1
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
2
|
El Khiat A, Tamegart L, Draoui A, El Fari R, Sellami S, Rais H, El Hiba O, Gamrani H. Kinetic deterioration of short memory in rat with acute hepatic encephalopathy: Involvement of astroglial and neuronal dysfunctions. Behav Brain Res 2019; 367:201-209. [DOI: 10.1016/j.bbr.2019.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
3
|
Silencing of Transcription Factor Sp1 Promotes SN1 Transporter Regulation by Ammonia in Mouse Cortical Astrocytes. Int J Mol Sci 2019; 20:ijms20020234. [PMID: 30634395 PMCID: PMC6359076 DOI: 10.3390/ijms20020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
The involvement of the astrocytic SN1 (SNAT3) transporter in ammonia-induced l-glutamine retention was recently documented in mouse-cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot, and confocal microscopy. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. The role of Sp1 in SN1 expression and SN1-mediated [3H]glutamine uptake in ammonia-treated astrocytes was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to the Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine uptake, were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, which is a treatment likely to dephosphorylate Sp1. Furthermore, silencing of the PKCδ isoform appears to enhance the ammonia effect on the Sp1 level. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.
Collapse
|
4
|
Görg B, Karababa A, Häussinger D. Hepatic Encephalopathy and Astrocyte Senescence. J Clin Exp Hepatol 2018; 8:294-300. [PMID: 30302047 PMCID: PMC6175776 DOI: 10.1016/j.jceh.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic Encephalopathy (HE) is a severe complication of acute or chronic liver diseases with a broad spectrum of neurological symptoms including motor disturbances and cognitive impairment of different severity. Contrary to former beliefs, a growing number of studies suggest that cognitive impairment may not fully reverse after an acute episode of overt HE in patients with liver cirrhosis. The reasons for persistent cognitive impairment in HE are currently unknown but recent observations raise the possibility that astrocyte senescence may play a role here. Astrocyte senescence is closely related to oxidative stress and correlate with irreversible cognitive decline in aging and neurodegenerative diseases. In line with this, surrogate marker for oxidative stress and senescence were upregulated in ammonia-exposed cultured astrocytes and in post mortem brain tissue from patients with liver cirrhosis with but not without HE. Ammonia-induced senescence in astrocytes involves glutamine synthesis-dependent formation of reactive oxygen species (ROS), p53 activation and upregulation of cell cycle inhibitory factors p21 and GADD45α. More recent studies also suggest a role of ROS-induced downregulation of Heme Oxygenase (HO)1-targeting micro RNAs and upregulation of HO1 for ammonia-induced proliferation inhibition in cultured astrocytes. Further studies are required to identify the precise sequence of events that lead to astrocyte senescence and to elucidate functional implications of senescence for cognitive performance in patients with liver cirrhosis and HE.
Collapse
Key Words
- ARE, Antioxidant Response Elements
- BDNF, Brain-Derived Neurotrophic Factor
- Eph, Ephrine
- EphR, Ephrine Receptor
- GADD45α, Growth Arrest and DNA Damage Inducible 45α
- GS, Glutamine Synthetase
- HE, Hepatic Encephalopathy
- HO1, Heme Oxygenase 1
- LOLA, l-Ornithine-l-Aspartate
- MAP, Mitogen Activated Protein Kinases
- NAPDH, Reduced Form of Nicotinamide Adenine Dinucleotide Phosphate
- Nox, NADPH Oxidase
- Nrf2, Nuclear Factor-Like 2
- PBR, Peripheral-Type Benzodiazepine Receptor
- PTN, Protein Tyrosine Nitration
- RNOS, Reactive Nitrogen and Oxygen Species
- ROS, Reactive Oxygen Species
- SA-β-Gal, Senescence-Associated β-d-Galactosidase
- TSP, Trombospondin
- TrkBT, Truncated Tyrosine Receptor Kinase B
- ZnPP, Zinc Protoporphyrin
- ammonia
- astrocytes
- heme oxygenase 1
- hepatic encephalopathy
- mPT, Mitochondrial Permeability Transition
- miRNAs
- nNOS, Neuronal-Type Nitric-Oxide Synthase
- oxidative stress
Collapse
Affiliation(s)
| | | | - Dieter Häussinger
- Address for correspondence: Dieter Häussinger, Universitätsklinikum Düsseldorf, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Moorenstrasse 5, 40225 Düsseldorf, Germany. Tel.: +49 211 811 7569; fax: +49 211 811 8838.
| |
Collapse
|
5
|
Mercado F, Almanza A, Rubio N, Soto E. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model. Neurosci Lett 2018; 677:88-93. [PMID: 29705539 DOI: 10.1016/j.neulet.2018.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K+ inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms.
Collapse
Affiliation(s)
- Francisco Mercado
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Angélica Almanza
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | | | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue México, CP 72000, Mexico.
| |
Collapse
|
6
|
The C57BL/6J mouse exhibits sporadic congenital portosystemic shunts. PLoS One 2013; 8:e69782. [PMID: 23936100 PMCID: PMC3720623 DOI: 10.1371/journal.pone.0069782] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/12/2013] [Indexed: 01/27/2023] Open
Abstract
C57BL/6 mice are the most widely used strain of laboratory mice. Using in vivo proton Magnetic Resonance Spectroscopy (1H MRS), we have repeatedly observed an abnormal neurochemical profile in the brains of both wild-type and genetically modified mice derived from the C57BL/6J strain, consisting of a several fold increase in cerebral glutamine and two fold decrease in myo-inositol. This strikingly abnormal neurochemical “phenotype” resembles that observed in chronic liver disease or portosystemic shunting and appeared to be independent of transgene, origin or chow and was not associated with liver failure. As many as 25% of animals displayed the abnormal neurochemical profile, questioning the reliability of this model for neurobiology. We conducted an independent study to determine if this neurochemical profile was associated with portosystemic shunting. Our results showed that 100% of the mice with high brain glutamine displayed portosystemic shunting by concomitant portal angiography while all mice with normal brain glutamine did not. Since portosystemic shunting is known to cause alterations in gene expression in many organs including the brain, we conclude that portosystemic shunting may be the most significant problem associated with C57BL/6J inbreeding both for its effect on the central nervous system and for its systemic repercussions.
Collapse
|
7
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
8
|
Rubio N, Almanza A, Mercado F, Arévalo MÁ, Garcia-Segura LM, Vega R, Soto E. Upregulation of voltage-gated Ca2+ channels in mouse astrocytes infected with Theiler's murine encephalomyelitis virus (TMEV). Neuroscience 2013; 247:309-18. [PMID: 23742846 DOI: 10.1016/j.neuroscience.2013.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice through a CD4(+) Th1 T cell-mediated immunopathological process. TMEV infection produces a syndrome in mice that resembles multiple sclerosis. In this work, we focused on the increased expression of the genes encoding voltage-gated Ca(2+) channel subunits in SJL/J mouse astrocytes infected in culture with a BeAn strain of TMEV. Affymetrix DNA murine genome U74v2 DNA microarray hybridized with cRNA from mock- and TMEV-infected astrocytes revealed the upregulation of four sequences encoding Ca(2+)-binding and Ca(2+) channel subunit proteins. The DNA hybridization results were further validated using conventional RT-PCR and quantitative RT-PCR, demonstrating the increased expression of mRNA encoding channel subunit proteins. Western blotting also showed the increased synthesis of L- and N-type channel subunit specific proteins after infection. The reduced expression and the functional upregulation of functional voltage-gated Ca(2+) channels in mock- and TMEV-infected cells, respectively, was demonstrated using voltage clamp experiments. TMEV infection in mouse astrocytes induced a Ca(2+) current with a density proportional to the amount of viral particles used for infection. The use of Ca(2+) channel blockers, nimodipine and ω-conotoxin-GVIA, showed that both functional L- and N-type Ca(2+) channels were upregulated in infected astrocytes. The upregulation of Ca(2+) channels in astrocytes after TMEV infection provides insight into the molecular processes and potential role of astrocyte Ca(2+) dysregulation in the pathophysiology of encephalomyelitis and is important for the development of novel therapeutic strategies leading to prevention of neurodegeneration.
Collapse
Affiliation(s)
- N Rubio
- Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Görg B, Bidmon HJ, Häussinger D. Gene expression profiling in the cerebral cortex of patients with cirrhosis with and without hepatic encephalopathy. Hepatology 2013; 57:2436-47. [PMID: 23325665 DOI: 10.1002/hep.26265] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/27/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis and is seen as the clinical manifestation of a low-grade cerebral edema associated with oxidative-nitrosative stress. However, comprehensive data on HE-associated molecular derangements in the human brain are lacking. In the present study, we used a whole human genome microarray approach for gene expression profiling in post mortem brain samples from patients with cirrhosis with or without HE and controls without cirrhosis. Altered expression levels were found for a total of 1,012 genes in liver cirrhosis patients without and with HE, and HE-characteristic gene expression changes were identified. Genes with altered expression pattern in HE were related to oxidative stress, microglia activation, receptor signaling, inflammatory pathways, cell proliferation, and apoptosis. Despite an up-regulation of genes associated with microglia activation, pro-inflammatory cytokine messenger RNA profiles remained unchanged in the brains of patients with liver cirrhosis and HE compared with controls. Interestingly, many genes counteracting pro-inflammatory signaling and inflammatory cytokine expression were up-regulated in the cerebral cortex of patients with liver cirrhosis and HE. CONCLUSION Pathogenetic mechanisms of HE deduced from cell culture and animal experiments, such as oxidative stress, altered Zn(2+) homeostasis and microglia activation also apply to human brain from patients with liver cirrhosis and HE. The study also revealed a not-yet recognized increased expression of genes antagonizing proinflammatory signaling and inflammatory cytokine expression. (HEPATOLOGY 2013;57:2436-2447).
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
10
|
Palomero-Gallagher N, Zilles K. Neurotransmitter receptor alterations in hepatic encephalopathy: a review. Arch Biochem Biophys 2013; 536:109-21. [PMID: 23466244 DOI: 10.1016/j.abb.2013.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/07/2023]
Abstract
Hepatic encephalopathy (HE), a complex neuropsychiatric syndrome with symptoms ranging from subtle neuropsychiatric and motor disturbances to deep coma and death, is thought to be a clinical manifestation of a low-grade cerebral oedema associated with an altered neuron-astrocyte crosstalk and exacerbated by hyperammonemia and oxidative stress. These events are tightly coupled with alterations in neurotransmission, either in a causal or a causative manner, resulting in a net increase of inhibitory neurotransmission. Therefore, research focussed mainly on the potential role of γ-aminobutyric acid-(GABA) or glutamate-mediated neurotransmission in the pathophysiology of HE, though roles for other neurotransmitters (e.g. serotonin, dopamine, adenosine and histamine) or for neurosteroids or endogenous benzodiazepines have also been suggested. Therefore, we here review HE-related alterations in neurotransmission, focussing on changes in the levels of classical neurotransmitters and the neuromodulator adenosine, variations in the activity and/or concentrations of key enzymes involved in their metabolism, as well as in the densities of their receptors.
Collapse
|
11
|
Li JJ, Ji R, Shi YQ, Wang YY, Yang YL, Dou KF. Changes in expression of the chloride homeostasis-regulating genes, KCC2 and NKCC1, in the blood of cirrhotic patients with hepatic encephalopathy. Exp Ther Med 2012; 4:1075-1080. [PMID: 23226777 PMCID: PMC3494113 DOI: 10.3892/etm.2012.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE), a neuropsychiatric abnormality that commonly accompanies cirrhosis of the liver, is often difficult to treat and manage. Changes in chloride homeostasis are involved in the generation of a number of brain disorders. In this study, we considered whether chloride homeostasis is associated with HE. The mRNA levels of the Cl− extrusion system (KCC2) and the Cl− intrusion system (NKCC1) were detected by real-time RT-PCR in the plasma of 29 cirrhotic patients with HE of grade I-II, 36 cirrhotic patients with HE of grade III–IV, 20 cirrhotic patients without HE and 15 healthy controls. The mRNA levels of KCC2 in cirrhotic patients with mild and severe HE were significantly lower compared to those in cirrhotic patients without HE or in the healthy controls. However, NKCC1 mRNA levels did not differ between the different groups. In addition, for cirrhotic patients with HE, there were significant negative correlations between KCC2 levels and the levels of blood ammonia and hepatic function scores (Child-Pugh and model for end-stage liver disease scores); there was also a significant positive correlation between KCC2 levels and neurological status (Glasgow scores). In conclusion, our study indicates that an imbalance of KCC2 and NKCC1 may be a novel biomarker for detecting HE and for monitoring disease development.
Collapse
Affiliation(s)
- Jun-Jie Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University; ; Departments of Hepatobiliary Surgery and
| | | | | | | | | | | |
Collapse
|
12
|
Moderate grade hyperammonemia induced concordant activation of antioxidant enzymes is associated with prevention of oxidative stress in the brain slices. Neurochem Res 2011; 37:171-81. [PMID: 21922254 DOI: 10.1007/s11064-011-0596-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/30/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Acute hyperammonemia (HA) induced oxidative stress in the brain is considered to play critical roles in the neuropathology of end stage hepatic encephalopathy (HE). Moderate grade HA led minimal/moderate type HE is more common in the patients with chronic liver failure. However, implication of oxygen free radical ([Formula: see text]) based oxidative mechanisms remain to be defined during moderate grade HA. This article describes profiles of all the antioxidant enzymes Vis a Vis status of oxidative stress/damage in the brain slices exposed to 0.1-1 mM ammonia, reported to exist in the brain of animals with chronic liver failure and in liver cirrhotic patients. Superoxide dismutase catalyzes the first step of antioxidant mechanism and, with concerted activity of catalase, neutralizes [Formula: see text] produced in the cells. Both these enzymes remained unchanged up to 0.2-0.3 mM ammonia, however, with significant increments (P < 0.01-0.001) in the brain slices exposed to 0.5-1 mM ammonia. This was consistent with the similar pattern of production of reactive oxygen species in the brain slices. However, level of lipid peroxidation remained unchanged throughout the ammonia treatment. Synchronized activities of glutathione peroxidase and glutathione reductase regulate the level of glutathione to maintain reducing equivalents in the cells. The activities of both these enzymes also increased significantly in the brain slices exposed to 0.5-1 mM ammonia with concomitant increments in GSH/GSSG ratio and in the levels of total and protein bound thiol. The findings suggest resistance of brain cells from ammonia induced oxidative damage during moderate grade HA due to concordant activations of antioxidant enzymes.
Collapse
|
13
|
Slyvka Y, Wang Z, Yee J, Inman SR, Nowak FV. Antioxidant diet, gender and age affect renal expression of nitric oxide synthases in obese diabetic rats. Nitric Oxide 2011; 24:50-60. [DOI: 10.1016/j.niox.2010.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/28/2010] [Accepted: 11/15/2010] [Indexed: 01/07/2023]
|
14
|
Görg B, Qvartskhava N, Bidmon HJ, Palomero-Gallagher N, Kircheis G, Zilles K, Häussinger D. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 2010; 52:256-65. [PMID: 20583283 PMCID: PMC3395472 DOI: 10.1002/hep.23656] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Cell culture studies and animal models point to an important role of oxidative/nitrosative stress in the pathogenesis of cerebral ammonia toxicity. However, it is unknown whether oxidative/nitrosative stress in the brain is also characteristic of hepatic encephalopathy (HE) in humans. We therefore analyzed post mortem cortical brain tissue samples from patients with cirrhosis dying with or without HE in comparison with brains from patients without liver disease. Significantly elevated levels of protein tyrosine-nitrated proteins, heat shock protein-27, and 8-hydroxyguanosine as a marker for RNA oxidation were found in the cerebral cortex of HE patients, but not of patients with cirrhosis but without HE. Glutamine synthetase (GS) activity was significantly decreased, whereas GS protein expression was not significantly affected. Protein expression of the glutamate/aspartate cotransporter was up-regulated in HE, whereas protein expression of neuronal and inducible nitric oxide synthases, manganese-dependent and copper/zinc-dependent superoxide dismutase, and glial glutamate transporter-1 were not significantly increased. CONCLUSION These data indicate that HE in patients with cirrhosis is associated with oxidative/nitrosative stress, protein tyrosine nitration, and RNA oxidation, suggesting a role of oxidative stress in the pathogenesis of HE in patients with cirrhosis.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- C&O Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Gerald Kircheis
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Zilles
- C&O Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany,Institute of Neurosciences and Medicine (INM-2), Jülich Research Centre, Jülich, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Abstract
Epilepsy accounts for 0.5% of the global burden of disease, and primary prevention of epilepsy represents one of the three 2007 NINDS Epilepsy Research Benchmarks. In the past decade, efforts to understand and intervene in the process of epileptogenesis have yielded fruitful preventative strategies in animal models.This article reviews the current understanding of epileptogenesis, introduces the concept of a "critical period" for epileptogenesis, and examines strategies for epilepsy prevention in animal models of both acquired and genetic epilepsies. We discuss specific animal models, which may yield important insights into epilepsy prevention including kindling, poststatus epilepticus, prolonged febrile seizures, traumatic brain injury, hypoxia, the tuberous sclerosis mouse model, and the WAG/Rij rat model of primary generalized epilepsy. Hopefully, further investigation of antiepileptogenesis in animal models will soon enable human therapeutic trials to be initiated, leading to long-term epilepsy prevention and improved patient quality of life.
Collapse
Affiliation(s)
- Kathryn A. Giblin
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Department of Neurobiology,Yale University School of Medicine, New Haven, Connecticut
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Márquez-Aguirre A, Canales-Aguirre A, Gómez-Pinedo U, Gálvez-Gastélum F. Aspectos moleculares de la encefalopatía hepática. Neurologia 2010. [DOI: 10.1016/j.nrl.2009.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Bemeur C, Desjardins P, Butterworth RF. Evidence for oxidative/nitrosative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 2010; 25:3-9. [PMID: 20195724 DOI: 10.1007/s11011-010-9177-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/22/2009] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) is a serious complication of liver failure. HE manifests as a series of neuropsychiatric and neuromuscular symptoms including personality changes, sleep abnormalities, asterixis and muscle rigidity progressing through stupor to coma. The pathophysiologic basis of HE remains unclear. There is general agreement that ammonia plays a key role. In recent years, it has been suggested that oxidative/nitrosative stress constitutes part of the pathophysiologic cascade in HE. Direct evidence for oxidative/nitrosative stress in the pathogenesis of HE has been demonstrated in experimental animal models of acute or chronic liver failure. However, evidence from studies in HE patients is limited. This review summarizes this evidence for a role of oxidative/nitrosative stress in relation to ammonia toxicity and to the pathogenesis of HE.
Collapse
Affiliation(s)
- Chantal Bemeur
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM) University of Montreal, Montreal, QC, Canada
| | | | | |
Collapse
|
18
|
Márquez-Aguirre A, Canales-Aguirre A, Gómez-Pinedo U, Gálvez-Gastélum F. Molecular aspects of hepatic encephalopathy. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(10)70048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 2010; 100 Suppl 1:S3-S12. [PMID: 20227314 DOI: 10.1016/j.ymgme.2010.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/08/2010] [Indexed: 12/14/2022]
Abstract
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Lausanne, Switzerland.
| |
Collapse
|
20
|
Ching B, Chew SF, Wong WP, Ip YK. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 95:203-212. [PMID: 19819034 DOI: 10.1016/j.aquatox.2009.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 05/28/2023]
Abstract
This study aimed to elucidate whether exposure to a sublethal concentration (8mmoll(-1)) of NH(4)Cl (pH 7.0) for 12 or 48h would induce oxidative stress in gills and brain of the mudskipper Boleophthalmus boddarti which has high tolerance of environmental and brain ammonia. The gills of B. boddarti experienced a transient oxidative stress after 12h of ammonia exposure as evidenced by an increase in lipid hydroperoxide content, decreases in contents of reduced glutathione (GSH) and total GSH equivalent, and in activities of total glutathione peroxidase, glutathione reductase and catalase. There were also transient increases in protein abundance of p53 and p38 in gills of fish exposed to ammonia for 12h, although the protein abundance of phosphorylated p53 remained unchanged and there was a decrease in the protein abundance of phosphorylated p38, at hour 12. Since the majority of these oxidative parameters returned to control levels at hour 48, the ability of the gills of B. boddarti to recover from ammonia-induced oxidative stress might contribute to its high environmental ammonia tolerance. Ammonia also induced oxidative stress in the brain of B. boddarti at hours 12 and 48 as evidenced by the accumulation of carbonyl proteins, elevation in oxidized glutathione (GSSG) content and GSSG/GSH, decreases in activities of glutathione reductase and catalase, and an increase in the activity of superoxide dismutase. The capacity to increase glutathione synthesis and GSH content could alleviate severe ammonia-induced oxidative and nitrosative stress in the brain. Furthermore, the ability to decrease the protein abundance of p38 and phosphorylated p53 might prevent cell swelling, contributing in part to the high ammonia tolerance in the brain of B. boddarti. Overall, our results indicate that there could be multiple routes through which ammonia induced oxidative stress in and outside the brain.
Collapse
Affiliation(s)
- Biyun Ching
- Department of Biological Science, National University of Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
21
|
Cauli O, Rodrigo R, Piedrafita B, Llansola M, Mansouri MT, Felipo V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity. J Neurosci Res 2009; 87:1369-74. [PMID: 19025766 DOI: 10.1002/jnr.21947] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Patients with hepatic encephalopathy show altered motor function, psychomotor slowing, and hypokinesia, which are reproduced in rats with portacaval shunts (PCS). Increased extracellular glutamate in substantia nigra pars reticulata (SNr) is responsible for hypokinesia in PCS rats. The mechanisms by which liver failure leads to increased extracellular glutamate in SNr remain unclear. Inflammation seems to act synergistically with hyperammonemia to induce neurological alterations in hepatic encephalopathy. It is therefore possible that inflammation-associated alterations may contribute to motor alterations in hepatic encephalopathy. The aim of this work was to assess whether treatment with an antiinflammatory, ibuprofen, is able to normalize extracellular glutamate in SNr and/or to improve hypokinesia in PCS rats. The amounts of the glutamate transporters GLT-1 and EAAC-1 are reduced by 26% and 32%, respectively, in SNr of PCS rats. This reduction is associated with a tenfold increase in extracellular glutamate in SNr and a reduction in motor activity. Chronic treatment with 30 mg/kg ibuprofen completely normalizes the amount of GLT-1 and EAAC-1 and significantly reduces (by 53%) extracellular glutamate in SNr of PCS rats. Moreover, ibuprofen, at 15 or 30 (but not at 5) mg/kg/day, completely eliminates hypokinesia, restoring normal motor activity. This supports the idea that inflammation is a main contributor to the induction of hypokinesia in hepatic encephalopathy. Moreover, these data point to the possible therapeutic utility of decreasing inflammation, by safe procedures, in the treatment of the motor deficits in patients with hepatic encephalopathy.
Collapse
Affiliation(s)
- Omar Cauli
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Norenberg MD, Rama Rao KV, Jayakumar AR. Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 2009; 24:103-17. [PMID: 19104923 DOI: 10.1007/s11011-008-9113-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/28/2008] [Indexed: 02/08/2023]
Abstract
Mechanisms involved in hepatic encephalopathy (HE) still remain poorly understood. It is generally accepted that ammonia plays a major role in this disorder, and that astrocytes represent the principal target of ammonia neurotoxicity. In recent years, studies from several laboratories have uncovered a number of factors and pathways that appear to be critically involved in the pathogenesis of this disorder. Foremost is oxidative and nitrosative stress (ONS), which is largely initiated by an ammonia-induced increase in intracellular Ca(2+). Such increase in Ca(2+) activates a number of enzymes that promote the synthesis of reactive oxygen-nitrogen species, including constitutive nitric oxide synthase, NADPH oxidase and phospholipase A2. ONS subsequently induces the mitochondrial permeability transition, and activates mitogen-activated protein kinases and the transcription factor, nuclear factor-kappaB (NF-kappaB). These factors act to generate additional reactive oxygen-nitrogen species, to phosphorylate various proteins and transcription factors, and to cause mitochondrial dysfunction. This article reviews the role of these factors in the mechanism of HE and ammonia toxicity with a focus on astrocyte swelling and glutamate uptake, which are important consequences of ammonia neurotoxicity. These pathways and factors provide attractive targets for identifying agents potentially useful in the therapy of HE and other hyperammonemic disorders.
Collapse
Affiliation(s)
- M D Norenberg
- Department of Pathology (D-33), University of Miami School of Medicine, P.O. Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
23
|
Kruczek C, Görg B, Keitel V, Pirev E, Kröncke KD, Schliess F, Häussinger D. Hypoosmotic swelling affects zinc homeostasis in cultured rat astrocytes. Glia 2009; 57:79-92. [DOI: 10.1002/glia.20737] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Lichter-Konecki U. Profiling of astrocyte properties in the hyperammonaemic brain: shedding new light on the pathophysiology of the brain damage in hyperammonaemia. J Inherit Metab Dis 2008; 31:492-502. [PMID: 18683079 DOI: 10.1007/s10545-008-0834-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Acute hyperammonaemia (HA) causes cerebral oedema and severe brain damage in patients with urea cycle disorders (UCDs) or acute liver failure (ALF). Chronic HA is associated with developmental delay and intellectual disability in patients with UCDs and with neuropsychiatric symptoms in patients with chronic liver failure. Treatment often cannot prevent severe brain injury and neurological sequelae. The causes of the brain oedema in hyperammonaemic encephalopathy (HAE) have been subject of intense controversy among physicians and scientists working in this field. Currently favoured hypotheses are astrocyte swelling due to increased intracellular glutamine content and neuronal cell death due to excitotoxicity caused by elevated extracellular glutamate levels. While many researchers focus on these mechanisms of cytotoxicity, others emphasize vascular causes of brain oedema. New data gleaned from expression profiling of astrocytes acutely isolated from hyperammonaemic mouse brains point to disturbed water and potassium homeostasis as regulated by astrocytes at the brain microvasculature and in the perisynaptic space as a potential mechanism of brain oedema development in hyperammonaemia.
Collapse
Affiliation(s)
- U Lichter-Konecki
- Center for Neuroscience Research, and Division of Genetics & Metabolism, Children's National Medical Center, Washington, DC 20010-2970, USA.
| |
Collapse
|
25
|
Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS. New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 2007; 22:219-34. [PMID: 17823859 DOI: 10.1007/s11011-007-9062-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is generally accepted that astrocyte swelling forms the major anatomic substrate of the edema associated with acute liver failure (ALF) and that ammonia represents a major etiological factor in its causation. The mechanisms leading to such swelling, however, remain elusive. Recent studies have invoked the role of oxidative stress in the mechanism of hepatic encephalopathy (HE), as well as in the brain edema related to ALF. This article summarizes the evidence for oxidative stress as a major pathogenetic factor in HE/ALF and discusses mechanisms that are triggered by oxidative stress, including the induction of the mitochondrial permeability transition (MPT) and activation of signaling kinases. We propose that a cascade of events initiated by ammonia-induced oxidative stress results in cell volume dysregulation leading to cell swelling/brain edema. Blockade of this cascade may provide novel therapies for the brain edema associated with ALF.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, Miami, FL 33101, USA.
| | | | | | | |
Collapse
|
26
|
Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur J Nucl Med Mol Imaging 2007; 35:589-97. [DOI: 10.1007/s00259-007-0586-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 08/20/2007] [Indexed: 01/26/2023]
|
27
|
Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. ACTA ACUST UNITED AC 2007; 56:183-97. [PMID: 17881060 DOI: 10.1016/j.brainresrev.2007.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/12/2022]
Abstract
In pediatric patients, hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle deficiencies or organic acidemias. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood. Hyperammonemia can provoke irreversible damages to the developing central nervous system that lead to cortical atrophy, ventricular enlargement and demyelination, responsible for cognitive impairment, seizures and cerebral palsy. Until recently, the mechanisms leading to these irreversible cerebral damages were poorly understood. Using experimental models allowing the analysis of the neurotoxic effects of ammonium on the developing brain, these last years have seen the emergence of new clues showing that ammonium exposure alters several amino acid pathways and neurotransmitter systems, as well as cerebral energy metabolism, nitric oxide synthesis, oxidative stress, mitochondrial permeability transition and signal transduction pathways. Those alterations may explain neuronal loss and impairment of axonal and dendritic growth observed in the different models of congenital hyperammonemia. Some neuroprotective strategies such as the potential use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine have been suggested to counteract these toxic effects. Unraveling the molecular mechanisms involved in the chain of events leading to neuronal dysfunction under hyperammonemia may be useful to develop new potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Laurène Cagnon
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Avenue Pierre-Decker 2, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
28
|
Schliess F, Görg B, Häussinger D. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol Chem 2006; 387:1363-70. [PMID: 17081108 DOI: 10.1515/bc.2006.171] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) defines a primary gliopathy associated with acute and chronic liver disease. Astrocyte swelling triggered by ammonia in synergism with different precipitating factors, including hyponatremia, tumor necrosis factor (TNF)-alpha, glutamate and ligands of the peripheral benzodiazepine receptor (PBR), is an early pathogenetic event in HE. On the other hand, reactive nitrogen and oxygen species (RNOS) including nitric oxide are considered to play a major role in HE. There is growing evidence that osmotic and oxidative stresses are closely interrelated. Astrocyte swelling produces RNOS and vice versa. Based on recent investigations, this review proposes a working model that integrates the pathogenetic action of osmotic and oxidative stresses in HE. Under participation of the N-methyl-D-aspartate (NMDA) receptor, Ca(2+), the PBR and organic osmolyte depletion, astrocyte swelling and RNOS production may constitute an autoamplificatory signaling loop that integrates at least some of the signals released by HE-precipitating factors.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
29
|
Vemuganti R, Kalluri H, Yi JH, Bowen KK, Hazell AS. Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism and structural damage in thiamine deficiency. Eur J Neurosci 2006; 23:1172-88. [PMID: 16553781 DOI: 10.1111/j.1460-9568.2006.04651.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Identification of gene expression changes that promote focal neuronal death and neurological dysfunction can further our understanding of the pathophysiology of these disease states and could lead to new pharmacological and molecular therapies. Impairment of oxidative metabolism is a pathogenetic mechanism underlying neuronal death in many chronic neurodegenerative diseases as well as in Wernicke's encephalopathy (WE), a disorder induced by thiamine deficiency (TD). To identify functional pathways that lead to neuronal damage in this disorder, we have examined gene expression changes in the vulnerable thalamus and inferior colliculus of TD rats using Affymetrix Rat Genome GeneChip analysis in combination with gene ontology and functional categorization assessment utilizing the NetAffx GO Mining Tool. Of the 15 927 transcripts analysed, 125 in thalamus and 141 in inferior colliculus were more abundantly expressed in TD rats compared with control animals. In both regions, the major functional categories of transcripts that were increased in abundance after TD were those associated with inflammation (approximately 33%), stress (approximately 20%), cell death and repair ( approximately 26%), and metabolic perturbation (approximately 19%), together constituting approximately 98% of all transcripts up-regulated. These changes occurred against a background of neuronal cell loss and reactive astro- and microgliosis in both structures. Our results indicate that (i) TD produces changes in gene expression that are consistent with the observed dysfunction and pathology, and (ii) similar alterations in expression occur in thalamus and inferior colliculus, brain regions previously considered to differ in pathology. These findings provide important new insight into processes responsible for lesion development in TD, and possibly WE.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | | | | | | | | |
Collapse
|
30
|
Yan YP, Sailor KA, Vemuganti R, Dempsey RJ. Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci 2006; 24:45-54. [PMID: 16882007 DOI: 10.1111/j.1460-9568.2006.04872.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adult mammalian brain contains resident neural progenitors in the subgranular zone of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricles. The proliferation of neural progenitors increases after focal cerebral ischemia in both of these regions, but the mechanisms that promote ischemia-induced neural progenitor proliferation are not yet understood. We hypothesize that diffusible factors from the ischemic area play a role in this process as the DG is remote from the area of infarction. In this study, we observed that the peak of neural progenitor proliferation in the ipsilateral DG was between day 2 and day 4 of reperfusion after transient middle cerebral artery occlusion in adult spontaneously hypertensive rats. GeneChip and real-time PCR analysis showed a three- to 102-fold increase in the expression of 15 diffusible, mitogenic factors in the ischemic cortex at 3 days of reperfusion. Of these, insulin-like growth factor-1 (IGF-1) showed increased protein expression in the activated astrocytes in the ischemic penumbra. In addition, the progenitors in both the SVZ and DG showed IGF-1 receptor expression. Inhibiting IGF-1 activity by introcerebroventricular infusion of IGF-1 antibody significantly prevented the ischemia-induced neural progenitor proliferation. These results indicate that IGF-1 formed in the ischemic penumbra might be one of the diffusible factors that mediate post-ischemic neural progenitor proliferation.
Collapse
Affiliation(s)
- Yi-Ping Yan
- Department of Neurological Surgery, University of Wisconsin-Madison, WI 53792, USA
| | | | | | | |
Collapse
|
31
|
Raghavan M, Marik PE. Therapy of intracranial hypertension in patients with fulminant hepatic failure. Neurocrit Care 2006; 4:179-89. [PMID: 16627910 DOI: 10.1385/ncc:4:2:179] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
Severe intracranial hypertension (IH) in the setting of fulminant hepatic failure (FHF) carries a high mortality and is a challenging disease for the critical care provider. Despite considerable improvements in the understanding of the pathophysiology of cerebral edema during liver failure, therapeutic maneuvers that are currently available to treat this disease are limited. Orthotopic liver transplantation is currently the only definitive therapeutic strategy that improves outcomes in patients with FHF. However, many patients die prior to the availability of donor organs, often because of cerebral herniation. Currently, two important theories prevail in the understanding of the pathophysiology of IH during FHF. Ammonia and glutamine causes cytotoxic cerebral injury while cerebral vasodilation caused by loss of autoregulation increases intracranial pressure (ICP) and predisposes to herniation. Although ammonia-reducing strategies are limited in humans, modulation of cerebral blood flow seems promising, at least during the early stages of hepatic encephalopathy. ICP monitoring, transcranial Doppler, and jugular venous oximetry offer valuable information regarding intracranial dynamics. Induced hypothermia, hypertonic saline, propofol sedation, and indomethacin are some of the newer therapies that have been shown to improve survival in patients with severe IH. In this article, we review the pathophysiology of IH in patients with FHF and outline various therapeutic strategies currently available in managing these patients in the critical care setting.
Collapse
Affiliation(s)
- Murugan Raghavan
- Liver Transplant ICU, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
32
|
Abstract
Liver failure results in significant alterations of the brain glutamate system. Ammonia and the astrocyte play major roles in such alterations, which affect several components of the brain glutamate system, namely its synthesis, intercellular transport (uptake and release), and function. In addition to the neurological symptoms of hepatic encephalopathy, modified glutamatergic regulation may contribute to other cerebral complications of liver failure, such as brain edema, intracranial hypertension and changes in cerebral blood flow. A better understanding of the cause and precise nature of the alterations of the brain glutamate system in liver failure could lead to new therapeutic avenues for the cerebral complications of liver disease.
Collapse
Affiliation(s)
- Javier Vaquero
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), University of Montreal, Montreal, QC, Canada
| | | |
Collapse
|
33
|
Türeyen K, Vemuganti R, Salamat MS, Dempsey RJ. Increased Angiogenesis and Angiogenic Gene Expression in Carotid Artery Plaques from Symptomatic Stroke Patients. Neurosurgery 2006; 58:971-7; discussion 971-7. [PMID: 16639334 DOI: 10.1227/01.neu.0000210246.61817.fe] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Carotid plaque rupture is one of the main causes of stroke by creating cerebral emboli. The biochemical, molecular, and structural factors that promote carotid plaque rupture are not yet understood in detail. We hypothesize that increased microvascular blood flow within a carotid plaque might fissure the plaque, elevate local pressure, and promote plaque rupture. The aim of this study is to determine the role of angiogenesis and angiogenesis-related gene expression in symptomatic carotid plaque. METHODS The present study evaluated the new vessel formation (using hematoxylin-eosin staining and CD34 immunohistochemistry) and angiogenic gene expression (using microarray and real-time polymerase chain reaction analysis) in carotid plaque specimens obtained during endarterectomy from 13 symptomatic stroke patients in comparison with eight asymptomatic patients. RESULTS Symptomatic plaques showed significantly higher new vessel density in the fibrous cap (by 347%, P < 0.05) as well as in the plaque proper (by 196%, P < 0.05) compared with the asymptomatic plaques. The fibrous caps of the plaques were threefold thinner in the symptomatic patients when compared with the asymptomatic patients. In symptomatic plaque, gene expression analysis showed increased abundance of 31 transcripts known to promote angiogenesis and cell division compared with plaques of asymptomatic patients. CONCLUSION This study suggests that angiogenic gene expression and the ensuing angiogenesis in the plaques might contribute to their destabilization and resulting symptoms.
Collapse
Affiliation(s)
- Kudret Türeyen
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792-3232, USA
| | | | | | | |
Collapse
|
34
|
Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol 2005; 43:1067-77. [PMID: 16246452 DOI: 10.1016/j.jhep.2005.05.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/05/2005] [Accepted: 05/12/2005] [Indexed: 12/19/2022]
Abstract
Encephalopathy, brain edema and intracranial hypertension are neurological complications responsible for substantial morbidity/mortality in patients with acute liver failure (ALF), where, aside from liver transplantation, there is currently a paucity of effective therapies. Mirroring its cerebro-protective effects in other clinical conditions, the induction of mild hypothermia may provide a potential therapeutic approach to the management of ALF. A solid mechanistic rationale for the use of mild hypothermia is provided by clinical and experimental studies showing its beneficial effects in relation to many of the key factors that determine the development of brain edema and intracranial hypertension in ALF, namely the delivery of ammonia to the brain, the disturbances of brain organic osmolytes and brain extracellular amino acids, cerebro-vascular haemodynamics, brain glucose metabolism, inflammation, subclinical seizure activity and alterations of gene expression. Initial uncontrolled clinical studies of mild hypothermia in patients with ALF suggest that it is an effective, feasible and safe approach. Randomized controlled clinical trials are now needed to adequately assess its efficacy, safety, clinical impact on global outcomes and to provide the guidelines for its use in ALF.
Collapse
Affiliation(s)
- Javier Vaquero
- Neuroscience Research Unit, Hôpital Saint-Luc (C.H.U.M.), 1058 St Denis street, Montreal, QC, Canada H2X 3J4
| | | | | |
Collapse
|
35
|
Abstract
Astrocyte swelling represents the major factor responsible for the brain edema associated with fulminant hepatic failure (FHF). The edema may be of such magnitude as to increase intracranial pressure leading to brain herniation and death. Of the various agents implicated in the generation of astrocyte swelling, ammonia has had the greatest amount of experimental support. This article reviews mechanisms of ammonia neurotoxicity that contribute to astrocyte swelling. These include oxidative stress and the mitochondrial permeability transition (MPT). The involvement of glutamine in the production of cell swelling will be highlighted. Evidence will be provided that glutamine induces oxidative stress as well as the MPT, and that these events are critical in the development of astrocyte swelling in hyperammonemia.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, Miami, Florida 33101, USA. mnorenbe@med,miami.edu
| | | | | |
Collapse
|
36
|
Vemuganti R, Dempsey RJ. Carotid atherosclerotic plaques from symptomatic stroke patients share the molecular fingerprints to develop in a neoplastic fashion: a microarray analysis study. Neuroscience 2005; 131:359-74. [PMID: 15708479 DOI: 10.1016/j.neuroscience.2004.08.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 12/12/2022]
Abstract
Identification of genetic mechanisms that promote the onset of stroke and transient cerebral ischemic attack symptoms in carotid atherosclerotic patients would further our understanding of the pathophysiology of this disease and could lead to new pharmacological and molecular therapies. Using Affymetrix Human Genome 230 GeneChip set, the present study evaluated the gene expression differences in geometrically similar carotid artery plaque samples extricated from six symptomatic stroke patients and four asymptomatic patients. There was no significant difference in the degree of stenosis between the two groups. Of the 44,860 transcripts analyzed, 289 (approximately 0.6% of the total transcripts) were differentially expressed between the plaques from the symptomatic and asymptomatic groups (236 were expressed more abundantly and 53 were expressed less abundantly in the symptomatic group). Of the 236 transcripts expressed more abundantly in the symptomatic plaques, 71% (167 transcripts) indicate an active cell proliferation and neoplastic process. These include oncogenes, growth factors, tumor promoters, tumor markers, angiogenesis promoters, transcription factors, RNA splicing factors, RNA processing proteins, signal transduction mediators and those that control the metabolism. Real-time polymerase chain reaction confirmed the increased expression of 63 transcripts in the symptomatic plaques. The other groups of transcripts expressed more abundantly in the symptomatic plaques are those that control ionic homeostasis, those that participate in the progression of degenerative neurological diseases (Alzheimer's disease, amyotrophic lateral sclerosis and Huntington's disease) and epilepsy. This indicates that symptomatic plaques are molecularly and biochemically more active than the asymptomatic plaques, or active plaque growth precipitates stroke symptoms.
Collapse
Affiliation(s)
- R Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, K4/8 (Mail Stop Code CSC-8660), 600 Highland Avenue, Madison, WI 53792, USA.
| | | |
Collapse
|
37
|
Abstract
Brain edema with intracranial hypertension is a major complication in patients with acute liver failure. Current therapies for this complication include a variety of pharmacologic and interventional measures, some of which are frequently associated with adverse effects or contraindications. Even though these measures usually allow the control of intracranial hypertension for a certain period of time, recurrence is common. New therapies are therefore needed. Increasing clinical and experimental evidence suggests that induction of mild hypothermia (32 degrees C-35 degrees C) may be a therapeutic alternative. Similar to traumatic brain injury or brain stroke, induction of mild hypothermia seems highly effective to reduce intracranial pressure in patients with acute liver failure. Several mechanisms by which mild hypothermia may prevent brain edema and intracranial hypertension in this condition have been disclosed and may include beneficial effects on ammonia metabolism, as well as on the disturbances of brain osmolarity, cerebrovascular hemodynamics, brain glucose metabolism, inflammation, and others. Improvement of systemic hemodynamics and amelioration of liver injury may be other benefits of the systemic induction of mild hypothermia, but the impact of potential adverse events, such as infection, should also be taken into account. At a time when mild hypothermia is increasingly used in several specialized centers, performance of a randomized controlled trial seems critical to confirm the benefits of mild hypothermia in acute liver failure and to provide adequate guidelines for its use.
Collapse
Affiliation(s)
- Javier Vaquero
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
38
|
Abstract
To have more insight into the mechanism of neuronal injury in phenylketonuria (PKU) patients, gene expression profiles were studied in cell culture of embryonic rat cortical neurons induced by phenylalanine. Randomly chose cortical cultured for 3 days were treated by 0.9-mM phenylalanine for 12 h. Control group of the same batch was treated with the same volume of medium. Total RNA was extracted and hybridized with the Affymetrix gene chip U34 according to the protocol provided by the Affymetrix Company. Real-time PCR was used to further confirm the result. We found that the hybridization signals of 167 genes were increased among the total 1323 probes plotted on the chip. The 167 increased genes could be functionally categorized into signal transduction, neuron related, cytoskeleton, metabolism, ion channels, transcription factors, cytokines, and apoptosis related. Signals of seven probes were decreased, which accounted to 0.5% of the total number. A series of genes that were not reported previously were upregulated by phenylalanine, including Ca2+/calmodulin-dependent protein kinase, Brain type II (CaMK II), ras, P38, L-voltage dependent calcium channel, some genes related to vesicle formation and transmitter release, some glutamate receptor subunits and glutamate transporters. According to the gene expression profiles, it is likely that multiprocesses are involved in the neuronal injury induced by phenylalanine, such as the activation on of the NMDR-Ca2+-CaMK II-Ras-P38 axis, the abnormality in neurotransmitter release. Our study also suggests that the excitatory neurotransmitter glutamate may play a role in the neural pathology of PKU.
Collapse
Affiliation(s)
- Huiwen Zhang
- Department of Endocrinology and Genetic Metabolism, Xin Hua Hospital, Shanghai Institute for Pediatric Research, Shanghai Second Medical University, Shanghai 200092, People's Republic of China
| | | |
Collapse
|
39
|
Abstract
The pathogenesis of hepatic encephalopathy (HE) remains elusive. While it is clear that ammonia is the likely toxin and that astrocytes are the main target of its neurotoxicity, precisely how ammonia brings about cellular injury is poorly understood. Studies over the past decade have invoked the concept of oxidative stress as a pathogenetic mechanism for ammonia neurotoxicity. This review sets out the arguments in support of this concept based on evidence derived from human observations, animal studies, and cell culture investigations. The consequences and potential therapeutic implications of oxidative stress in HE are also discussed.
Collapse
Affiliation(s)
- M D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | | | |
Collapse
|
40
|
The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2004. [PMID: 15241188 DOI: 10.1097/10.1097/01.wcb.0000125648.03213.1d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Uncontrolled increase in intracranial pressure (ICP) continues to be one of the most significant causes of early death in patients with acute liver failure (ALF). In this study, we aimed to determine the effects of indomethacin on ICP and cerebral perfusion pressure in twelve patients with ALF and brain edema (9 females/3 males, median age 49,5 (range 21 to 64) yrs.). Also changes in cerebral perfusion determined by transcranial Doppler technique (Vmean) and jugular bulb oxygen saturation (SvjO2) were measured, as well as brain content of lactate and glutamate by microdialysis technique. Finally, we determined the cerebral blood flow autoregulation before and after indomethacin injection. We found that indomethacin reduced ICP from 30 (7 to 53) to 12 (4 to 33) mmHg (P < 0.05). The cerebral perfusion pressure increased from 48 (0 to 119) to 65 (42 to 129) mmHg (P < 0.05), while Vmean and SvjO2 on average remained unchanged at 68 (34 to 126) cm/s and 67 (28 to 82) %, respectively. The lactate and glutamate in the brain tissue were not altered (2.1 (1.8 to 7.8) mmol/l and 34 (2 to 268) micromol/l, respectively) after injection of indomethacin. Cerebral blood flow autoregulation was impaired in all patients before injection of indomethacin, but was not restored after administration of indomethacin. We conclude that a bolus injection of indomethacin reduces ICP and increases cerebral perfusion pressure without compromising cerebral perfusion or oxidative metabolism in patients with ALF. This finding indicates that indomethacin may be valuable as rescue treatment of uncontrolled intracranial hypertension in fulminant hepatic failure.
Collapse
|
41
|
Tofteng F, Larsen FS. The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2004; 24:798-804. [PMID: 15241188 DOI: 10.1097/01.wcb.0000125648.03213.1d] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uncontrolled increase in intracranial pressure (ICP) continues to be one of the most significant causes of early death in patients with acute liver failure (ALF). In this study, we aimed to determine the effects of indomethacin on ICP and cerebral perfusion pressure in twelve patients with ALF and brain edema (9 females/3 males, median age 49,5 (range 21 to 64) yrs.). Also changes in cerebral perfusion determined by transcranial Doppler technique (Vmean) and jugular bulb oxygen saturation (SvjO2) were measured, as well as brain content of lactate and glutamate by microdialysis technique. Finally, we determined the cerebral blood flow autoregulation before and after indomethacin injection. We found that indomethacin reduced ICP from 30 (7 to 53) to 12 (4 to 33) mmHg (P < 0.05). The cerebral perfusion pressure increased from 48 (0 to 119) to 65 (42 to 129) mmHg (P < 0.05), while Vmean and SvjO2 on average remained unchanged at 68 (34 to 126) cm/s and 67 (28 to 82) %, respectively. The lactate and glutamate in the brain tissue were not altered (2.1 (1.8 to 7.8) mmol/l and 34 (2 to 268) micromol/l, respectively) after injection of indomethacin. Cerebral blood flow autoregulation was impaired in all patients before injection of indomethacin, but was not restored after administration of indomethacin. We conclude that a bolus injection of indomethacin reduces ICP and increases cerebral perfusion pressure without compromising cerebral perfusion or oxidative metabolism in patients with ALF. This finding indicates that indomethacin may be valuable as rescue treatment of uncontrolled intracranial hypertension in fulminant hepatic failure.
Collapse
Affiliation(s)
- Flemming Tofteng
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | | |
Collapse
|
42
|
Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 2004; 89:73-89. [PMID: 15030391 DOI: 10.1111/j.1471-4159.2004.02316.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In brain, a brief ischemic episode induces protection against a subsequent severe ischemic insult. This phenomenon is known as preconditioning-induced neural ischemic tolerance. An understanding of the molecular mechanisms leading to preconditioning helps in identifying potential therapeutic targets for preventing the post-stroke brain damage. The present study conducted the genomic and proteomic analysis of adult rat brain as a function of time following preconditioning induced by a 10-min transient middle cerebral artery (MCA) occlusion. GeneChip analysis showed induction of 40 putative neuroprotective transcripts between 3 to 72 h after preconditioning. These included heat-shock proteins, heme oxygenases, metallothioneins, signal transduction mediators, transcription factors, ion channels and apoptosis/plasticity-related transcripts. Real-time PCR confirmed the GeneChip data for the transcripts up-regulated after preconditioning. Two-dimensional gel electrophoresis combined with MALDI-TOF analysis showed increased expression of HSP70, HSP27, HSP90, guanylyl cyclase, muskelin, platelet activating factor receptor and beta-actin at 24 h after preconditioning. HSP70 protein induction after preconditioning was localized in the cortical pyramidal neurons. The infarct volume induced by focal ischemia (1-h MCA occlusion) was significantly smaller (by 38 +/- 7%, p < 0.05) in rats subjected to preconditioning 3 days before the insult. Preconditioning also prevented several gene expression changes induced by focal ischemia.
Collapse
Affiliation(s)
- Vinay K Dhodda
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA.
| | | | | | | |
Collapse
|
43
|
Xu XB, Cai JX, Dong JH, He ZP, Han BL, Leng XS. Effects of different operations on cirrhotic portal hypertensive liver in rats. Shijie Huaren Xiaohua Zazhi 2004; 12:689-693. [DOI: 10.11569/wcjd.v12.i3.689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate respectively the effects of portaazygous disconnection (PAD), mesocaval shunt (MCS) and distal splenocaval shunt (DSCS) on the portasytemic shunting (PSS), hepatic function (HF), hepatic mitochondrial respiratory function (HMRF) and its ultrastructure, anti-oxidation ability (HAOA) and lipoperoxide (LPO), so as to provide theoretical basis to select a suitable operation.
METHODS: Using the cirrhotic portal hypertensive model induced by CCl4/ethanol in Wristar rats, we investigated PSS, HF, HMRF and its HAOA and LPO during three wks after MCS, DSCS and PAD.
RESULTS: After MCS, the PSS were further increased, HF, HMRF and HAOA were significantly decreased, and LPO increased. Hepatic mitochondrial ultrastructure showed severely damaged. Only a little improvement was found on the third wk. After DSCS and PAD, above mentioned indexes were less influenced, and they were restored a little more quickly in DSCS groups than that in PAD groups. During the first postoperative wk, the PAD group showed the highest mortality.
CONCLUSION: DSCS may be a desirable operation among the three kinds of operation.
Collapse
|
44
|
Sailor KA, Dhodda VK, Rao VLR, Dempsey RJ. Osteopontin infusion into normal adult rat brain fails to increase cell proliferation in dentate gyrus and subventricular zone. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:181-5. [PMID: 14753431 DOI: 10.1007/978-3-7091-0651-8_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In the first week after focal ischemia in adult brain, the basal level of neurogenesis increases dramatically in two distinct areas: The dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. It is possible that this remotely induced neurogenesis is the result of a proliferation inducing factor, or factors, diffusing from the infarction to the neurogenic regions. The secreted protein osteopontin (OPN) is a possible factor. In this study, OPN mRNA levels were measured in the cerebral infarction of adult rats that underwent I hour of middle cerebral artery occlusion (MCAO). OPN mRNA levels increased 36.0, 55.0 and 46.7 fold at 6, 24 and 72 hours reperfusion respectively. We also determined whether OPN alone could be responsible for this ischemia-induced neurogenesis. OPN (2.4 microg/day) was infused into the lateral ventricles of the brain in non-ischemic adult male rats, continuously over three days. Bromodeoxyuridine (BrdU) immunohistochemistry was performed and the total BrdU positive (BrdU+) cells were counted. OPN, compared to aCSF infusion, decreased BrdU+ cells in DG and had no significant effect on cell proliferation in the SVZ. This study indicates that osteopontin alone does not increase cell proliferation in the normal adult brain.
Collapse
Affiliation(s)
- K A Sailor
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Kobayashi MS, Takahashi Y, Nagata T, Nishida Y, Murata A, Ishikawa K, Asai S. Screening for control genes in rat global cerebral ischemia using high-density oligonucleotide array. J Neurosci Res 2004; 76:512-8. [PMID: 15114623 DOI: 10.1002/jnr.20094] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From conventional relative gene expression analyses (Northern blotting, in situ hybridization, and RT-PCR), it has been reported that the expression of control genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin, used as references may be affected by ischemia. Therefore, we extended searching and evaluation at the mRNA level of transcripts whose expression levels were not changed by cerebral ischemia, using a high-density oligonucleotide array and statistical analysis in a rat global cerebral ischemia and reperfusion model. We added a hyperthermic factor and localization factor to ischemia and identified transcripts with a stable expression level under conditions even more disadvantageous than ischemia only. Screening of more than 8,000 transcripts with the Rat Genome U34A array yielded 28 transcripts, which we listed and classified according to their expression level. Widely used control genes, GAPDH and beta-actin, were not included, although cyclophilin A was included. In addition, we conducted a functional classification based on gene ontology. Under the functional classification of the 28 transcripts, many genes tended to be associated with metabolism. In conclusion, use of several transcripts is recommended, such as those we identified, as references in the analysis of gene expression in pathological models of ischemia.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genetic and Genomic Medicine, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Roger Williams
- Institute of Hepatology, 69-75 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
48
|
|
49
|
Getchell TV, Peng X, Stromberg AJ, Chen KC, Paul Green C, Subhedar NK, Shah DS, Mattson MP, Getchell ML. Age-related trends in gene expression in the chemosensory-nasal mucosae of senescence-accelerated mice. Ageing Res Rev 2003; 2:211-43. [PMID: 12605961 DOI: 10.1016/s1568-1637(02)00066-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have utilized high-density GeneChip oligonucleotide arrays to investigate the use of the senescence-accelerated mouse (SAM) as a biogerontological resource to identify patterns of gene expression in the chemosensory-nasal mucosa. Gene profiling in chronologically young and old mice of the senescence-resistant (SAMR) and senescence-prone (SAMP) strains revealed 133 known genes that were modulated by a three-fold or greater change either in one strain or the other or in both strains during aging. We also identified known genes in our study which based on their encoded proteins were identified as aging-related genes in the aging neocortex and cerebellum of mice as reported by Lee et al. (2000) [Nat. Genet. 25 (2000) 294]. Changes in gene profiles for chemosensory-related genes including olfactory and vomeronasal receptors, sensory transduction-associated proteins, and odor and pheromone transport molecules in the young SAMR and SAMP were compared with age-matched C57BL/6J mice. An analysis of known gene expression profiles suggests that changes in the expression of immune factor genes and genes associated with cell cycle progression and cell death were particularly prominent in the old SAM strains. A preliminary cellular validation study supported the dysregulation of cell cycle-related genes in the old SAM strains. The results of our initial study indicated that the use of the SAM models of aging could provide substantive information leading to a more fundamental understanding of the aging process in the chemosensory-nasal mucosa at the genomic, molecular, and cellular levels.
Collapse
Affiliation(s)
- Thomas V Getchell
- Department of Physiology, 309 Sanders-Brown Center on Aging, University of Kentucky, 800 South Limestone Street, Lexington, KY 40536-0230, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|