1
|
Dereventsova AV, Klimentov AS, Kholodilov IS, Belova OA, Butenko AM, Karganova GG. Real-Time Polymerase Chain Reaction Systems for Detection and Differentiation of Unclassified Viruses of the Phenuiviridae Family. Methods Protoc 2025; 8:20. [PMID: 39997644 PMCID: PMC11857896 DOI: 10.3390/mps8010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The family Phenuiviridae, part of the order Hareavirales, includes arboviruses and arthropod-associated viruses, with sandflies, mosquitoes, and ticks as primary vectors. Historically, only sandfly/mosquito-borne phenuiviruses were associated with human diseases, but the emergence of severe fever with thrombocytopenia syndrome (SFTS) has highlighted the potential of tick-borne phenuiviruses as human pathogens. Recent discoveries of new arthropod-associated viruses, some of which remain unclassified, underscore the need for sensitive detection and differentiation methods, particularly in regions where these viruses may co-circulate. This study aimed to develop real-time PCR test systems for identifying and differentiating unclassified viruses within the Phenuiviridae family. In this study, tick suspensions containing phenuiviruses, previously obtained during the screening of ticks from various regions of Russia using pan-phenuivirus primers, were used. Specific primers and probes were designed to differentiate five Phenuiviridae viruses of genera Uukuvirus, Ixovirus, Phlebovirus and one unclassified phenuivirus, and their analytical sensitivity and specificity were evaluated. These PCR-based tools provide a robust method for detecting and classifying uncharacterized phenuiviruses, contributing to improved surveillance and understanding their potential epidemiological and epizootological impacts.
Collapse
Affiliation(s)
- Alena V. Dereventsova
- Laboratory of Biochemistry, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Alexander S. Klimentov
- Laboratory of Biochemistry, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Alexander M. Butenko
- D.I. Ivanovsky Institute of Virology Division of N.F. Gamaleya National Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 1230986 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS (Institute of Poliomyelitis), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Su S, Cui MY, Xing LL, Gao RJ, Mu L, Hong M, Guo QQ, Ren H, Yu JF, Si XY, Eerde M. Metatranscriptomic analysis reveals the diversity of RNA viruses in ticks in Inner Mongolia, China. PLoS Negl Trop Dis 2024; 18:e0012706. [PMID: 39661583 PMCID: PMC11634002 DOI: 10.1371/journal.pntd.0012706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Ticks are widely distributed throughout China and are the second most prevalent pathogen vectors in the world, following only mosquitoes. Tick bites can lead to Lyme disease, forest encephalitis, and other illnesses that may result in death under severe circumstances. Materials and methods: Ticks collected from March 2021 to May 2023 were pooled and used in metatranscriptomic analyses to gain insight into the diversity and distribution of tick-borne viruses in Inner Mongolia. Next-generation sequencing (NGS) outcomes were validated, and viral prevalence across distinct tick species was determined through the application of polymerase chain reaction (PCR) paired with Sanger sequencing. RESULTS A total of 20 RNA viruses belonging to at least 8 families, including Chuviridae, Flaviviridae, Solemoviridae, Nairoviridae, Partitiviridae, Phenuiviridae, Rhabdoviridae, and Totiviridae, and to unclassified families were identified by NGS. Five of the identified RNA viruses (Nuomin virus, Yezo virus, tick-borne encephalitis virus, Alongshan virus, and Beiji nairovirus) are considered human pathogens. A potential human pathogen, Mukawa virus, was also among the identified viruses. Ixodes persulcatus carried a significantly greater number of viral species than did Dermacentor nuttalli, Hyalomma marginatum, and Haemaphysalis concinna. The prevalence of coinfection with multiple viruses differed in I. persulcatus from Hinggan League and Hulun Buir, and Beiji nairovirus was the codominant virus species. CONCLUSIONS There is a remarkable diversity of RNA viruses harboured by ticks in Inner Mongolia, with variations observed in the distribution of these tick-borne viruses across different regions and tick hosts.
Collapse
Affiliation(s)
- Si Su
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Meng-Yu Cui
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Public Health, The Third People’s Hospital of Anyang, Anyang, Henan, China
| | - Li-Li Xing
- Department of Infection Control, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Rui-Juan Gao
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lan Mu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Mei Hong
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Qi-Qi Guo
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hong Ren
- First Clinical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Feng Yu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiao-Yan Si
- Department of Vector Biological and Control, Inner Mongolia Center for Disease Control and Prevention, Hohhot, Inner Mongolia, China
| | - Mutu Eerde
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Pavon JAR, da Silva Neves NA, Pinho JB, de Souza VJ, Patroca da Silva S, Ribeiro Cruz AC, de Almeida Medeiros DB, Teixeira Nunes MR, Slhessarenko RD. Disclosing the virome of Aedes, Anopheles and Culex female mosquitoes, Alto Pantanal of Mato Grosso, Brazil, 2019. Virology 2024; 598:110182. [PMID: 39033587 DOI: 10.1016/j.virol.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.
Collapse
Affiliation(s)
- Janeth Aracely Ramirez Pavon
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Nilvanei Aparecido da Silva Neves
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - João Batista Pinho
- Instituto de Biociências, Laboratório de Ecologia de Aves e Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, CEP 78060-900, Mato Grosso, Brazil
| | - Vilma Juscineide de Souza
- Coordenadoria de Vigilância Ambiental, Secretaria Estadual de Saúde, Centro Político Administrativo de Mato Grosso, Palácio Paiaguás, CEP 78049-902, Cuiabá, Mato Grosso, Brazil
| | | | | | | | - Márcio Roberto Teixeira Nunes
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal Do Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
4
|
Sansilapin C, Tangwangvivat R, Hoffmann CS, Chailek C, Lekcharoen P, Thippamom N, Petcharat S, Taweethavonsawat P, Wacharapluesadee S, Buathong R, Kurosu T, Yoshikawa T, Shimojima M, Iamsirithaworn S, Putcharoen O. Severe fever with thrombocytopenia syndrome (SFTS) in Thailand: using a one health approach to respond to novel zoonosis and its implications in clinical practice. ONE HEALTH OUTLOOK 2024; 6:18. [PMID: 39350294 PMCID: PMC11443680 DOI: 10.1186/s42522-024-00112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease caused by Dabie bandavirus (SFTSV) is an emerging infectious disease of substantial concern in East Asia. In 2019, Ongkittikul S et al. reported the first case of SFTS in Thailand. Our report describes a One Health investigation of SFTS zoonosis examining the index case and suspected animal reservoirs using real-time RT-PCR and immunoassays. We add to the report on the first confirmed case of SFTSV infection in a human in Thailand by conducting a limited but informative One Health surveillance study. Dogs and cats tested positive for SFTSV antibody using IgG ELISA. We conclude that domestic dogs and cats might serve as potential reservoirs for SFTSV spread due to their closer proximity to the index case than other non-domestic animals. Notably, we did not detect SFTSV in synanthropic cats or dogs-nor did we detect SFTSV in Rhipicephalus sanguineus ticks-using RT-PCR. We propose that One Health investigations coupling genomic and serologic assays in response to new SFTS cases could play a pivotal role in preventing and managing SFTS among humans and animals in East Asia. As such, we are establishing a collaborative response to SFTS in Thailand through human outbreak investigations that align with principles of One Health, through environmental surveys and animal RT-PCR and immunoassays. Our investigation highlights the importance of coupling RT-PCR with seroprevalence assays as principal elements of One Health surveillance for SFTS in order to shed light on potential animal reservoirs and track emerging zoonosis.
Collapse
Affiliation(s)
- Chalo Sansilapin
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | | | - Curtis S Hoffmann
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Chanatip Chailek
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Paisin Lekcharoen
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Ferreira LYM, de Sousa AG, Silva JL, Santos JPN, Souza DGDN, Orellana LCB, de Santana SF, de Vasconcelos LBCM, Oliveira AR, Aguiar ERGR. Characterization of the Virome Associated with the Ubiquitous Two-Spotted Spider Mite, Tetranychus urticae. Viruses 2024; 16:1532. [PMID: 39459865 PMCID: PMC11512250 DOI: 10.3390/v16101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Agricultural pests can cause direct damage to crops, including chlorosis, loss of vigor, defoliation, and wilting. In addition, they can also indirectly damage plants, such as by transmitting pathogenic micro-organisms while feeding on plant tissues, affecting the productivity and quality of crops and interfering with agricultural production. Among the known arthropod pests, mites are highly prevalent in global agriculture, particularly those from the Tetranychidae family. The two-spotted spider mite, Tetranychus urticae, is especially notorious, infesting about 1600 plant species and causing significant agricultural losses. Despite its impact on agriculture, the virome of T. urticae is poorly characterized in the literature. This lack of knowledge is concerning, as these mites could potentially transmit plant-infecting viral pathogens, compromising food security and complicating integrated pest management efforts. Our study aimed to characterize the virome of the mite T. urticae by taking advantage of publicly available RNA deep sequencing libraries. A total of 30 libraries were selected, covering a wide range of geographic and sampling conditions. The library selection step included selecting 1 control library from each project in the NCBI SRA database (16 in total), in addition to the 14 unique libraries from a project containing field-collected mites. The analysis was conducted using an integrated de novo virus discovery bioinformatics pipeline developed by our group. This approach revealed 20 viral sequences, including 11 related to new viruses. Through phylogenetic analysis, eight of these were classified into the Nodaviridae, Kitaviridae, Phenuiviridae, Rhabdoviridae, Birnaviridae, and Qinviridae viral families, while three were characterized only at the order level within Picornavirales and Reovirales. The remaining nine viral sequences showed high similarity at the nucleotide level with known viral species, likely representing new strains of previously characterized viruses. Notably, these include the known Bean common mosaic virus (BCMV) and Phaseolus vulgaris alphaendornavirus 1, both of which have significant impacts on bean agriculture. Altogether, our results expand the virome associated with the ubiquitous mite pest T. urticae and highlight its potential role as a transmitter of important plant pathogens. Our data emphasize the importance of continuous virus surveillance for help in the preparedness of future emerging threats.
Collapse
Affiliation(s)
- Lucas Yago Melo Ferreira
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Anderson Gonçalves de Sousa
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Joannan Lima Silva
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - João Pedro Nunes Santos
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - David Gabriel do Nascimento Souza
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Lixsy Celeste Bernardez Orellana
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Sabrina Ferreira de Santana
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Lara Beatriz Correia Moreira de Vasconcelos
- Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, Brazil; (L.Y.M.F.); (A.G.d.S.); (J.L.S.); (J.P.N.S.); (D.G.d.N.S.); (L.C.B.O.); (S.F.d.S.); (L.B.C.M.d.V.)
| | - Anibal Ramadan Oliveira
- Laboratory of Entomology, Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Brazil;
| | - Eric Roberto Guimarães Rocha Aguiar
- Postgraduate Program in Computational Modeling in Science and Technology, Department of Engineering and Computing, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil
| |
Collapse
|
6
|
da Silva AF, Machado LC, da Silva LMI, Dezordi FZ, Wallau GL. Highly divergent and diverse viral community infecting sylvatic mosquitoes from Northeast Brazil. J Virol 2024; 98:e0008324. [PMID: 38995042 PMCID: PMC11334435 DOI: 10.1128/jvi.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Mosquitoes can transmit several pathogenic viruses to humans, but their natural viral community is also composed of a myriad of other viruses such as insect-specific viruses (ISVs) and those that infect symbiotic microorganisms. Besides a growing number of studies investigating the mosquito virome, the majority are focused on few urban species, and relatively little is known about the virome of sylvatic mosquitoes, particularly in high biodiverse biomes such as the Brazilian biomes. Here, we characterized the RNA virome of 10 sylvatic mosquito species from Atlantic forest remains at a sylvatic-urban interface in Northeast Brazil employing a metatranscriptomic approach. A total of 16 viral families were detected. The phylogenetic reconstructions of 14 viral families revealed that the majority of the sequences are putative ISVs. The phylogenetic positioning and, in most cases, the association with a high RNA-dependent RNA polymerase amino acid divergence from other known viruses suggests that the viruses characterized here represent at least 34 new viral species. Therefore, the sylvatic mosquito viral community is predominantly composed of highly divergent viruses highlighting the limited knowledge we still have about the natural virome of mosquitoes in general. Moreover, we found that none of the viruses recovered were shared between the species investigated, and only one showed high identity to a virus detected in a mosquito sampled in Peru, South America. These findings add further in-depth understanding about the interactions and coevolution between mosquitoes and viruses in natural environments. IMPORTANCE Mosquitoes are medically important insects as they transmit pathogenic viruses to humans and animals during blood feeding. However, their natural microbiota is also composed of a diverse set of viruses that cause no harm to the insect and other hosts, such as insect-specific viruses. In this study, we characterized the RNA virome of sylvatic mosquitoes from Northeast Brazil using unbiased metatranscriptomic sequencing and in-depth bioinformatic approaches. Our analysis revealed that these mosquitoes species harbor a diverse set of highly divergent viruses, and the majority comprises new viral species. Our findings revealed many new virus lineages characterized for the first time broadening our understanding about the natural interaction between mosquitoes and viruses. Finally, it also provided several complete genomes that warrant further assessment for mosquito and vertebrate host pathogenicity and their potential interference with pathogenic arboviruses.
Collapse
Affiliation(s)
- Alexandre Freitas da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Laís Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | | | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| |
Collapse
|
7
|
Cao X, Liu B, Wang Z, Pang T, Sun L, Kondo H, Li J, Andika IB, Chi S. Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica. Arch Virol 2024; 169:166. [PMID: 38995418 DOI: 10.1007/s00705-024-06069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024]
Abstract
The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.
Collapse
Affiliation(s)
- Xinran Cao
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Shouguang International Vegetable Sci-Tech Fair Management Service Center, Shouguang, 262700, China
| | - Bo Liu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziqi Wang
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Junmin Li
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Shengqi Chi
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Jia Y, Zhang Y, Wu X, Dong Z, Xie S, Li W, Liu Q, Lu X, Wang Y. Clinical and historical infection of Tacheng tick virus 2: A retrospective investigation. PLoS Negl Trop Dis 2024; 18:e0012168. [PMID: 38870100 PMCID: PMC11175498 DOI: 10.1371/journal.pntd.0012168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Tacheng tick virus 2 (TcTV-2) is an emerging tick-borne virus belonging to the genus Uukuvirus in the family Phenuiviridae. Initially isolated in 2019 from a patient in Xinjiang Uygur Autonomous Region (XUAR), northwestern China, who developed fever and headache after a tick bite, TcTV-2 was concurrently molecularly detected in hard ticks across various countries, including China, Kazakhstan, Romania, and Turkey. This study conducted a retrospective epidemiological investigation of TcTV-2 infection. METHODOLOGY In this retrospective cohort study, we collected samples from 47 tick-bitten patients, 984 herdsmen, 7 Asian badgers, 13 red foxes, and 168 Hyalomma asiaticum tick egg batches. Patients' samples were primarily analyzed by using high-throughput sequencing, targeting the V3-V4 region of the bacterial 16S rRNA gene and viral cDNA libraries. Typical tick-borne pathogens were further confirmed using RT-PCR and detected in Asian badgers, red foxes and Hy. asiaticum tick egg batches. We also conducted enzyme-linked immunosorbent assay (ELISA) to detected specific IgM and IgG antibodies against TcTV-2 in herdsmen. Phylogenetic analysis was performed to genetically characterize TcTV-2 detected in this study. PRINCIPAL FINDINGS TcTV-2 was detected in various samples, including blood, urine, and throat swabs from 12.77% (6/47) tick-bitten patients. It was found in blood samples of 14.29% (1/7) of wild badgers, 7.69% (1/13) of red foxes, and 13.69% (23/168) of Hy. asiaticum egg batches. Furthermore, ELISA results revealed that 9.55% (94/984) of the serum samples (34 from males and 60 from females) were tested positive for TcTV-2-specific IgG, while 2.95% (29/984, 7 males and 22 females) showed positivity for TcTV-2-specific IgM. Additionally, 1.02% (10/984, 4 males and 6 females) of the sera tested positive for both TcTV-2-specific IgM and IgG. Phylogenetic analysis indicated that the TcTV-2 strains detected in this study were genetically similar, regardless of their origin and host species. CONCLUSIONS Clinical symptoms of TcTV-2 infection in patients are nonspecific, with common symptoms including headache, fever, asthenia, vomiting, myalgia, rash, and meningitis-like signs. TcTV-2 can be detected in blood, urine, and throat swab samples of infected patients. Among local herdsmen, 9.55% tested positive for TcTV-2-specific IgG and 2.95% for TcTV-2-specific IgM. Importantly, TcTV-2 can be transovarially transmitted in Hy. asiaticum ticks, and the Asian badgers and red foxes are potential reservoirs of TcTV-2.
Collapse
Affiliation(s)
- Yuqing Jia
- The People’s Hospital of Xixian, Xinyang, China
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Yu Zhang
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Xuanchen Wu
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Zhihui Dong
- The Sixth Division Hospital of Xinjiang Production and Construction Corps, Wujiaqu, China
| | - Songsong Xie
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Wei Li
- Department of Basic Medicine, School of Medicine, Tarim University, Aral, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Guangdong, China
| | - Xiaobo Lu
- The First Hospital Xinjiang Medical University, Urmqi, China
| | - Yuanzhi Wang
- Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Dai R, Yang S, Pang T, Tian M, Wang H, Zhang D, Wu Y, Kondo H, Andika IB, Kang Z, Sun L. Identification of a negative-strand RNA virus with natural plant and fungal hosts. Proc Natl Acad Sci U S A 2024; 121:e2319582121. [PMID: 38483998 PMCID: PMC10962957 DOI: 10.1073/pnas.2319582121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.
Collapse
Affiliation(s)
- Ruoyin Dai
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Shian Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Dong Zhang
- Yangling Sub-Center of National Center for Apple Improvement and College of Horticulture, Northwest A&F University, Yangling712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao266109, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
- Institute of Future Agriculture, Northwest A&F University, Yangling712100, China
| |
Collapse
|
11
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
12
|
de Santana SF, Santos VC, Lopes ÍS, Porto JAM, Mora-Ocampo IY, Sodré GA, Pirovani CP, Góes-Neto A, Pacheco LGC, Fonseca PLC, Costa MA, Aguiar ERGR. Mining Public Data to Investigate the Virome of Neglected Pollinators and Other Floral Visitors. Viruses 2023; 15:1850. [PMID: 37766257 PMCID: PMC10535300 DOI: 10.3390/v15091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This study reports the virome investigation of pollinator species and other floral visitors associated with plants from the south of Bahia: Aphis aurantii, Atrichopogon sp., Dasyhelea sp., Forcipomyia taiwana, and Trigona ventralis hoozana. Studying viruses in insects associated with economically important crops is vital to understand transmission dynamics and manage viral diseases that pose as threats for global food security. Using literature mining and public RNA next-generation sequencing data deposited in the NCBI SRA database, we identified potential vectors associated with Malvaceae plant species and characterized the microbial communities resident in these insects. Bacteria and Eukarya dominated the metagenomic analyses of all taxon groups. We also found sequences showing similarity to elements from several viral families, including Bunyavirales, Chuviridae, Iflaviridae, Narnaviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, and Xinmoviridae. Phylogenetic analyses indicated the existence of at least 16 new viruses distributed among A. aurantii (3), Atrichopogon sp. (4), Dasyhelea sp. (3), and F. taiwana (6). No novel viruses were found for T. ventralis hoozana. For F. taiwana, the available libraries also allowed us to suggest possible vertical transmission, while for A. aurantii we followed the infection profile along the insect development. Our results highlight the importance of studying the virome of insect species associated with crop pollination, as they may play a crucial role in the transmission of viruses to economically important plants, such as those of the genus Theobroma, or they will reduce the pollination process. This information may be valuable in developing strategies to mitigate the spread of viruses and protect the global industry.
Collapse
Affiliation(s)
- Sabrina Ferreira de Santana
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (A.G.-N.)
| | - Ícaro Santos Lopes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (A.G.-N.)
| | - Joel Augusto Moura Porto
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - George Andrade Sodré
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Carlos Priminho Pirovani
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Aristóteles Góes-Neto
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (A.G.-N.)
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Luis Gustavo Carvalho Pacheco
- Department of Biotechnology, Institute of Health Sciences, Universidade Federal da Bahia, Salvador 40231-300, BA, Brazil
| | - Paula Luize Camargos Fonseca
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
- Department of Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Marco Antônio Costa
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| |
Collapse
|
13
|
Aziati ID, Jnr DM, Antia A, Joshi A, Aviles-Gamboa A, Lee P, Harastani H, Wang D, Adalsteinsson SA, Boon ACM. Prevalence of Bourbon and Heartland viruses in field collected ticks at an environmental field station in St. Louis County, Missouri, USA. Ticks Tick Borne Dis 2023; 14:102080. [PMID: 36375268 PMCID: PMC9729426 DOI: 10.1016/j.ttbdis.2022.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Heartland and Bourbon viruses are pathogenic tick-borne viruses putatively transmitted by Amblyomma americanum, an abundant tick species in Missouri. To assess the prevalence of these viruses in ticks, we collected 2778 ticks from eight sampling sites at Tyson Research Center, an environmental field station within St. Louis County and close to the City of St. Louis, from May - July in 2019 and 2021. Ticks were pooled according to life stage and sex, grouped by year and sampling site to create 355 pools and screened by RT-qPCR for Bourbon and Heartland viruses. Overall, 14 (3.9%) and 27 (7.6%) of the pools were positive for Bourbon virus and Heartland virus respectively. In 2019, 11 and 23 pools were positive for Bourbon and Heartland viruses respectively. These positives pools were of males, females and nymphs. In 2021, there were 4 virus positive pools out of which 3 were positive for both viruses and were comprised of females and nymphs. Five out of the 8 sampling sites were positive for at least one virus. This included a site that was positive for both viruses in both years. Detection of these viruses in an area close to a relatively large metropolis presents a greater public health threat than previously thought.
Collapse
Affiliation(s)
| | | | - Avan Antia
- Department of Molecular Microbiology, Washington University in St. Louis, USA
| | - Astha Joshi
- Department of Medicine, Washington University in St. Louis, USA
| | | | - Preston Lee
- Department of Medicine, Washington University in St. Louis, USA
| | - Houda Harastani
- Department of Medicine, Washington University in St. Louis, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, USA; Department of Pathology and Immunology, Washington University in St. Louis, USA
| | | | - Adrianus C M Boon
- Department of Medicine, Washington University in St. Louis, USA; Department of Molecular Microbiology, Washington University in St. Louis, USA; Department of Pathology and Immunology, Washington University in St. Louis, USA.
| |
Collapse
|
14
|
Ge HH, Wang G, Guo PJ, Zhao J, Zhang S, Xu YL, Liu YN, Ye XL, Wu YX, Li S, Yue M, Ji WJ, Geng SY, Li H, Zhang XA, Yang ZD, Cui N, Li W, Lin L, Liu W. Coinfections in hospitalized patients with severe fever with thrombocytopenia syndrome: A retrospective study. J Med Virol 2022; 94:5933-5942. [PMID: 36030552 DOI: 10.1002/jmv.28093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with a high case fatality rate. Few studies have been performed on bacterial or fungal coinfections or the effect of antibiotic therapy. A retrospective, observational study was performed to assess the prevalence of bacterial and fungal coinfections in patients hospitalized for SFTSV infection. The most commonly involved microorganisms and the effect of antimicrobial therapy were determined by the site and source of infection. A total of 1201 patients hospitalized with SFTSV infection were included; 359 (29.9%) had microbiologically confirmed infections, comprised of 292 with community-acquired infections (CAIs) and 67 with healthcare-associated infections (HAIs). Death was independently associated with HAIs, with a more significant effect than that observed for CAIs. For bacterial infections, only those acquired in hospitals were associated with fatal outcomes, while fungal infection, whether acquired in hospital or community, was related to an increased risk of fatal outcomes. The infections in the respiratory tract and bloodstream were associated with a higher risk of death than that in the urinary tract. Both antibiotic and antifungal treatments were associated with improved survival for CAIs, while for HAIs, only antibiotic therapy was related to improved survival, and no effect from antifungal therapy was observed. Early administration of glucocorticoids was associated with an increased risk of HAIs. The study provided novel clinical and epidemiological data and revealed risk factors, such as bacterial coinfections, fungal coinfections, infection sources, and treatment strategies associated with SFTS deaths/survival. This report might be helpful in curing SFTS and reducing fatal SFTS.
Collapse
Affiliation(s)
- Hong-Han Ge
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Gang Wang
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Pei-Jun Guo
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, People's Republic of China
| | - Jing Zhao
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- General Demonstration Research Room of Aeromedicine, Air Force Medical Center, Beijing, People's Republic of China
| | - Shuai Zhang
- Department of Clinical Laboratory, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Yan-Li Xu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Yuan-Ni Liu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Xiao-Lei Ye
- The Center for Disease Prevention and Control in Western Theater Command of PLA Joint Logistic Support Force, Lanzhou, Gansu Province, People's Republic of China
| | - Yong-Xiang Wu
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Shuang Li
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wen-Juan Ji
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Shu-Ying Geng
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Hao Li
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Ai Zhang
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Zhen-Dong Yang
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan Province, People's Republic of China
| | - Ning Cui
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan Province, People's Republic of China
| | - Wei Li
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan Province, People's Republic of China
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Wei Liu
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, People's Republic of China
| |
Collapse
|
15
|
Sandfly-Borne Phleboviruses in Portugal: Four and Still Counting. Viruses 2022; 14:v14081768. [PMID: 36016390 PMCID: PMC9413822 DOI: 10.3390/v14081768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
According to ICTV, there are currently 66 known phlebovirus species. More than 40 of these viruses were isolated or detected in phlebotomine sandflies and some of them are known pathogens. In Portugal, information about sandfly-borne phleboviruses is scarce and scattered sandfly-borne diseases are neglected and often not considered in differential diagnoses. The main objective of this work was to gather the existing information and to raise awareness about the circulating phleboviruses in this country. To date, Massilia and Alcube phleboviruses have been isolated from sandflies in southern Portugal. Human infections with Toscana and Sicilian phleboviruses have been reported, as well as seroprevalence in cats and dogs. More studies are needed in order to understand if the viruses isolated during the entomological surveys have an impact on human health and to fully understand the real importance of the already recognized pathogens in our country.
Collapse
|