10.1007/s00216-023-05019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Steroids are one of the important indicators of health and disease. However, due to the high similarity of steroid structures, there are several potential obstacles in the differentiation of steroids, especially for their isomers. Herein, we described a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) approach based on the steroid analogue adduction for isomer-specific identification of steroids. The application of dexamethasone (DEX) to form heterodimers with steroids enhanced the separation of their isomers in TIMS. Two isomer pairs including 17-hydroxyprogesterone/11-deoxycorticosterone and androsterone/epiandrosterone were successfully separated as the heterodimers with DEX by TIMS. The stability of DEX-adducted heterodimers is comparable with steroid dimers. Owing to the high separation efficiency and stability, the relative quantification of steroid isomers was demonstrated with the proposed method.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujiao Qin
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Songchang Wei
- Ningbo No.6 Hospital, Ningbo, 315040, Zhejiang, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
2
|
Song XC, Canellas E, Dreolin N, Goshawk J, Lv M, Qu G, Nerin C, Jiang G. Application of Ion Mobility Spectrometry and the Derived Collision Cross Section in the Analysis of Environmental Organic Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21485-21502. [PMID: 38091506 PMCID: PMC10753811 DOI: 10.1021/acs.est.3c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis. An up-to-date CCS compendium for environmental contaminants was produced by combining CCS databases and data sets of particular types of environmental OMPs, including pesticides, drugs, mycotoxins, steroids, plastic additives, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), as well as their well-known transformation products. A total of 9407 experimental CCS values from 4170 OMPs were retrieved from 23 publications, which contain both drift tube CCS in nitrogen (DTCCSN2) and traveling wave CCS in nitrogen (TWCCSN2). A selection of publicly accessible and in-house CCS prediction tools were also investigated; the chemical space covered by the training set and the quality of CCS measurements seem to be vital factors affecting the CCS prediction accuracy. Then, the applications of IMS and the derived CCS in the screening of various OMPs were summarized, and the benefits of IMS and CCS, including increased peak capacity, the elimination of interfering ions, the separation of isomers, and the reduction of false positives and false negatives, were discussed in detail. With the improvement of the resolving power of IMS and enhancements of experimental CCS databases, the practicability of IMS in the analysis of environmental OMPs will continue to improve.
Collapse
Affiliation(s)
- Xue-Chao Song
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Meilin Lv
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, 110819 Shenyang, China
| | - Guangbo Qu
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Guibin Jiang
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Chai Y, Grebe SK, Maus A. Improving LC-MS/MS measurements of steroids with differential mobility spectrometry. J Mass Spectrom Adv Clin Lab 2023; 30:30-37. [PMID: 37859794 PMCID: PMC10582739 DOI: 10.1016/j.jmsacl.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Steroid measurements are important for diagnosis and monitoring of many conditions and treatment regiments; however, due to structural and chemical similarities amongst steroids, these analyses are challenging, even for highly specific techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differential mobility spectrometry (DMS) has the potential to improve these analyses by providing an orthogonal and complementary separation technique. Methods Initially, the potential for DMS to improve signal-to-noise ratio (S/N) and reduce interference was tested by comparing chromatograms acquired with and without DMS when performing measurements of six different steroids. Subsequently, a full clinical validation of cortisol and cortisone in urine was performed with the LC-DMS-MS/MS method. Results and Discussion DMS significantly reduced interferences observed in the chromatograms and boosted S/N by between 1.6 and 13.8 times. Additionally, DMS improved the agreement between quantifier/qualifier fragment ion results for cortisol and cortisone as indicated by the increase in R2 from approximately 0.81 to 0.98. All validation studies met acceptance criteria and we observed exceptional analytical performance in terms of precision, with % CVs less than 8%. Conclusions DMS improved the specificity of the steroid measurements by reducing interferences and improving S/N. The validation studies prove that these benefits did not come at the expense of other aspects of analytical performance. This study indicates that DMS has the potential to benefit not just clinical measurements of challenging analytes, but many clinical LC-MS/MS analyses.
Collapse
Affiliation(s)
- Yubo Chai
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stefan K.G. Grebe
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony Maus
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Bressan C, Celma A, Alechaga É, Monfort N, Ventura R, Sancho JV. Effects of structural characteristics of (un)conjugated steroid metabolites in their collision cross section value. Anal Chim Acta 2023; 1254:341128. [PMID: 37005032 DOI: 10.1016/j.aca.2023.341128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
In this work, the collision cross section (CCS) value of 103 steroids (including unconjugated metabolites and phase II metabolites conjugated with sulfate and glucuronide groups) was determined by liquid chromatography coupled to traveling wave ion mobility spectrometry (LC-TWIMS). A time of flight (QTOF) mass analyzer was used to perform the analytes determination at high-resolution mass spectrometry. An electrospray ionization source (ESI) was used to generate [M+H]+, [M + NH4]+ and/or [M - H]- ions. High reproducibility was observed for the CCS determination in both urine and standard solutions, obtaining RSD lower than 0.3% and 0.5% in all cases respectively. CCS determination in matrix was in accordance with the CCS measured in standards solution showing deviations below 2%. In general, CCS values were directly correlated with the ion mass and allowed differentiating between glucuronides, sulfates and free steroids although differences among steroids of the same group were less significant. However, more specific information was obtained for phase II metabolites observing differences in the CCS value of isomeric pairs concerning the conjugation position or the α/β configuration, which could be useful in the structural elucidation of new steroid metabolites in the anti-doping field. Finally, the potential of IMS reducing interferences from the sample matrix was also tested for the analysis of a glucuronide metabolite of bolasterone (5β-androstan-7α,17α-dimethyl-3α,17β-diol-3-glucuronide) in urine samples.
Collapse
Affiliation(s)
- Claudia Bressan
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain.
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| |
Collapse
|
5
|
Velosa DC, Dunham AJ, Rivera ME, Neal SP, Chouinard CD. Improved Ion Mobility Separation and Structural Characterization of Steroids using Derivatization Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1761-1771. [PMID: 35914213 DOI: 10.1021/jasms.2c00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Collapse
Affiliation(s)
- Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Andrew J Dunham
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Marcus E Rivera
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
6
|
Neal SP, Wilson KM, Velosa DC, Chouinard CD. “Targeted Glucocorticoid Analysis using Ion Mobility-Mass Spectrometry (IM-MS)”. J Mass Spectrom Adv Clin Lab 2022; 24:50-56. [PMID: 35469203 PMCID: PMC9034309 DOI: 10.1016/j.jmsacl.2022.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) for glucocorticoids. Determination of collision cross sections (CCS) for isomers. Different cation adducts shifted mobility and improved IM separation. Changing drift gas (He, Ar, CO2) shifted mobility and improved resolution.
Introduction Ion mobility-mass spectrometry (IM-MS) is an emerging technique in the -omics fields that has broad potential applicability to the clinical lab. As a rapid, gas-phase structure-based separation technique, IM-MS offers promise in isomer separations and can be easily combined with existing LC-MS methods (i.e., LC-IM-MS). Several experimental conditions, including analyte cation adducts and drift composition further provide a means to tune separations for global and/or targeted applications. Objectives The primary objective of this study was to demonstrate the utility of IM-MS under a range of experimental conditions for detection of glucocorticoids, and specifically for the separation of several isomeric pairs. Methods LC-IM-MS was used to characterize 16 glucocorticoids including three isomer pairs: cortisone/prednisolone, betamethasone/dexamethasone, and flunisolide/triamcinolone acetonide. Collision cross section (CCS) values were measured for all common adducts (e.g., protonated and sodiated) using both step-field and single-field methods. Alternative alkali, alkaline earth, and transition metals were introduced, such that their adducts could also be measured. Finally, four different drift gases (helium, nitrogen, argon, and carbon dioxide) were compared for their relative separation capability. Results LC-IM-MS offered a robust, multidimensional separation technique that allowed for the 16 glucocorticoids to be analyzed and separated in three-dimensions (retention time, CCS, and m/z). Despite the relatively modest resolution of isomer pairs under standard conditions (i.e., nitrogen drift gas, sodiated ions, etc.), improvements were observed for alkaline earth and transition metals (notable barium adducts) and in carbon dioxide drift gas. Conclusion In summary, LC-IM-MS offers potential as a clinical method due to its ease of coupling with traditional LC-MS methods and its promise for tuning separations to better resolve targeted and/or global isomers in complex biological samples.
Collapse
|
7
|
Hadavi D, Borzova M, Siegel TP, Honing M. Uncovering the behaviour of ions in the gas-phase to predict the ion mobility separation of isomeric steroid compounds. Anal Chim Acta 2022; 1200:339617. [DOI: 10.1016/j.aca.2022.339617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
8
|
Delvaux A, Rathahao-Paris E, Alves S. An emerging powerful technique for distinguishing isomers: Trapped ion mobility spectrometry time-of-flight mass spectrometry for rapid characterization of estrogen isomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8928. [PMID: 32833266 DOI: 10.1002/rcm.8928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Isomer metabolites are involved in metabolic pathways, and their characterization is essential but remains challenging even using high-performance analytical platforms. The addition of ion mobility prior to mass analysis can help to separate isomers. Here, the ability of a recently developed trapped ion mobility spectrometry system to separate metabolite isomers was examined. METHODS Three pairs of estrogen isomers were studied as a model of isomeric metabolites under both negative and positive electrospray ionization (ESI) modes using a commercial trapped ion mobility spectrometry-TOF mass spectrometer. The standard metabolites were also spiked into human urine to evaluate the efficiency of trapped ion mobility spectrometry to separate isomers in complex mixtures. RESULTS The estradiol glucuronide isomers (E2 β-3G and E2 β-17G) could be distinguished as deprotonated species, while the estradiol epimers (E2 β and E2 α) and the methoxyestradiol isomers (2-MeO-E2 β and 4-MeO-E2 β) were separated as lithiated adducts in positive ionization mode. When performing analyses in the urine matrix, no alteration in the ion mobility resolving power was observed and the measured collision cross section (CCS) values varied by less than 1.0%. CONCLUSIONS The trapped ion mobility spectrometry-TOF mass spectrometer enabled the separation of the metabolite isomers with very small differences in CCS values (ΔCCS% = 2%). It is shown to be an effective tool for the rapid characterization of isomers in complex matrices.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et de l'Ingénierie, Sorbonne Université, Paris, F-75005, France
| | - Estelle Rathahao-Paris
- Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et de l'Ingénierie, Sorbonne Université, Paris, F-75005, France
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Sandra Alves
- Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et de l'Ingénierie, Sorbonne Université, Paris, F-75005, France
| |
Collapse
|
9
|
Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4614. [PMID: 32955134 PMCID: PMC8211109 DOI: 10.1002/jms.4614] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Imaging mass spectrometry (IMS) technologies are capable of mapping a wide array of biomolecules in diverse cellular and tissue environments. IMS has emerged as an essential tool for providing spatially targeted molecular information due to its high sensitivity, wide molecular coverage, and chemical specificity. One of the major challenges for mapping the complex cellular milieu is the presence of many isomers and isobars in these samples. This challenge is traditionally addressed using orthogonal liquid chromatography (LC)-based analysis, though, common approaches such as chromatography and electrophoresis are not able to be performed at timescales that are compatible with most imaging applications. Ion mobility offers rapid, gas-phase separations that are readily integrated with IMS workflows in order to provide additional data dimensionality that can improve signal-to-noise, dynamic range, and specificity. Here, we highlight recent examples of ion mobility coupled to IMS and highlight their importance to the field.
Collapse
Key Words
- IMS
- desorption electrospray ionization, DESI
- drift tube ion mobility spectrometry, DTIMS
- high-field asymmetric waveform ion mobility, FAIMS
- imaging mass spectrometry
- infrared matrix-assisted laser desorption electrospray ionization, IR-MALDESI
- ion mobility
- laser ablation electrospray ionization, LAESI
- lipids
- liquid extraction surface analysis, LESA
- liquid microjunction, (LMJ)
- matrix-assisted laser desorption electrospray ionization, MALDI
- metabolites
- proteins
- tissue analysis
- trapped ion mobility spectrometry, TIMS
- travelling wave ion mobility spectrometry, TWIMS
Collapse
Affiliation(s)
- Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Maddox SW, Olsen SSH, Velosa DC, Burkus-Matesevac A, Peverati R, Chouinard CD. Improved Identification of Isomeric Steroids Using the Paternò-Büchi Reaction with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2086-2092. [PMID: 32870679 DOI: 10.1021/jasms.0c00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Paternò-Büchi (PB) reaction is a common organic reaction in which a carbonyl radical formed by exposure to UV radiation reacts with an alkene to form an oxetane ring. Recent analytical applications of this reaction have included the determination of C═C bond position in lipid fatty acyl tails using tandem mass spectrometry. Our group has recently investigated methods for structurally modifying steroid isomers to improve their identification and resolution using ion mobility spectrometry. Herein, we report the first application of the Paternò-Büchi reaction to form steroid oxetanes using a simple, low-cost, and high efficiency method with a low pressure mercury lamp. This methodology is performed on several endogenous steroid isomers, resulting in unique ion mobility spectra that provide a unique fingerprint for each. These fingerprint spectra can add confidence in identification of those compounds, especially in complex biological matrixes. Testosterone and epitestosterone, an epimer pair commonly interrogated in a number of applications such as for their use as performance enhancing drugs, displayed one and three unique ion mobility peaks, respectively. These spectra and their measured collision cross sections (CCS) allow for unambiguous differentiation of these and several other steroid isomer groups analyzed in this work. Finally, multiple anabolic androgenic steroids prohibited by the World Anti-Doping Agency were tested with this method and resulted in unique CCS for their PB reaction products. This approach can offer improved confidence in their identification as well as for many other banned substances.
Collapse
Affiliation(s)
- Samuel W Maddox
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Stine S H Olsen
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Aurora Burkus-Matesevac
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Roberto Peverati
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| |
Collapse
|
11
|
The use of UHPLC, IMS, and HRMS in multiresidue analytical methods: A critical review. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122369. [PMID: 33091675 DOI: 10.1016/j.jchromb.2020.122369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Residue chemists who analyse pesticides in vegetables or veterinary drugs in animal-based food are currently facing a situation where there is a requirement to detect more and more compounds at lower and lower concentrations. Conventional tandem quadrupole instruments provide sufficient sensitivity, but speed and selectivity appear as future limitations. This will become an even larger issue when there is a need to not only detect active compounds but also their degradation products and metabolites. This will likely lead to a situation in which the conventional targeted approach must be expanded or augmented by a certain non-targeted strategy. High-resolution mass spectrometry provides such capabilities, but it frequently requires an additional degree of selectivity for the unequivocal confirmation of analytes present at trace levels in highly complex and variable food matrices. The hyphenation of ultrahigh performance liquid chromatography with ion mobility and high-resolution mass spectrometry provides analytical chemists with a new tool for performing such a demanding multiresidue analysis. The objective of this paper is to investigate the benefits of the added ion mobility dimension as well as to critically discuss the current limitations of this commercially available technology.
Collapse
|
12
|
Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. Does the ion mobility resolving power as provided by commercially available ion mobility quadrupole time-of-flight mass spectrometry instruments permit the unambiguous identification of small molecules in complex matrices? Anal Chim Acta 2020; 1107:113-126. [DOI: 10.1016/j.aca.2020.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
|
13
|
Rister AL, Dodds ED. Steroid analysis by ion mobility spectrometry. Steroids 2020; 153:108531. [PMID: 31672629 PMCID: PMC6986338 DOI: 10.1016/j.steroids.2019.108531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
Steroids are an important biomolecule class for analysis due to their promise as biomarkers for various diseases and their abuse as performance enhancers in sports. Current analytical methods, including chromatography and nuclear magnetic resonance spectroscopy, fall short of being able to confidently analyze steroids, partly due to the large number of steroid isomers. Ion mobility spectrometry (IMS), a gas-phase ion separator, has shown potential for steroid analysis both in conjunction with liquid chromatography (LC) and as a stand-alone technique. This review will examine the current literature on IMS analysis of steroids. Analysis by LC-IMS will include examination of steroids and steroid glucuronides in human urine and serum samples for enhanced signal-to-noise ratios and higher confidence of identification. The stand-alone IMS analysis will examine the use of derivatization of steroids and formation of multimers to enhance resolution for steroid isomers analysis, where both methods have been shown to greatly increase the separation of steroid isomer species. However, these methods have not been applied to biological mixtures to assess their applicability to medical and forensic applications, which should be a future direction of this field.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Chemistry and University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA
| | - Eric D Dodds
- Department of Chemistry and University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
14
|
Claes BSR, Takeo E, Fukusaki E, Shimma S, Heeren RMA. Imaging Isomers on a Biological Surface: A Review. Mass Spectrom (Tokyo) 2019; 8:A0078. [PMID: 32158629 PMCID: PMC7035452 DOI: 10.5702/massspectrometry.a0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry imaging is an imaging technology that allows the localization and identification of molecules on (biological) sample surfaces. Obtaining the localization of a compound in tissue is of great value in biological research. Yet, the identification of compounds remains a challenge. Mass spectrometry alone, even with high-mass resolution, cannot always distinguish between the subtle structural differences of isomeric compounds. This review discusses recent advances in mass spectrometry imaging of lipids, steroid hormones, amino acids and proteins that allow imaging with isomeric resolution. These improvements in detailed identification can give new insights into the local biological activity of isomers.
Collapse
Affiliation(s)
- Britt S. R. Claes
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| | - Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| |
Collapse
|
15
|
Rister AL, Dodds ED. Liquid chromatography-ion mobility spectrometry-mass spectrometry analysis of multiple classes of steroid hormone isomers in a mixture. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1137:121941. [PMID: 31877426 DOI: 10.1016/j.jchromb.2019.121941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
Methods for the analysis of steroids have long been of interest due to the multiple uses for such methods in medical applications, sports monitoring, and environmental science. The analysis of steroids involves inherent analytical hurdles due to their low biological concentrations, poor ionization efficiencies, and frequent occurrence of isomerism. One analytical technique that has been recently applied to steroid analysis is ion mobility spectrometry (IMS). While previous work has focused on the use of metal adduction and multimer formation to enhance separation through IMS analysis coupled to mass spectrometry (MS), this work furthers this approach by coupling IMS-MS with liquid chromatography (LC). Three different LC methods with varying tradeoffs between chromatographic resolution and run time were developed, with one of these achieving a resolution above 1.5 for all steroid isomers. These results also indicate that the coupling of LC to IMS-MS can increase the overall resolution of steroid isomers relative to what can be achieved by either LC or IMS alone. Furthermore, the use of LC and IMS in concert can allow for a more rapid analysis of steroid isomers than can be achieved by LC-MS alone. Finally, the IMS dimension provided for measurements of ion-neutral collision cross sections (CCSs), which were found to be in good agreement with previously reported measurements. Thus, this approach provides three complementary quantitative parameters (retention time, CCS, and mass-to-charge ratio) that can contribute the identification of analytes. Overall, the work presented here demonstrates the potential of coupling LC, IMS, and MS for the analysis of isomeric steroid hormones.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
16
|
Rister AL, Dodds ED. Ion Mobility Spectrometry and Tandem Mass Spectrometry Analysis of Estradiol Glucuronide Isomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2037-2040. [PMID: 31385258 PMCID: PMC6812596 DOI: 10.1007/s13361-019-02272-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 05/31/2023]
Abstract
Estradiol is an estrogenic steroid that can undergo glucuronidation at two different sites, which results in two estradiol glucuronide regioisomers. These isomers can be produced by different enzymes and can have different biological activities before being eliminated from the body. Although there have been previous methods that can distinguish the two isomers, these methods often have long acquisition times or high cost per analysis. In this study, traveling wave ion mobility spectrometry (TWIMS) coupled with mass spectrometry (MS) was employed to separate estradiol glucuronides using alkali metal adduction in positive ion mode, where the sodiated dimer adduct provided adequate separation both in single-component standards and in two-component mixtures. Additionally, in negative ion mode, tandem mass spectrometry (MS/MS) was used to quantitatively determine the relative composition of the two isomers. This was possible due to differences in the energetic requirements for loss of the glucuronic acid, which was characterized by energy-resolved collision-induced dissociation (CID). This work demonstrated that the intensity of the glucuronic acid neutral loss product as compared with the intensity of the intact precursor ion can be used to determine the percentage of each isomer present in a mixture. Overall, TWIMS successfully separated estradiol glucuronide isomers in positive ion mode and MS/MS via CID enables relative quantitation of each isomer in negative ion mode.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Chemistry, University of Nebraska - Lincoln, 711 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska - Lincoln, 711 Hamilton Hall, Lincoln, NE, 68588-0304, USA.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|