1
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Wang M, Gao Y, Shen C, Yang W, Peng Q, Cheng J, Shen HM, Yang Y, Gao GF, Shi Y. A human monoclonal antibody targeting the monomeric N6 neuraminidase confers protection against avian H5N6 influenza virus infection. Nat Commun 2024; 15:8871. [PMID: 39402031 PMCID: PMC11473554 DOI: 10.1038/s41467-024-53301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/17/2024] Open
Abstract
The influenza neuraminidase (NA) is a potential target for the development of a next-generation influenza vaccine, but its antigenicity is not well understood. Here, we isolate an anti-N6 human monoclonal antibody, named 18_14D, from an H5N6 avian influenza virus (AIV) infected patient. The antibody weakly inhibits enzymatic activity but confers protection in female mice, mainly via ADCC function. The cryo-EM structure shows that 18_14D binds to a unique epitope on the lateral surface of the N6 tetramer, preventing the formation of tightly closed NA tetramers. These findings contribute to the molecular understanding of protective immune responses to NA of AIVs in humans and open an avenue for the rational design of NA-based vaccines.
Collapse
Affiliation(s)
- Min Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yuan Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Chenguang Shen
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Southern Medical University, Guangzhou, China
| | - Wei Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinlong Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Dandachi I, Alrezaihi A, Amin D, AlRagi N, Alhatlani B, Binjomah A, Aleisa K, Dong X, Hiscox JA, Aljabr W. Molecular surveillance of influenza A virus in Saudi Arabia: whole-genome sequencing and metagenomic approaches. Microbiol Spectr 2024; 12:e0066524. [PMID: 38904365 PMCID: PMC11302342 DOI: 10.1128/spectrum.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Outbreaks of influenza A viruses are generally seasonal and cause annual epidemics worldwide. Due to their frequent reassortment and evolution, annual surveillance is of paramount importance to guide vaccine strategies. The aim of this study was to explore the molecular epidemiology of influenza A virus and nasopharyngeal microbiota composition in infected patients in Saudi Arabia. A total of 103 nasopharyngeal samples from 2015 and 12 samples from 2022 were collected from patients positive for influenza A. Sequencing of influenza A as well as metatranscriptomic analysis of the nasopharyngeal microbiota was conducted using Oxford Nanopore sequencing. Phylogenetic analysis of hemagglutinin, neuraminidase segments, and concatenated influenza A genomes was performed using MEGA7. Whole-genome sequencing analysis revealed changing clades of influenza A virus: from 6B.1 in 2015 to 5a.2a in 2022. One sample containing the antiviral resistance-mediating mutation S247N toward oseltamivir and zanamivir was found. Phylogenetic analysis showed the clustering of influenza A strains with the corresponding vaccine strains in each period, thus suggesting vaccine effectiveness. Principal component analysis and alpha diversity revealed the absence of a relationship between hospital admission status, age, or gender of infected patients and the nasopharyngeal microbial composition, except for the infecting clade 5a.2a. The opportunistic pathogens Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were the most common species detected. The molecular epidemiology appears to be changing in Saudi Arabia after the COVID-19 pandemic. Antiviral resistance should be carefully monitored in future studies. In addition, the disease severity of patients as well as the composition of the nasopharyngeal microbiota in patients infected with different clades should also be assessed.IMPORTANCEIn this work, we have found that the clade of influenza A virus circulating in Riyadh, KSA, has changed over the last few years from 6B.1 to 5a.2a. Influenza strains clustered with the corresponding vaccine strains in our population, thus emphasizing vaccine effectiveness. Metatranscriptomic analysis showed no correlation between the nasopharyngeal microbiome and the clinical and/or demographic characteristics of infected patients. This is except for the 5a.2a strains isolated post-COVID-19 pandemic. The influenza virus is among the continuously evolving viruses that can cause severe respiratory infections. Continuous surveillance of its molecular diversity and the monitoring of anti-viral-resistant strains are thus of vital importance. Furthermore, exploring potential microbial markers and/or dysbiosis of the nasopharyngeal microbiota during infection could assist in the better management of patients in severe cases.
Collapse
Affiliation(s)
- Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Alrezaihi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dashty Amin
- Faculty of Health Sciences, Qaiwan International University, Sulaymaniyah, Kurdistan Region, Iraq
| | - Nurah AlRagi
- Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Bader Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah, Saudi Arabia
| | | | - Kholoud Aleisa
- Riyadh Regional Laboratory, Riyadh Ministry of Health, Riyadh, Saudi Arabia
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Rabie-Rudsari M, Behboudi E, Ranjkesh A, Kaveh K, Razavi-Nikoo H, Haghshenas MR, Moradi A. Molecular identification of neuraminidase gene mutations in influenza A/H1N1 and A/H3N2 isolates of Mazandaran province, north of Iran. J Glob Antimicrob Resist 2024; 36:466-472. [PMID: 37992963 DOI: 10.1016/j.jgar.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVES The neuraminidase (NA) mutations causing resistance to NA inhibitors (NAIs) mostly compromise the fitness of influenza viruses. Considering the importance of these mutations, constant monitoring of the effectiveness of available drugs is critical. This study aimed to identify NA mutations in the influenza A/H1N1 and A/H3N2 subtypes in the samples of Mazandaran, Iran from 2016 to 2020. METHODS In this cross-sectional study, 20 influenza A/H1N1 and 20 influenza A/H3N2 samples were included in the study. After design of appropriate primers for NA gene, all samples subjected to RT-PCR and electrophoresis. Then the PCR product was sequenced to determine the mutations. RESULTS In the present study, no oseltamivir resistance-related mutations were detected. Still, NA gene showed variations compared to the vaccine strains. In A/H1N1, a total of 43 mutations were detected. Similarly, in A/H3N2, a total of 66 mutations were observed. In all isolates of H1N1, N200S, N248D and I321V mutations were detected in the antigenic site of NA protein, which can affect vaccine incompatibility and virus escape from the host's immune system. Also, H150R mutation was observed in the NA active site of H3N2, which is the cause of agglutination by NA protein. Also, S245N mutation was identified as a new N-Glycosylation site of H3N2 subtype. CONCLUSIONS The study of NA gene sequences revealed no oseltamivir resistance mutations. In H1N1 isolates, ca. 97% identities and in the H3N2 subtype, 96% identities were observed compared to reference isolate of 2009, which indicates the importance of constant monitoring of the emergence of the drug resistance mutations.
Collapse
Affiliation(s)
- Mehdi Rabie-Rudsari
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Emad Behboudi
- Department of Medical Basic Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Ategheh Ranjkesh
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Kaveh
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi-Nikoo
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Reza Haghshenas
- Department of Virology and Microbiology, Drug Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
Cronk BD, Caserta LC, Laverack M, Gerdes RS, Hynes K, Hopf CR, Fadden MA, Nakagun S, Schuler KL, Buckles EL, Lejeune M, Diel DG. Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits ( Vulpes vulpes). Emerg Microbes Infect 2023; 12:2249554. [PMID: 37589241 PMCID: PMC10512766 DOI: 10.1080/22221751.2023.2249554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Avian influenza H5N1 is a highly pathogenic virus that primarily affects birds. However, it can also infect other animal species, including mammals. We report the infection of nine juvenile red foxes (Vulpes vulpes) with Highly Pathogenic Avian Influenza A type H5N1 (Clade 2.3.4.4b) in the spring of 2022 in the central, western, and northern regions of New York, USA. The foxes displayed neurologic signs, and examination of brain and lung tissue revealed lesions, with brain lesions ranging from moderate to severe meningoencephalitis. Analysis of tissue tropism using RT-PCR methods showed a comparatively lower Ct value in the brain, which was confirmed by in situ hybridization targeting Influenza A RNA. The viral RNA labelling was highly clustered and overlapped the brain lesions, observed in neurons, and grey matter. Whole viral genome sequences obtained from the affected foxes were subjected to phylogenetic and mutation analysis to determine influenza A clade, host specificity, and potential occurrence of viral reassortment. Infections in red foxes likely occurred due to preying on infected wild birds and are unlikely due to transmission between foxes or other mammals.
Collapse
Affiliation(s)
- Brittany D. Cronk
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leonardo Cardia Caserta
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rhea S. Gerdes
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kevin Hynes
- New York State Department of Environmental Conservation, Wildlife Health Program, Albany, NY, USA
| | - Cynthia R. Hopf
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa A. Fadden
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Shotaro Nakagun
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Krysten L. Schuler
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elizabeth L. Buckles
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Manigandan Lejeune
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Awadalla ME, Alkadi H, Alarjani M, Al-Anazi AE, Ibrahim MA, ALOhali TA, Enani M, Alturaiki W, Alosaimi B. Moderately Low Effectiveness of the Influenza Quadrivalent Vaccine: Potential Mismatch between Circulating Strains and Vaccine Strains. Vaccines (Basel) 2023; 11:1050. [PMID: 37376439 PMCID: PMC10304586 DOI: 10.3390/vaccines11061050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The annual seasonal influenza vaccination is the most effective way of preventing influenza illness and hospitalization. However, the effectiveness of influenza vaccines has always been controversial. Therefore, we investigated the ability of the quadrivalent influenza vaccine to induce effective protection. Here we report strain-specific influenza vaccine effectiveness (VE) against laboratory-confirmed influenza cases during the 2019/2020 season, characterized by the co-circulation of four different influenza strains. During 2019-2020, 778 influenza-like illness (ILI) samples were collected from 302 (39%) vaccinated ILI patients and 476 (61%) unvaccinated ILI patients in Riyadh, Saudi Arabia. VE was found to be 28% and 22% for influenza A and B, respectively. VE for preventing A(H3N2) and A(H1N1)pdm09 illness was 37.4% (95% CI: 43.7-54.3) and 39.2% (95% CI: 21.1-28.9), respectively. The VE for preventing influenza B Victoria lineage illness was 71.7% (95% CI: -0.9-3), while the VE for the Yamagata lineage could not be estimated due to the limited number of positive cases. The overall vaccine effectiveness was moderately low at 39.7%. Phylogenetic analysis revealed that most of the Flu A genotypes in our dataset clustered together, indicating their close genetic relatedness. In the post-COVID-19 pandemic, flu B-positive cases have reached three-quarters of the total number of influenza-positive cases, indicating a nationwide flu B surge. The reasons for this phenomenon, if related to the quadrivalent flu VE, need to be explored. Annual monitoring and genetic characterization of circulating influenza viruses are important to support Influenza surveillance systems and to improve influenza vaccine effectiveness.
Collapse
Affiliation(s)
- Maaweya E. Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Haitham Alkadi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Modhi Alarjani
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Abdullah E. Al-Anazi
- Comprehensive Cancer Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Mohanad A. Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Thamer Ahmad ALOhali
- Medical Protocol Department, Kind Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mushira Enani
- Dr. Sulaiman Alhabib Medical Group, Department of Medicine, Olaya Medical Complex, Riyadh 11643, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| |
Collapse
|
7
|
Khan MAS, Parveen R, Hoque SA, Ahmed MF, Rouf ASS, Rahman SR. Implementing in vitro and in silico approaches to evaluate anti-influenza virus activity of different Bangladeshi plant extracts. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Alosaimi B, Naeem A, Alghoribi MF, Okdah L, Hamed ME, AlYami AS, Alotaibi A, Enani M. Structural Mapping of Mutations in Spike, RdRp and Orf3a Genes of SARS-CoV-2 in Influenza Like Illness (ILI) Patients. Viruses 2021; 13:136. [PMID: 33477951 PMCID: PMC7835825 DOI: 10.3390/v13010136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
In December 2019, the emergence of SARS-CoV-2 virus in China led to a pandemic. Since both Influenza Like Illness (ILI) and COVID-19 case definitions overlap, we re-investigated the ILI cases using PCR for the presence of SARS-CoV-2 in 739 nasopharyngeal swabs collected from November 2019 to March 2020. SARS-CoV-2 RNA was found in 37 samples (5%) collected mostly during February 2020. It was followed by confirmation of evolutionary and spatial relationships using next generation sequencing (NGS). We observed that the overall incidence of ILI cases during 2019-2020 influenza season was considerably higher than previous years and was gradually replaced with SARS-CoV-2, which indicated a silent transmission among ambulatory patients. Sequencing of representative isolates confirmed independent introductions and silent transmission earlier than previously thought. Evolutionary and spatial analyses revealed clustering in the GH clade, characterized by three amino acid substitutions in spike gene (D614G), RdRp (P323L) and NS3 (Q57H). P323L causes conformational change near nsp8 binding site that might affect virus replication and transcription. In conclusion, assessment of the community transmission among patients with mild COVID-19 illness, particularly those without epidemiological link for acquiring the virus, is of utmost importance to guide policy makers to optimize public health interventions. The detection of SARS-CoV-2 in ILI cases shows the importance of ILI surveillance systems and warrants its further strengthening to mitigate the ongoing transmission of SARS-CoV-2. The effect of NS3 substitutions on oligomerization or membrane channel function (intra- and extracellular) needs functional validation.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Department of Research labs, Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
- College of Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Asif Naeem
- Department of Research labs, Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Majed F. Alghoribi
- King Abdullah International Medical Research Center, Riyadh 11211, Saudi Arabia; (M.F.A.); (L.O.)
| | - Lilian Okdah
- King Abdullah International Medical Research Center, Riyadh 11211, Saudi Arabia; (M.F.A.); (L.O.)
| | - Maaweya E. Hamed
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmad S. AlYami
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Athari Alotaibi
- General Administration for Research and Studies, Ministry of Health, Riyadh 11176, Saudi Arabia;
| | - Mushira Enani
- Medical Specialties Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| |
Collapse
|
9
|
Naeem A, Elbakkouri K, Alfaiz A, Hamed ME, Alsaran H, AlOtaiby S, Enani M, Alosaimi B. Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. J Med Virol 2020; 92:3016-3027. [PMID: 32159230 PMCID: PMC7228267 DOI: 10.1002/jmv.25759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023]
Abstract
Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus cause a decrease in vaccine efficacy. Since the information about the evolution of these viruses in Saudi is deficient so we investigated the genetic diversity of circulating H1N1 viruses. Nasopharyngeal aspirates/swabs collected from 149 patients hospitalized with flu-like symptoms during 2014 and 2015 were analyzed. Viral RNA extraction was followed by a reverse transcription-polymerase chain reaction and genetic sequencing. We analyzed complete gene sequences of HA and NA from 80 positive isolates. Phylogenetic analysis of HA and NA genes of 80 isolates showed similar topologies and co-circulation of clades 6b. Genetic diversity was observed among circulating viruses belonging to clade 6B.1A. The amino acid residues in the HA epitope domain were under purifying selection. Amino acid changes at key antigenic sites, such as position S101N, S179N (antigenic site-Sa), I233T (antigenic site-Sb) in the head domain might have resulted in antigenic drift and emergence of variant viruses. For NA protein, 36% isolates showed the presence of amino acid changes such as V13I (n = 29), I314M (n = 29) and 12% had I34V (n = 10). However, H257Y mutation responsible for resistance to neuraminidase inhibitors was missing. The presence of amino acid changes at key antigenic sites and their topologies with structural mapping of residues under purifying selection highlights the importance of antigenic drift and warrants further characterization of recently circulating viruses in view of vaccine effectiveness. The co-circulation of several clades and the predominance of clade 6B.1 suggest multiple introductions in Saudi.
Collapse
MESH Headings
- Humans
- Neuraminidase/genetics
- Saudi Arabia/epidemiology
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Phylogeny
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Male
- Female
- Young Adult
- Genetic Variation
- Middle Aged
- Adolescent
- Genetic Drift
- Child
- Child, Preschool
- Amino Acid Substitution
- Viral Proteins/genetics
- Nasopharynx/virology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- RNA, Viral/genetics
- Antigenic Variation
- Aged
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Asif Naeem
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Ali Alfaiz
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Hadel Alsaran
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Mushira Enani
- Medical Specialties Department, Section of Infectious DiseasesKing Fahad Medical CityRiyadhSaudi Arabia
| | - Bandar Alosaimi
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
- College of MedicineKing Fahad Medical CityRiyadhSaudi Arabia
| |
Collapse
|
10
|
Molecular Evolution and Structural Mapping of N-Terminal Domain in Spike Gene of Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Viruses 2020; 12:v12050502. [PMID: 32370153 PMCID: PMC7290774 DOI: 10.3390/v12050502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023] Open
Abstract
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a lethal zoonotic pathogen circulating in the Arabian Peninsula since 2012. There is no vaccine for MERS and anti-viral treatment is generally not applicable. We investigated the evolution of the MERS-CoV spike gene sequences and changes in viral loads over time from patients in Saudi Arabia from 2105-2017. All the MERS-CoV strains belonged to lineage 5, and showed high sequence homology (99.9%) to 2017 strains. Recombination analysis showed a potential recombination event in study strains from patients in Saudi Arabia. The spike gene showed eight amino acid substitutions, especially between the A1 and B5 lineage, and contained positively selected codon 1020. We also determined that the viral loads were significantly (p < 0.001) higher in fatal cases, and virus shedding was prolonged in some fatal cases beyond 21 days. The viral concentration peaked during the first week of illness, and the lower respiratory specimens had higher levels of MERS-CoV RNA. The presence of the diversifying selection and the topologies with the structural mapping of residues under purifying selection suggested that codon 1020 might have a role in the evolution of spike gene during the divergence of different lineages. This study will im-prove our understanding of the evolution of MERS-CoV, and also highlights the need for enhanced surveillance in humans and dromedaries. The presence of amino acid changes at the N-terminal domain and structural mapping of residues under positive selection at heptad repeat 1 provides better insight into the adaptive evolution of the spike gene and might have a potential role in virus-host tropism and pathogenesis.
Collapse
|