1
|
Oka T, Li TC, Yonemitsu K, Ami Y, Suzaki Y, Kataoka M, Doan YH, Okemoto-Nakamura Y, Kobayashi T, Saito H, Mita T, Tokuoka E, Shibata S, Yoshida T, Takagi H. Propagating and banking genetically diverse human sapovirus strains using a human duodenal cell line: investigating antigenic differences between strains. J Virol 2024; 98:e0063924. [PMID: 39132992 PMCID: PMC11406923 DOI: 10.1128/jvi.00639-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.
Collapse
Affiliation(s)
- Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenzo Yonemitsu
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Kobayashi
- Division of Virology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Tetsuo Mita
- Shimane Prefectural Meat Inspection Center, Shimane, Japan
| | - Eisuke Tokuoka
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Shinichiro Shibata
- Microbiology Department, Nagoya City Public Health Research Institute, Aichi, Japan
| | - Tetsuya Yoshida
- Infectious Diseases Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Hirotaka Takagi
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Cantelli CP, Tavares GCL, Sarmento SK, Burlandy FM, Fumian TM, Maranhão AG, da Silva EDSRF, Horta MAP, Miagostovich MP, Yang Z, Leite JPG. Assessment of Gastroenteric Viruses in Marketed Bivalve Mollusks in the Tourist Cities of Rio de Janeiro, Brazil, 2022. Viruses 2024; 16:317. [PMID: 38543684 PMCID: PMC10974528 DOI: 10.3390/v16030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/23/2024] Open
Abstract
This study investigated the prevalence and genetic diversity of gastroenteric viruses in mussels and oysters in Rio de Janeiro, Brazil. One hundred and thirty-four marketed bivalve samples were obtained between January and December 2022. The viral analysis was performed according to ISO/TS 15216, and the screening revealed the detection of norovirus GII/GI (40.3%), sapovirus (SaV; 12.7%), human mastadenovirus (7.5%), and rotavirus A (RVA; 5.9%). In total, 44.8% (60) of shellfish samples tested positive for one or more viruses, 46.7% (28/60) of the positive samples tested positive for a single viral agent, 26.7% (16) tested positive for two viral agents, 8.3% (5) for three viral agents, and 13.3% (8) for four viral agents. Additionally, three mussel samples were contaminated with the five investigated viruses (5%, 3/60). Norovirus GII showed the highest mean viral load (3.4 × 105 GC/g), followed by SaV (1.4 × 104 GC/g), RVA (1.1 × 104 GC/g), human mastadenovirus (3.9 × 103 GC/g), and norovirus GI (6.7 × 102 GC/g). Molecular characterization revealed that the recovered norovirus strains belonged to genotypes GII.2, GII.6, GII.9, GII.17, and GII.27; SaV belonged to genotypes GI.1 and GIV.1; RVA to genotypes G6, G8, P[8]-III, and human mastadenovirus to types F40 and F41. The GII.27 norovirus characterized in this study is the only strain of this genotype reported in Brazil. This study highlights the dissemination and diversity of gastroenteric viruses present in commercialized bivalves in a touristic area, indicating the potential risk to human health and the contribution of bivalves in the propagation of emerging pathogens.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | | | - Sylvia Kahwage Sarmento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | | | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | - Adriana Gonçalves Maranhão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| | | | | | | | - Zhihui Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20723, USA
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz 21040-360, RJ, Brazil
| |
Collapse
|
3
|
Takagi H, Oka T. [Establishment of human sapovirus culture method]. Uirusu 2023; 73:1-8. [PMID: 39343515 DOI: 10.2222/jsv.73.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
More than 40 years after the discovery of human sapovirus (HuSaV), we have established a HuSaV culture system in which HuTu80 cells derived from the human duodenum adenocarcinoma cell line are cultured together with the addition of bile acid as a supplement. In addition to being a common cell line, this system using HuTu80 cells is a versatile method because classical culture media are available, and it is easy to scale-up for culture. However, the number of culture days required to obtain sufficient viral titer, the confirmation of viral gene conservation for sample selection, and the method for passaging of HuTu80-cells were crucial. So far, 15 genotypes have been successfully propagated and stocked, and stable supply as research resources has been achieved. Due to the above efforts, we can now proceed with the production and analysis of antisera using purified antigens and the evaluation of inactivation conditions. This manuscript introduces the background for selection of the cell line and bile acids, and the topics that have been discussed since the publication, as well as future issues that were raised such as the expression of cytopathicity and elucidation of low UV-C sensitivity of fecal-derived HuSaV.
Collapse
Affiliation(s)
- Hirotaka Takagi
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, National Institute of Infectious Diseases
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, National Institute of Infectious Diseases
| |
Collapse
|
4
|
Characterization of a Human Sapovirus Genotype GII.3 Strain Generated by a Reverse Genetics System: VP2 Is a Minor Structural Protein of the Virion. Viruses 2022; 14:v14081649. [PMID: 36016271 PMCID: PMC9414370 DOI: 10.3390/v14081649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
We devised a reverse genetics system to generate an infectious human sapovirus (HuSaV) GII.3 virus. Capped/uncapped full-length RNAs derived from HuSaV GII.3 AK11 strain generated by in vitro transcription were used to transfect HuTu80 human duodenum carcinoma cells; infectious viruses were recovered from the capped RNA-transfected cells and passaged in the cells. Genome-wide analyses indicated no nucleotide sequence change in the virus genomes in the cell-culture supernatants recovered from the transfection or those from the subsequent infection. No virus growth was detected in the uncapped RNA-transfected cells, suggesting that the 5′-cap structure is essential for the virus’ generation and replication. Two types of virus particles were purified from the cell-culture supernatant. The complete particles were 39.2-nm-dia., at 1.350 g/cm3 density; the empty particles were 42.2-nm-dia. at 1.286 g/cm3. Two proteins (58-kDa p58 and 17-kDa p17) were detected from the purified particles; their molecular weight were similar to those of VP1 (~60-kDa) and VP2 (~16-kDa) of AK11 strain deduced from their amino acids (aa) sequences. Protein p58 interacted with HuSaV GII.3-VP1-specific antiserum, suggesting that p58 is HuSaV VP1. A total of 94 (57%) aa of p17 were identified by mass spectrometry; the sequences were identical to those of VP2, indicating that the p17 is the VP2 of AK11. Our new method produced infectious HuSaVs and demonstrated that VP2 is the minor protein of the virion, suggested to be involved in the HuSaV assembly.
Collapse
|
5
|
Sapoviruses detected from acute gastroenteritis outbreaks and hospitalized children in Taiwan. J Formos Med Assoc 2021; 120:1591-1601. [DOI: 10.1016/j.jfma.2020.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/11/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
|
6
|
Molecular Epidemiology of Human Sapovirus Among Children with Acute Gastroenteritis in Western Canada. J Clin Microbiol 2021; 59:e0098621. [PMID: 34288727 DOI: 10.1128/jcm.00986-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: Sapovirus is increasingly recognized as an important cause of acute gastroenteritis (AGE) worldwide, however studies of prevalence, genetic diversity and strain-specific clinical implications have been scarce. Methods: To fill this knowledge gap, we used reverse transcription real-time PCR and sequencing of the partial major capsid protein VP1 gene to analyze stool specimens and rectal swabs obtained from 3347 children with AGE and 1355 asymptomatic controls (all <18 years old) collected between December 2014 and August 2018 in Alberta, Canada. Results: Sapovirus was identified in 9.5% (317/3347) of the children with AGE and 2.9% of controls. GI.1 (36%) was the predominant genotype identified, followed by GI.2 (18%), GII.5 (8%) and GII.3 (6%). Rare genotypes GII.1, GII.2, GV.1, GII.4, GIV.1, GI.3 and GI.7 were also seen. Sapovirus was detected year-round, peaking during the winter months of November to January. The exception was the 2016-2017 season when GI.2 overtook GI.1 as the predominant strain with a high detection rate persisting into April. We did not observe significant difference in the severity of gastroenteritis by genogroup or genotype. Repeated infection by sapovirus of different genogroups occurred in three controls who developed AGE later. Conclusions: Our data suggests that sapovirus is a common cause of AGE in children with high genetic diversity.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Sapovirus, a genus in the Caliciviridae family alongside norovirus, is increasingly recognized as an important cause of childhood diarrhea. Some challenges exist in our ability to better understand sapovirus infections, including the inability to grow sapovirus in cell culture, which has hindered diagnosis and studies of immunity. Another challenge is that individuals with sapovirus infection are commonly coinfected with other enteric pathogens, complicating our ability to attribute the diarrhea episode to a single pathogen. RECENT FINDINGS Development of molecular methods for sapovirus detection has increased our ability to measure disease prevalence. The prevalence of sapovirus varies between 1 and 17% of diarrhea episodes worldwide, with the highest burden in young children and older adults. Further, epidemiological studies have used novel approaches to account for the presence of coinfections with other enteric pathogens; one multisite cohort study of children under two years of age found that sapovirus had the second-highest attributable incidence among all diarrheal pathogens studied. SUMMARY Especially in settings where rotavirus vaccines have been introduced, efforts to reduce the overall burden of childhood diarrhea should focus on the reduction of sapovirus transmission and disease burden.
Collapse
|
8
|
Oka T, Yamamoto SP, Iritani N, Sato S, Tatsumi C, Mita T, Yahiro S, Shibata S, Wu FT, Takagi H. Polymerase chain reaction primer sets for the detection of genetically diverse human sapoviruses. Arch Virol 2020; 165:2335-2340. [PMID: 32719956 PMCID: PMC7383071 DOI: 10.1007/s00705-020-04746-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
Sapoviruses are increasingly being recognized as pathogens associated with gastroenteritis in humans. Human sapoviruses are currently assigned to 18 genotypes (GI.1-7, GII.1-8, GIV.1, and GV.1-2) based on the sequence of the region encoding the major structural protein. In this study, we evaluated 11 polymerase chain reaction (PCR) assays using published and newly designed/modified primers and showed that four PCR assays with different primer combinations amplified all of the tested human sapovirus genotypes using either synthetic DNA or cDNA prepared from human sapovirus-positive fecal specimens. These assays can be used as improved broadly reactive screening tests or as tools for molecular characterization of human sapoviruses.
Collapse
Affiliation(s)
- Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan.
| | - Seiji P Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Shigenori Sato
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Chika Tatsumi
- Division of Virology, Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Tetsuo Mita
- Division of Virology, Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Shunsuke Yahiro
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Shinichiro Shibata
- Microbiology Department, Nagoya City Public Health Research Institute, Aichi, Japan
| | - Fang-Tzy Wu
- Center for Research, Diagnostics and Vaccine Development, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Hirotaka Takagi
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Molecular detection and characterisation of sapoviruses and noroviruses in outpatient children with diarrhoea in Northwest Ethiopia. Epidemiol Infect 2020; 147:e218. [PMID: 31364546 PMCID: PMC6625200 DOI: 10.1017/s0950268819001031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Childhood morbidity and mortality of diarrhoeal diseases are high, particularly in low-income countries and noroviruses and sapoviruses are among the most frequent causes worldwide. Their epidemiology and diversity remain not well studied in many African countries. To assess the positivity rate and the diversity of sapoviruses and noroviruses in Northwest Ethiopia, during November 2015 and April 2016, a total of 450 faecal samples were collected from outpatient children aged <5 years who presented with diarrhoea. Samples were screened for noroviruses and sapoviruses by real-time RT-PCR. Partial VP1 genes were sequenced, genotyped and phylogenetically analysed. Norovirus and sapovirus stool positivity rate was 13.3% and 10.0%, respectively. Noroviruses included GII.4 (35%), GII.6 (20%), GII.17 (13.3%), GII.10 (10%), GII.2 (6.7%), GII.16 (5%), GII.7 (3.3%), GII.9, GII.13, GII.20 and GI.3 (1.7% each) strains. For sapoviruses, GI.1, GII.1 (20.0% each), GII.6 (13.3%), GI.2 (8.9%), GII.2 (11.1%), GV.1 (8.9%), GIV.1 (6.7%), GI.3 and GII.4 (2.2% each) genotypes were detected. This study demonstrates a high genetic diversity of noroviruses and sapoviruses in Northwest Ethiopia. The positivity rate in stool samples from young children with diarrhoea was high for both caliciviruses. Continued monitoring is recommended to identify trends in genetic diversity and seasonal variations.
Collapse
|
10
|
Novel human reovirus isolated from children and its long-term circulation with reassortments. Sci Rep 2020; 10:963. [PMID: 31969658 PMCID: PMC6976588 DOI: 10.1038/s41598-020-58003-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Mammalian orthoreovirus (MRV), also known as reovirus, was discovered in the 1950s and became the first reported segmented double-stranded RNA virus. MRVs have since been found in a variety of animal species, including humans. However, reports on MRV infections are scarce due to the rarity of their symptomatic occurrence. In Japanese surveillance studies, MRVs have been detected as gastrointestinal pathogens since 1981, with a total of 135 records. In Osaka City, Japan, MRV was first isolated in 1994 from a child with meningitis, and then in 2005 and 2014 from children with gastroenteritis. Here, we conducted the first molecular characterization of human MRV isolates from Japan and identified a novel human reovirus strain belonging to MRV type 2, designated the MRV-2 Osaka strain. This strain, with all three isolates classified, is closely related to MRV-2 isolates from sewage in Taiwan and is relatively close to an MRV-2 isolate from a bat in China. Our data suggest that the MRV-2 Osaka strain, which has circulated amongst humans in Japan for at least two decades, has spread internationally.
Collapse
|
11
|
Hao M, He J, Wang C, Wang C, Ma B, Zhang S, Duan J, Liu F, Zhang Y, Han L, Liu H, Sang Y. Effect of Hydroxyapatite Nanorods on the Fate of Human Adipose-Derived Stem Cells Assessed In Situ at the Single Cell Level with a High-Throughput, Real-Time Microfluidic Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905001. [PMID: 31697037 DOI: 10.1002/smll.201905001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The fate of stem cells at the single cell level with limited communication with other cells is still unknown due to the lack of an efficient tool for highly accurate molecular detection. Moreover, the conditional sensitivity of biological experiments requires a sufficient number of parallel experiments to support a conclusion. In this work, a microfluidic single cell chip is designed for use with a protein chip to investigate the effect of hydroxyapatite (HAp) on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in situ at the single cell level. By successfully detecting secretory proteins in situ, it is found that the HAp nanorods enhance osteogenic differentiation at the single cell level. In the chip, the single cell seeding approach confirms the osteogenic differentiation of the hADSCs, which endocytoses HAp, by reducing the influence of the factors secreted by neighboring differentiating cells. Most importantly, more than 7000 microchambers provide a sufficient number of parallel experiments for statistical analysis, which ensure a high level of repeatability of the HAp nanorod-induced osteogenic differentiation. The microfluidic chip comprising single cell culture microchambers with in situ detection capability is a promising tool for research on cell behavior or cell fate at the single cell level.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
12
|
Mann P, Pietsch C, Liebert UG. Genetic Diversity of Sapoviruses among Inpatients in Germany, 2008-2018. Viruses 2019; 11:v11080726. [PMID: 31394867 PMCID: PMC6723979 DOI: 10.3390/v11080726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/28/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Sapovirus enteric disease affects people of all ages across the globe, in both sporadic cases and outbreak settings. Sapovirus is seldom assessed in Germany and its epidemiology in the country is essentially unknown. Thus, sapovirus occurrence and genetic diversity were studied by real-time reverse transcription polymerase chain reaction (RT-PCR) and partial sequencing of major viral structural protein (VP1) gene in two different sets of stool samples: (1) a selection of 342 diarrheal stools collected from inpatient children during 2008−2009, and (2) 5555 stool samples collected during 2010–2018 from inpatients of all age groups with gastrointestinal complaints. Results showed year-round circulation of sapoviruses, with peaks during cooler months. In total, 30 samples (8.8%) of the first and 112 samples of the second set of samples (2.0%) were sapovirus positive. Capsid gene sequencing was successful in 134/142 samples (94.4%) and showed circulation of all known human pathogenic genogroups. Genotype GI.1 predominated (31.8%), followed by GII.1 (16.7%), GII.3 (14.5%), GI.2 (13.8%) and GV.1 (12.3%). Additionally, minor circulation of GI.3, GI.6, GII.2, GII.4, GII.6 and GIV.1 was shown. Consequently, sapovirus diagnostics need broadly reactive RT-PCR protocols and should particularly be considered in infants and young children. Further studies from other sampling sites are essential to extend our knowledge on sapovirus epidemiology in Germany.
Collapse
Affiliation(s)
- Pia Mann
- Institute of Virology, Leipzig University, 04103 Leipzig, Germany
| | - Corinna Pietsch
- Institute of Virology, Leipzig University, 04103 Leipzig, Germany.
| | - Uwe G Liebert
- Institute of Virology, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|