1
|
Yamamoto S, Shiraishi K, Kushida Y, Oguma Y, Wakao S, Dezawa M, Kuroda S. Nose-to-brain delivery of human muse cells enhances structural and functional recovery in the murine ischemic stroke model. Sci Rep 2025; 15:16243. [PMID: 40346279 PMCID: PMC12064699 DOI: 10.1038/s41598-025-96451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 05/11/2025] Open
Abstract
Muse cells are endogenous, non-tumorigenic, pluripotent-like stem cells already applied to clinical trials based on intravenous injection. They can selectively home to the post-infarct area, replenish apoptotic neural cells by phagocytosis-induced differentiation, and enhance functional recovery. The effect of nose-to-brain delivery of Muse cells on cerebral infarct was examined. Permanent middle cerebral artery occlusion model BALB/c mice received intranasal administration of either human Muse cells (6.0 × 104 cells), high-dose human-mesenchymal stem cells (MSCs) (1.6 × 106 cells), low-dose human-MSCs (6.0 × 104 cells), or vehicle at 7 days after onset. An accelerated rotarod test and a histological assessment were done. The vehicle- or low-dose MSC groups showed no significant improvement in the rotarod test. In the high-dose MSC group, motor function was transiently recovered, but the therapeutic effect disappeared thereafter. The Muse group continuously improved motor function, with statistical significance to the other groups. The engraftment of administered cells in the peri-infarct area was the highest in the Muse group, while few cells were detected in other groups. 63.6 ± 8.5% and 26.2 ± 3.0% of Muse cells were positive for NeuN and GSTpi, respectively. Intranasal administration of Muse cells might be a viable approach to improving functional recovery with less invasiveness after ischemic stroke.
Collapse
Affiliation(s)
- Shusuke Yamamoto
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Keitaro Shiraishi
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Chen J, Wu X, Nie D, Yu Z. Protective effects of puerarin combined with bone marrow mesenchymal stem cells on nerve injury in rats with ischemic stroke. Brain Inj 2025; 39:370-380. [PMID: 39607797 DOI: 10.1080/02699052.2024.2433667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BM-MSCs) transplantation shows promise for treating ischemic stroke, but the ischemic environment that follows cerebral infarction hinders the survival of transplanted cells. We aimed to study the effects of puerarin (Pue) in combination with BM-MSCs on cerebral ischemic injury. METHODS After middle cerebral artery occlusion (MCAO) models were prepared by suture-occluded method, rats were randomly allocated to the sham, MCAO, Pue (50 mg/kg), BM-MSCs (2×106), and BM-MSCs+Pue groups. The neurological function, infarct area, levels of inflammation-related factors, brain tissue damage, apoptosis, BrdU, Beclin1, and LC3 levels were then assessed. RESULTS Pue and BM-MSCs reduced the modified neurological severity score, cerebral infarction area, and serum inflammation-related factor levels for MCAO rats. Furthermore, Pue and BM-MSCs interventions ameliorated brain tissue damage, and repressed apoptosis of brain tissues in MCAO rats. Moreover, Pue or BM-MSCs enhanced BrdU expression, restrained LC3II/LC3I ratio and Beclin 1 expression in MCAO rats' brain tissues. Importantly, the combination of Pue and BM-MSCs exhibited more pronounced effects on aforementioned outcomes. CONCLUSION The combination of Pue and BM-MSCs facilitated the recovery of neurological function in rats after cerebral ischemic damage, and the mechanisms may correlate with the repression of neuronal apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Jiane Chen
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Xiaoli Wu
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Dongliang Nie
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Zhimin Yu
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Cao Y, Wang D, Zhou D. MSC Promotes the Secretion of Exosomal lncRNA KLF3-AS1 to Regulate Sphk1 Through YY1-Musashi-1 Axis and Improve Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:10462-10480. [PMID: 38735900 DOI: 10.1007/s12035-024-04150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Stroke remains the 3rd leading cause of long-term disability globally. Over the past decade, mesenchymal stem cell (MSC) transplantation has been proven as an effective therapy for ischemic stroke. However, the mechanism of MSC-derived exosomal lncRNAs during cerebral ischemia/reperfusion (I/R) remains ambiguous. The oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) rat model were generated. MSCs were isolated and characterized by flow cytometry and histochemical staining, and MSC exosomes were purified and characterized by transmission electron microscopy, flow cytometry and Western blot. Western blot, RT-qPCR and ELISA assay were employed to examine the expression or secretion of key molecules. CCK-8 and TUNEL assays were used to assess cell viability and apoptosis. RNA immunoprecipitation and RNA pull-down were used to investigate the direct association between krüppel-like factor 3 antisense RNA 1 (KLF3-AS1) and musashi-1(MSI1). Yin Yang 1 (YY1)-mediated transcriptional regulation was assessed by chromatin immunoprecipitation and luciferase assays. The histological changes and immunoreactivity of key molecules in brain tissues were examined by H&E and immunohistochemistry. MSCs were successfully isolated and exhibited directionally differential potentials. MSC exosomal KLF3-AS1 alleviated OGD/R-induced inflammation in SK-N-SH and SH-SY5Y cells via modulating Sphk1. Mechanistical studies showed that MSI1 positively regulated KLF3-AS1 expression through its direct binding to KLF3-AS1. YY1 was identified as a transcription activator of MSI1 in MSCs. Functionally, YY1/MSI1 axis regulated the release of MSC exosomal KLF3-AS1 to modulate sphingosine kinase 1 (Sphk1)/NF-κB pathway, thereby ameliorating OGD/R- or cerebral I/R-induced injury. MSCs promote the release of exosomal KLF3-AS1 to regulate Sphk1 through YY1/MSI axis and improve cerebral I/R injury.
Collapse
Affiliation(s)
- Yu Cao
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Daodao Wang
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Dingzhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Yoshimaru K, Matsuura T, Uchida Y, Sonoda S, Maeda S, Kajihara K, Kawano Y, Shirai T, Toriigahara Y, Kalim AS, Zhang XY, Takahashi Y, Kawakubo N, Nagata K, Yamaza H, Yamaza T, Taguchi T, Tajiri T. Cutting-edge regenerative therapy for Hirschsprung disease and its allied disorders. Surg Today 2024; 54:977-994. [PMID: 37668735 DOI: 10.1007/s00595-023-02741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.
Collapse
Affiliation(s)
- Koichiro Yoshimaru
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuyuki Uchida
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Maeda
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kajihara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Kawano
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Shirai
- Department of Pediatric Surgery, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kitatakamatsu-cho, Miyazaki, Miyazaki, 880-8510, Japan
| | - Yukihiro Toriigahara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Alvin Santoso Kalim
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiu-Ying Zhang
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Takahashi
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouji Nagata
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Fukuoka College of Health Sciences, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Mercier AE, Joubert AM, Prudent R, Viallet J, Desroches-Castan A, De Koning L, Mabeta P, Helena J, Pepper MS, Lafanechère L. Sulfamoylated Estradiol Analogs Targeting the Actin and Microtubule Cytoskeletons Demonstrate Anti-Cancer Properties In Vitro and In Ovo. Cancers (Basel) 2024; 16:2941. [PMID: 39272798 PMCID: PMC11394244 DOI: 10.3390/cancers16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
The microtubule-disrupting agent 2-methoxyestradiol (2-ME) displays anti-tumor and anti-angiogenic properties, but its clinical development is halted due to poor pharmacokinetics. We therefore designed two 2-ME analogs in silico-an ESE-15-one and an ESE-16 one-with improved pharmacological properties. We investigated the effects of these compounds on the cytoskeleton in vitro, and their anti-angiogenic and anti-metastatic properties in ovo. Time-lapse fluorescent microscopy revealed that sub-lethal doses of the compounds disrupted microtubule dynamics. Phalloidin fluorescent staining of treated cervical (HeLa), metastatic breast (MDA-MB-231) cancer, and human umbilical vein endothelial cells (HUVECs) displayed thickened, stabilized actin stress fibers after 2 h, which rearranged into a peripheral radial pattern by 24 h. Cofilin phosphorylation and phosphorylated ezrin/radixin/moesin complexes appeared to regulate this actin response. These signaling pathways overlap with anti-angiogenic, extra-cellular communication and adhesion pathways. Sub-lethal concentrations of the compounds retarded both cellular migration and invasion. Anti-angiogenic and extra-cellular matrix signaling was evident with TIMP2 and P-VEGF receptor-2 upregulation. ESE-15-one and ESE-16 exhibited anti-tumor and anti-metastatic properties in vivo, using the chick chorioallantoic membrane assay. In conclusion, the sulfamoylated 2-ME analogs displayed promising anti-tumor, anti-metastatic, and anti-angiogenic properties. Future studies will assess the compounds for myeloproliferative effects, as seen in clinical applications of other drugs in this class.
Collapse
Affiliation(s)
- Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Renaud Prudent
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jean Viallet
- Inovotion SAS France, Biopolis, 38700 La Tronche, France
| | - Agnes Desroches-Castan
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 38000 Grenoble, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, PSL Research University, 75248 Paris Cedex 05, France
| | - Peace Mabeta
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Jolene Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Laurence Lafanechère
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Team Cytoskeleton Dynamics and Nuclear Functions, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
6
|
Wang Z, Huang C, Shi Z, Liu H, Han X, Chen Z, Li S, Wang Z, Huang J. A taurine-based hydrogel with the neuroprotective effect and the ability to promote neural stem cell proliferation. BIOMATERIALS ADVANCES 2024; 161:213895. [PMID: 38795474 DOI: 10.1016/j.bioadv.2024.213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Ischemic stroke, a cerebrovascular disease caused by arterial occlusion in the brain, can lead to brain impairment and even death. Stem cell therapies have shown positive advantages to treat ischemic stroke because of their extended time window, but the cell viability is poor when transplanted into the brain directly. Therefore, a new hydrogel GelMA-T was developed by introducing taurine on GelMA to transplant neural stem cells. The GelMA-T displayed the desired photocuring ability, micropore structure, and cytocompatibility. Its compressive modulus was more similar to neural tissue compared to that of GelMA. The GelMA-T could protect SH-SY5Y cells from injury induced by OGD/R. Furthermore, the NE-4C cells showed better proliferation performance in GelMA-T than that in GelMA during both 2D and 3D cultures. All results demonstrate that GelMA-T possesses a neuroprotective effect for ischemia/reperfusion injury against ischemic stroke and plays a positive role in promoting NSC proliferation. The novel hydrogel is anticipated to function as cell vehicles for the transplantation of neural stem cells into the stroke cavity, aiming to treat ischemic stroke.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhenyu Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
7
|
Boyalı O, Kabatas S, Civelek E, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy. World J Clin Cases 2024; 12:1585-1596. [PMID: 38576742 PMCID: PMC10989435 DOI: 10.12998/wjcc.v12.i9.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) describes a group of disorders affecting movement, balance, and posture. Disturbances in motor functions constitute the main body of CP symptoms. These symptoms surface in early childhood and patients are affected for the rest of their lives. Currently, treatment involves various pharmacotherapies for different types of CP, including antiepileptics for epilepsy and Botox A for focal spasticity. However, none of these methods can provide full symptom relief. This has prompted researchers to look for new treatment modalities, one of which is mesenchymal stem cell therapy (MSCT). Despite being a promising tool and offering a wide array of possibilities, mesenchymal stem cells (MSCs) still need to be investigated for their efficacy and safety. AIM To analyze the efficacy and safety of MSCT in CP patients. METHODS Our sample consists of four CP patients who cannot stand or walk without external support. All of these cases received allogeneic MSCT six times as 1 × 106/kg intrathecally, intravenously, and intramuscularly using umbilical cord-derived MSCs (UC-MSC). We monitored and assessed the patients pre- and post-treatment using the Wee Functional Independence Measure (WeeFIM), Gross Motor Function Classification System (GMFCS), and Manual Ability Classification Scale (MACS) instruments. We utilized the Modified Ashworth Scale (MAS) to measure spasticity. RESULTS We found significant improvements in MAS scores after the intervention on both sides. Two months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; four months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; 12 months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046. However, there was no significant difference in motor functions based on WeeFIM results (P > 0.05). GMFCS and MACS scores differed significantly at 12 months after the intervention (P = 0.046, P = 0.046). Finally, there was no significant change in cognitive functions (P > 0.05). CONCLUSION In light of our findings, we believe that UC-MSC therapy has a positive effect on spasticity, and it partially improves motor functions.
Collapse
Affiliation(s)
- Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34360, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
8
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
9
|
Xu S, Zhong A, Zhang Y, Zhao L, Guo Y, Bai X, Yin P, Hua S. Bone marrow mesenchymal stem cells therapy regulates sphingolipid and glycerophospholipid metabolism to promote neurological recovery in stroke rats: A metabolomics analysis. Exp Neurol 2024; 372:114619. [PMID: 38029808 DOI: 10.1016/j.expneurol.2023.114619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have therapeutic potential in the subacute/chronic phase of acute ischemic stroke (AIS), but the underlying mechanisms are not yet fully elucidated. There is a knowledge gap in understanding the metabolic mechanisms of BMSCs in stroke therapy. In this study, we administered BMSCs intravenously 24 h after reperfusion in rats with transient cerebral artery occlusion (MCAO). The treatment with BMSCs for 21 days significantly reduced the modified neurological severity score of MCAO rats (P < 0.01) and increased the number of surviving neurons in both the striatum and hippocampal dentate gyrus region (P < 0.01, respectively). Moreover, BMSCs treatment resulted in significant enhancements in various structural parameters of dendrites in layer V pyramidal neurons in the injured hemispheric motor cortex, including total length (P < 0.05), number of branches (P < 0.05), number of intersections (P < 0.01), and spine density (P < 0.05). Then, we performed plasma untargeted metabolomics analysis to study the metabolic changes of BMSCs on AIS. There were 65 differential metabolites identified in the BMSCs treatment group. Metabolic profiling analysis revealed that BMSCs modulate abnormal sphingolipid metabolism and glycerophospholipid metabolism, particularly affecting core members such as sphingomyelin (SM), ceramide (Cer) and sphingosine-1-phosphate (S1P). The metabolic network analysis and pathway-based compound-reaction-enzyme-gene network analysis showed that BMSCs inhibited the Cer-induced apoptotic pathway and promoted the S1P signaling pathway. These findings suggest that the enhanced effects of BMSCs on neuronal survival and synaptic plasticity after stroke may be mediated through these pathways. In conclusion, our study provides novel insight into the potential mechanisms of BMSCs treatment in stroke and sheds light on the possible clinical translation of BMSCs.
Collapse
Affiliation(s)
- Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Aiqin Zhong
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaodan Bai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Penglin Yin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Namestnikova DD, Kovalenko DB, Pokusaeva IA, Chudakova DA, Gubskiy IL, Yarygin KN, Baklaushev VP. Mesenchymal stem cells in the treatment of ischemic stroke. КЛИНИЧЕСКАЯ ПРАКТИКА 2024; 14:49-64. [DOI: 10.17816/clinpract624157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Over the past two decades, multiple preclinical studies have shown that transplantation of mesenchymal stem cells leads to a pronounced positive effect in animals with experimental stroke. Based on the promising results of preclinical studies, several clinical trials on the transplantation of mesenchymal stem cells to stroke patients have also been conducted. In this review, we present and analyze the results of completed clinical trials dedicated to the mesenchymal stem cells transplantation in patients with ischemic stroke. According to the obtained results, it can be concluded that transplantation of mesenchymal stem cells is safe and feasible from the economic and biomedical point of view. For the further implementa-tion of this promising approach into the clinical practice, randomized, placebo-controlled, multicenter clinical trials are needed with a large sample of patients and optimized cell transplantation protocols and patient inclusion criteria. In this review we also discuss possi-ble strategies to enhance the effectiveness of cell therapy with the use of mesenchymal stem cells.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
| | | | | | | | - Ilya L. Gubskiy
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
| | | | - Vladimir P. Baklaushev
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
- Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
| |
Collapse
|
11
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
Chiu YS, Wu KJ, Yu SJ, Wu KL, Hsieh CY, Chou YS, Chen KY, Wang YS, Bae EK, Hung TW, Lin SH, Lin CH, Hsu SC, Wang Y, Chen YH. Transplantation of Exosomes Derived From Human Wharton's Jelly Mesenchymal Stromal Cells Enhances Functional Improvement in Stroke Rats. Cell Transplant 2024; 33:9636897241296366. [PMID: 39624898 PMCID: PMC11613244 DOI: 10.1177/09636897241296366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Cerebral ischemic stroke is a major cerebrovascular disease and the leading cause of adult disability. We and others previously demonstrated that transplantation of human Wharton's jelly mesenchymal stromal cells (WJ-MSCs) attenuated neuronal damage and promoted functional improvement in stroke animals. This study aimed to investigate the protective effects of human WJ-MSC exosome (Exo) transplant in cellular and rat models of cerebral stroke. Administration of Exo significantly antagonized glutamate-mediated neuronal loss and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-X nick end labeling (TUNEL) in rat primary cortical neuronal cultures. Adult male rats underwent a 60-min middle cerebral artery occlusion (MCAo); Exo or vehicle was injected through the tail vein 5-10 min after the MCAo. Two days later, the rats underwent a series of behavioral tests. Stroke rats receiving Exo developed a significant improvement in locomotor function and forelimb strength while reductions in body asymmetry and Bederson's neurological score. After the behavioral test, brain tissues were harvested for histological and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses. Animals receiving Exo had less infarction volume, measured by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Transplantation of Exo increased the expression of protective neurotrophic factors (BMP7, GDNF) and anti-apoptotic factors (Bcl2, Bcl-xL) in the ischemic brain. These findings suggest that early post-treatment with WJ-MSC Exo, given non-invasively through the vein, improved functional recovery and reduced brain damage in the stroke brain.
Collapse
Affiliation(s)
- Yu-Sung Chiu
- YJ Biotechnology Co., Ltd., New Taipei City, Taiwan
| | - Kuo-Jen Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kun-Lieh Wu
- YJ Biotechnology Co., Ltd., New Taipei City, Taiwan
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
| | | | | | - Kuan-Yu Chen
- YJ Biotechnology Co., Ltd., New Taipei City, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Wei Hung
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Hsun Lin
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Hsueh Lin
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- Immunology Research and Development Center, China Medical University, Taichung City, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Hsiang Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
13
|
Barrientos-Bonilla AA, Pensado-Guevara PB, Puga-Olguín A, Nadella R, Sánchez-García ADC, Zavala-Flores LM, Villanueva-Olivo A, Cibrián-Llanderal IT, Rovirosa-Hernández MDJ, Hernandez-Baltazar D. BrdU does not induce hepatocellular damage in experimental Wistar rats. Acta Histochem 2024; 126:152117. [PMID: 38016413 DOI: 10.1016/j.acthis.2023.152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Bromodeoxyuridine (BrdU) is used in studies related to cell proliferation and neurogenesis. The multiple intraperitoneal injections of this molecule could favor liver function profile changes. In this study, we evaluate the systemic and hepatocellular impact of BrdU in male adult Wistar rats in 30 %-partial hepatectomy (PHx) model. The rats received BrdU 50 mg/Kg by intraperitoneal injection at 0.5, 1, 2, 3, 6, 9 and 16 days after 30 %-PH. The rats were distributed into four groups as follows, control, sham, PHx/BrdU(-) and PHx/BrdU(+). On day 16, we evaluated hepatocellular nuclei and analyzed histopathological features by haematoxylin-eosin stain and apoptotic profile was qualified by caspase-3 presence. The systemic effect was evaluated by liver markers such as alanine transferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (AP), bilirubin, total proteins and serum albumin content. The statistical analysis consisted of a student t-test and one-way ANOVA. BrdU did not induce apoptosis or hepatocellular damage in male rats. Multiple administrations of BrdU in male rats did not induce significant decrease body weight, but increased serum ALT and LDH levels were found. Our results show that the BrdU does not produce hepatocellular damage.
Collapse
Affiliation(s)
| | | | - Abraham Puga-Olguín
- Unidad de Salud Integrativa, Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | | | - Arnulfo Villanueva-Olivo
- Departamento de Histología. Facultad de Medicina. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | - Daniel Hernandez-Baltazar
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Investigadoras e investigadores por México CONAHCyT-Instituto de Neuroetología, Universidad Veracruzana, Mexico.
| |
Collapse
|
14
|
Darban YM, Askari H, Ghasemi-Kasman M, Yavarpour-Bali H, Dehpanah A, Gholizade P, Nosratiyan N. The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke. Curr Neuropharmacol 2024; 22:2368-2383. [PMID: 39403058 PMCID: PMC11451314 DOI: 10.2174/1570159x22666240603084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 10/19/2024] Open
Abstract
Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.
Collapse
Affiliation(s)
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Amirabbas Dehpanah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Parnia Gholizade
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Biglari N, Mehdizadeh A, Vafaei Mastanabad M, Gharaeikhezri MH, Gol Mohammad Pour Afrakoti L, Pourbala H, Yousefi M, Soltani-Zangbar MS. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: History, findings, and prospective challenges. Pathol Res Pract 2023; 247:154541. [PMID: 37245265 DOI: 10.1016/j.prp.2023.154541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Over the past few decades, the application of mesenchymal stem cells has captured the attention of researchers and practitioners worldwide. These cells can be obtained from practically every tissue in the body and are used to treat a broad variety of conditions, most notably neurological diseases such as Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Studies are still being conducted, and the results of these studies have led to the identification of several different molecular pathways involved in the neuroglial speciation process. These molecular systems are closely regulated and interconnected due to the coordinated efforts of many components that make up the machinery responsible for cell signaling. Within the scope of this study, we compared and contrasted the numerous mesenchymal cell sources and their cellular features. These many sources of mesenchymal cells included adipocyte cells, fetal umbilical cord tissue, and bone marrow. In addition, we investigated whether these cells can potentially treat and modify neurodegenerative illnesses.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Hooman Pourbala
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Zhang Y, Yi Y, Xiao X, Hu L, Xu J, Zheng D, Koc HC, Chan UI, Meng Y, Lu L, Liu W, Xu X, Shao N, Cheung ECW, Xu RH, Chen G. Definitive Endodermal Cells Supply an in vitro Source of Mesenchymal Stem/Stromal Cells. Commun Biol 2023; 6:476. [PMID: 37127734 PMCID: PMC10151361 DOI: 10.1038/s42003-023-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Mesenchymal stem/Stromal cells (MSCs) have great therapeutic potentials, and they have been isolated from various tissues and organs including definitive endoderm (DE) organs, such as the lung, liver and intestine. MSCs have been induced from human pluripotent stem cells (hPSCs) through multiple embryonic lineages, including the mesoderm, neural crest, and extraembryonic cells. However, it remains unclear whether hPSCs could give rise to MSCs in vitro through the endodermal lineage. Here, we report that hPSC-derived, SOX17+ definitive endoderm progenitors can further differentiate to cells expressing classic MSC markers, which we name definitive endoderm-derived MSCs (DE-MSCs). Single cell RNA sequencing demonstrates the stepwise emergence of DE-MSCs, while endoderm-specific gene expression can be elevated by signaling modulation. DE-MSCs display multipotency and immunomodulatory activity in vitro and possess therapeutic effects in a mouse ulcerative colitis model. This study reveals that, in addition to the other germ layers, the definitive endoderm can also contribute to MSCs and DE-MSCs could be a cell source for regenerative medicine.
Collapse
Affiliation(s)
- Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ye Yi
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingling Hu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaqi Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Dejin Zheng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ho Cheng Koc
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ya Meng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ningyi Shao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Edwin Chong Wing Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
17
|
Farhoudi M, Sadigh-Eteghad S, Farjami A, Salatin S. Nanoparticle and Stem Cell Combination Therapy for the Management of Stroke. Curr Pharm Des 2023; 29:15-29. [PMID: 36515043 DOI: 10.2174/1381612829666221213113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, the available treatments for stroke are still extremely limited. Indeed, stem cell (SC) therapy is a new option for the treatment of stroke that could significantly expand the therapeutic time window of stroke. Some proposed mechanisms for stroke-based SC therapy are the incorporation of SCs into the host brain to replace dead or damaged cells/tissues. Moreover, acute cell delivery can inhibit apoptosis and decrease lesion size, providing immunomudolatory and neuroprotection effects. However, several major SC problems related to SCs such as homing, viability, uncontrolled differentiation, and possible immune response, have limited SC therapy. A combination of SC therapy with nanoparticles (NPs) can be a solution to address these challenges. NPs have received considerable attention in regulating and controlling the behavior of SCs because of their unique physicochemical properties. By reviewing the pathophysiology of stroke and the therapeutic benefits of SCs and NPs, we hypothesize that combined therapy will offer a promising future in the field of stroke management. In this work, we discuss recent literature in SC research combined with NP-based strategies that may have a synergistic outcome after stroke incidence.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Rajabi H, Mortazavi D, Konyalilar N, Aksoy GT, Erkan S, Korkunc SK, Kayalar O, Bayram H, Rahbarghazi R. Forthcoming complications in recovered COVID-19 patients with COPD and asthma; possible therapeutic opportunities. Cell Commun Signal 2022; 20:173. [PMID: 36320055 PMCID: PMC9623941 DOI: 10.1186/s12964-022-00982-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases. Along with conventional medications, regenerative medicine, and cell-based therapy could be alternative approaches to compensate for organ loss or restore injured sites using different stem cell types. Owing to unique differentiation capacity and paracrine activity, these cells can accelerate the healing procedure. In this review article, we have tried to scrutinize different reports related to the harmful effects of SARS-CoV-2 on patients with asthma and COPD, as well as the possible therapeutic effects of stem cells in the alleviation of post-COVID-19 complications. Video abstract.
Collapse
Affiliation(s)
- Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Gizem Tuse Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Sinem Erkan
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seval Kubra Korkunc
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Ozgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.
- Department of Pulmonary Medicine, School of Medicine, Koç University, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Xiao R, Wang Q, Peng J, Yu Z, Zhang J, Xia Y. BMSC-Derived Exosomal Egr2 Ameliorates Ischemic Stroke by Directly Upregulating SIRT6 to Suppress Notch Signaling. Mol Neurobiol 2022; 60:1-17. [PMID: 36208355 DOI: 10.1007/s12035-022-03037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Exosomes generated by BMSCs contribute to functional recovery in ischemic stroke. However, the regulatory mechanism is largely unknown. Exosomes were isolated from BMSCs. Tube formation, MTT, TUNEL, and flow cytometry assays were applied to examine cell angiogenesis, viability, and apoptosis. Protein and DNA interaction was evaluated by ChIP and luciferase assays. LDH release into the culture medium was examined. Infarction area was evaluated by TTC staining. Immunofluorescence staining was applied to examine CD31 expression. A mouse model of MCAO/R was established. BMSC-derived exosomes attenuated neuronal cell damage and facilitated angiogenesis of brain endothelial cells in response to OGD/R, but these effects were abolished by the knockdown of Egr2. Egr2 directly bound to the promoter of SIRT6 to promote its expression. The incompetency of Egr2-silencing exosomes was reversed by overexpression of SIRT6. Furthermore, SIRT6 inhibited Notch signaling via suppressing Notch1. Overexpression of SIRT6 and inhibition of Notch signaling improved cell injury and angiogenesis in OGD/R-treated cells. BMSC-derived exosomal Egr2 ameliorated MCAO/R-induced brain damage via upregulating SIRT6 to suppress Notch signaling in mice. BMSC-derived exosomes ameliorate OGD/R-induced injury and MCAO/R-caused cerebral damage in mice by delivering Egr2 to promote SIRT6 expression and subsequently suppress Notch signaling. Our study provides a potential exosome-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Rongjun Xiao
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Qingsong Wang
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jun Peng
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Zhengtao Yu
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jikun Zhang
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
20
|
Satani N, Parsha K, Davis C, Gee A, Olson SD, Aronowski J, Savitz SI. Peripheral blood monocytes as a therapeutic target for marrow stromal cells in stroke patients. Front Neurol 2022; 13:958579. [PMID: 36277912 PMCID: PMC9580494 DOI: 10.3389/fneur.2022.958579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Systemic administration of marrow stromal cells (MSCs) leads to the release of a broad range of factors mediating recovery in rodent stroke models. The release of these factors could depend on the various cell types within the peripheral blood as they contact systemically administered MSCs. In this study, we assessed the immunomodulatory interactions of MSCs with peripheral blood derived monocytes (Mϕ) collected from acute stroke patients. Methods Peripheral blood from stroke patients was collected at 5–7 days (N = 5) after symptom onset and from age-matched healthy controls (N = 5) using mononuclear cell preparation (CPT) tubes. After processing, plasma and other cellular fractions were removed, and Mϕ were isolated from the mononuclear fraction using CD14 microbeads. Mϕ were then either cultured alone or co-cultured with MSCs in a trans-well cell-culture system. Secretomes were analyzed after 24 h of co-cultures using a MAGPIX reader. Results Our results show that there is a higher release of IFN-γ and IL-10 from monocytes isolated from peripheral blood at day 5–7 after stroke compared with monocytes from healthy controls. In trans-well co-cultures of MSCs and monocytes isolated from stroke patients, we found statistically significant increased levels of IL-4 and MCP-1, and decreased levels of IL-6, IL-1β, and TNF-α. Addition of MSCs to monocytes increased the secretions of Fractalkine, IL-6, and MCP-1, while the secretions of TNF-α decreased, as compared to the secretions from monocytes alone. When MSCs were added to monocytes from stroke patients, they decreased the levels of IL-1β, and increased the levels of IL-10 significantly more as compared to when they were added to monocytes from control patients. Conclusion The systemic circulation of stroke patients may differentially interact with MSCs to release soluble factors integral to their paracrine mechanisms of benefit. Our study finds that the effect of MSCs on Mϕ is different on those derived from stroke patients blood as compared to healthy controls. These findings suggest immunomodulation of peripheral immune cells as a therapeutic target for MSCs in patients with acute stroke.
Collapse
Affiliation(s)
- Nikunj Satani
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Nikunj Satani
| | - Kaushik Parsha
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Courtney Davis
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Adrian Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean I. Savitz
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
21
|
Kawauchi S, Yasuhara T, Kin K, Yabuno S, Sugahara C, Nagase T, Hosomoto K, Okazaki Y, Tomita Y, Umakoshi M, Sasaki T, Kameda M, Borlongan CV, Date I. Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats. CNS Neurosci Ther 2022; 28:1974-1985. [PMID: 36000240 PMCID: PMC9627357 DOI: 10.1111/cns.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. METHODS We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. RESULTS In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. CONCLUSION SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Kawauchi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takao Yasuhara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyohei Kin
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan,Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Satoru Yabuno
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Sugahara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayuki Nagase
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kakeru Hosomoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yosuke Okazaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yousuke Tomita
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michiari Umakoshi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tatsuya Sasaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South FloridaTampaFloridaUSA
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
22
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|
23
|
Mesenchymal Stem Cell-Derived Neuron-Like Cell Transplantation Combined with Electroacupuncture Improves Synaptic Plasticity in Rats with Intracerebral Hemorrhage via mTOR/p70S6K Signaling. Stem Cells Int 2022; 2022:6450527. [PMID: 35211177 PMCID: PMC8863490 DOI: 10.1155/2022/6450527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that the combination of mesenchymal stem cell (MSC) transplantation and electroacupuncture (EA) stimulation is a neuroprotective strategy for treating intracerebral hemorrhage (ICH). However, the underlying mechanisms by which the combined treatment promotes neuroprotection remain unclear. This study was designed to investigate the effects of the combined treatment on synaptic plasticity and elucidate their underlying mechanisms. Therefore, rat ICH models were established by injecting collagenase and heparin, and the animals were randomly divided into model control (MC), EA stimulation (EA), MSC-derived neuron-like cell transplantation (MSC-dNLCs), and MSC-dNLC transplantation combined with EA stimulation (MSC-dNLCs+EA) groups. We observed the ultrastructure of the brain and measured the brain water content (BWC) and the levels of the microtubule-associated protein 2 (MAP2), galactocerebrosidase (GALC), and glial fibrillary acidic protein (GFAP) proteins. We also measured the levels of the phosphorylated mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase (p70S6K) proteins, as well as the expression of synapse-related proteins. The BWC increased in rats after ICH and decreased significantly in ICH rats treated with MSC-dNLC transplantation, EA stimulation, or combined therapy. Meanwhile, after ICH, the number of blood vessels increased more evidently, but only the combined treatment reduced the number of blood vessels among rats receiving the three treatments. Moreover, the levels of MAP2, GALC, postsynaptic density 95 (PSD95), and synaptophysin (SYP) proteins, as well as the levels of the phosphorylated mTOR and p70S6k proteins, increased in the MSC-dNLCs+EA group compared with those in the MSC-dNLCs and EA groups. Compared with the MC group, GFAP expression was significantly reduced in the MSC-dNLCs, EA, and MSC-dNLCs+EA groups, but the differences among the three treatment groups were not significant. In addition, the number of synapses increased only in the MSC-dNLCs+EA group compared to the MC group. Based on these data, the combination of MSC-dNLC transplantation and EA stimulation exerts a synergistic effect on improving the consequences of ICH by relieving cerebral edema and glial scarring, promoting the survival of neurons and oligodendrocytes, and activating mTOR/p70S6K signaling to enhance synaptic plasticity.
Collapse
|
24
|
Liu Y, Zhao Y, Min Y, Guo K, Chen Y, Huang Z, Long C. Effects and Mechanisms of Bone Marrow Mesenchymal Stem Cell Transplantation for Treatment of Ischemic Stroke in Hypertensive Rats. Int J Stem Cells 2021; 15:217-226. [PMID: 34966000 PMCID: PMC9148836 DOI: 10.15283/ijsc21136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Stroke is the most common cause of human death and functional disability, resulting in more than 5 million deaths worldwide each year. Bone marrow mesenchymal stem cells (BMSCs) are a kind of stem cell that are able to self-renew and differentiate into many types of tissues. Therefore, BMSCs have the potential to replace damaged neurons and promote the reconstruction of nerve conduction pathways and connective tissue. However, it remains unknown whether transplanted BMSCs promote angiogenesis or improve the tissue microenvironment directly or indirectly through paracrine interactions. This study aimed to determine the therapeutic effect of BMSCs on ischemic stroke with hypertension in a rodent model and to explore the possible mechanisms underlying any benefits. Methods and Results Middle cerebral artery occlusion was used to establish the experimental stroke model. The area of cerebral infarction, expression of vascular endothelial growth factor (VEGF) and glial cell line-derived neurotrophic factor (GDNF), and increment of astrocyte were measured by TTC staining, western blot, real-time quantitative polymerase chain reaction (RT-qPCR) and immunocytochemistry. The results showed a smaller area of cerebral infarction and improved neurological function scores in animals treated with BMSCs compared to controls. The results of RT-qPCR and western blot assays showed higher expression of VEGF and GDNF in BMSC-treated animals compared with controls. Our study also showed that one round of BMSCs transplantation significantly promoted the proliferation of subventricular zone and cortical cells, especially astrocytes, on the ischemic side following cerebral ischemia. Conclusions Above findings support that BMSCs have therapeutic effects for ischemic stroke complicated with hypertension, which may occur via up-regulated expression of VEGF and GDNF and reduction of neuronal apoptosis, thereby promoting the recovery of nerve function.
Collapse
Affiliation(s)
- Yulin Liu
- Department of Rehabilitation Medicine, Panyu Central Hospital, Guangzhou, China
| | - Ying Zhao
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Min
- Department of Rehabilitation Medicine, Panyu Central Hospital, Guangzhou, China
| | - Kaifeng Guo
- Department of Rehabilitation Medicine, Panyu Central Hospital, Guangzhou, China
| | - Yuling Chen
- Department of Rehabilitation Medicine, Panyu Central Hospital, Guangzhou, China
| | - Zhen Huang
- Department of Rehabilitation Medicine, Panyu Central Hospital, Guangzhou, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
25
|
Tan TT, Toh WS, Lai RC, Lim SK. Practical considerations in transforming MSC therapy for neurological diseases from cell to EV. Exp Neurol 2021; 349:113953. [PMID: 34921846 DOI: 10.1016/j.expneurol.2021.113953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Cell-based therapy using Mesenchymal Stromal Cell (MSC) has generally been efficacious in treating a myriad of diseases in animal models and clinical trials. The rationale for MSC therapy was predicated on the potential of MSC to differentiate and form new replacement cells in the diseased tissue. However, pre-clinical animal and clinical data were more consistent with a secretion- and not a differentiation-based rationale. Analysis of MSC secretion led to the identification of small extracellular vesicles (sEVs) as therapeutically active, secretory agents. MSC-sEVs are defined as bi-lipid membrane vesicles of 50-200 nm in diameter that are secreted by MSCs. They reportedly exert similar therapeutic efficacy as MSCs in many diseases including neurological diseases. MSC-sEVs being small and non-living are intrinsically safer than living MSCs. Manufacturing of MSC-sEVs may also be less complex. Nevertheless, realising the therapeutic potential of MSC-sEVs will require exacting scientific rigor and robustness, as well as compliance to regulatory oversight. This review summarises the scientific rationale for the transition of MSC therapy from a cell- to an EV-based therapy and discusses critical scientific issues in the development of MSC-sEVs therapy.
Collapse
Affiliation(s)
- Thong Teck Tan
- Institute of Molecular and Cellular Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cellular Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cellular Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore; Department of Surgery, YLL School of Medicine, National University of Singapore (NUS) Lower Kent Ridge Road, Singapore 119074, Singapore.
| |
Collapse
|
26
|
García-Belda P, Prima-García H, Aliena-Valero A, Castelló-Ruiz M, Ulloa-Navas MJ, Ten-Esteve A, Martí-Bonmatí L, Salom JB, García-Verdugo JM, Gil-Perotín S. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102464. [PMID: 34583057 DOI: 10.1016/j.nano.2021.102464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cell therapy after stroke is a promising option investigated in animal models and clinical trials. The intravenous route is commonly used in clinical settings guaranteeing an adequate safety profile although low yields of engraftment. In this report, rats subjected to ischemic stroke were injected with adipose-derived stem cells (ADSCs) labeled with superparamagnetic iron oxide nanoparticles (SPIONs) applying an external magnetic field in the skull to retain the cells. Although most published studies demonstrate viability of ADSCs, only a few have used ultrastructural techniques. In our study, the application of a local magnetic force resulted in a tendency for higher yields of SPION-ADSCs targeting the brain. However, grafted cells displayed morphological signs of death, one day after administration, and correlative microscopy showed active microglia and astrocytes associated in the process of scavenging. Thus, we conclude that, although successfully targeted within the brain, SPION-ADSCs viability was rapidly compromised.
Collapse
Affiliation(s)
- Paula García-Belda
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, Valencia, Spain
| | - Helena Prima-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain; Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
| | - María José Ulloa-Navas
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, Valencia, Spain
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
| | | | - Sara Gil-Perotín
- Laboratory of Central Neuroimmunology, IIS Hospital La Fe, Valencia, Spain.
| |
Collapse
|
27
|
Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 2021; 11:8926-8944. [PMID: 34522219 PMCID: PMC8419041 DOI: 10.7150/thno.62330] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
As extracellular vesicles secreted by cells, exosomes are intercellular signalosomes for cell communication and pharmacological effectors. Because of their special properties, including low toxicity and immunogenicity, biodegradability, ability to encapsulate endogenous biologically active molecules and cross the blood-brain barrier (BBB), exosomes have great therapeutic potential in cerebrovascular and neurodegenerative diseases. However, the poor targeting ability of natural exosomes greatly reduces the therapeutic effect. Using engineering technology, exosomes can obtain active targeting ability to accumulate in specific cell types and tissues by attaching targeting units to the membrane surface or loading them into cavities. In this review, we outline the improved targeting functions of bioengineered exosomes, tracing and imaging techniques, administration methods, internalization in the BBB, and therapeutic effects of exosomes in cerebrovascular and neurodegenerative diseases and further evaluate the clinical opportunities and challenges in this research field.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Tao Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Fen Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
28
|
Li J, Jiang Y, Yu H, Liu L, Wang Q, Ju H, Zhang X, Wang W, Yin X, Wu Q, Xiao J, Miao J, Ye X, Li T, Tian H, Xue W. Effects of UCMSCs Delivered through Different Transplantation Approaches on Acute Radiation Enteritis in Rats. Cell Transplant 2021; 30:9636897211025230. [PMID: 34318709 PMCID: PMC8323445 DOI: 10.1177/09636897211025230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Radiation enteritis is the most common and serious complication of abdominal or
pelvic radiation therapy. Mesenchymal stem cells (MSCs), as well as cell
protection agents, inhibit apoptosis and promote the proliferation of injured
tissues. 3 human umbilical cords MSCs (UCMSCs) were injected into the tail vein
or peritoneal cavity of a rat model of radiation enteritis. The temporary
protective effect was assessed by identification of donor cells, detection of
cellular immune parameters and inflammatory cytokine levels, quantitation of
jejunum mucosal preservation and examination of the rat remaining life. Only the
rats in the intraperitoneal injection group exhibited a few positive donor cells
7 days after transplantation. CD4+/CD8+ T cells, a cellular immune parameter, decreased in the abdominal
exudate of intraperitoneal injection group, compared with the model-only control
and tail vein groups (both P < .05). Both serum and
abdominal exudate TNF-α and IL-6 levels in the intraperitoneally injected rats
rapidly decreased and were significantly different from those in the model-only
control and tail vein injection groups (all P < .05).
Mucosal surface area and survival time increased in the intraperitoneal
injection group compared with the vehicle and tail vein injection groups (all
P = .000). Therefore, the administration of UCMSCs with
intraperitoneal injection approach postponed death in a rat model of radiation
enteritis, which was associated with reduced serum levels of proinflammatory
cytokines (TNF-α, IL-6). However, UCMSCs injected via the tail vein triggered an
intense cellular immune response in the serum that adversely affects their
survival. This treatment failed to suppress circulating serum and abdominal
exudate levels of TNF-α and IL-6 and could not provide a therapeutic benefit for
prolonging life against acute radiation enteritis.
Collapse
Affiliation(s)
- Jun Li
- Medical School of Ningde Normal University, Ningde, China.,Medical School of Kunming University, Kunming, China
| | | | - Hua Yu
- Medical School of Kunming University, Kunming, China
| | - Lejiang Liu
- Medical School of Kunming University, Kunming, China
| | - Qiang Wang
- Cell Biological Therapy Center, and Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, and National and Local Joint Engineering Laboratory of Stem Cell and Immunocyte Biomedical Technology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, China
| | - Hongpin Ju
- Medical School of Kunming University, Kunming, China
| | - Xuemei Zhang
- Medical School of Kunming University, Kunming, China
| | - Wenqi Wang
- Medical School of Kunming University, Kunming, China
| | - Xudong Yin
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, China
| | - Jianzhong Xiao
- Medical School of Ningde Normal University, Ningde, China
| | - Jianrong Miao
- Medical School of Ningde Normal University, Ningde, China
| | - Xiao Ye
- Medical School of Ningde Normal University, Ningde, China
| | - Tianyu Li
- Class 1, Grade 2019, postgraduate student majoring in physics, School of Physical Science and Technology, Kunming University, Kunming, China
| | - Hui Tian
- Class 1, Grade 2018, Undergraduate majoring in chemistry teacher education, School of Chemistry and Chemical Engineering, Kunming University, Kunming, China
| | - Wei Xue
- Medical School of Kunming University, Kunming, China
| |
Collapse
|
29
|
Basham HK, Aghoghovwia BE, Papaioannou P, Seo S, Oorschot DE. Delayed Double Treatment with Adult-Sourced Adipose-Derived Mesenchymal Stem Cells Increases Striatal Medium-Spiny Neuronal Number, Decreases Striatal Microglial Number, and Has No Subventricular Proliferative Effect, after Acute Neonatal Hypoxia-Ischemia in Male Rats. Int J Mol Sci 2021; 22:ijms22157862. [PMID: 34360638 PMCID: PMC8346138 DOI: 10.3390/ijms22157862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of striatal injury. Delayed post-treatment with adult-sourced bone marrow-derived mesenchymal stem cells (BMSCs) increased the absolute number of striatal medium-spiny neurons (MSNs) following perinatal HI-induced brain injury. Yet extraction of BMSCs is more invasive and difficult compared to extraction of adipose-derived mesenchymal stem cells (AD-MSCs), which are easily sourced from subcutaneous tissue. Adult-sourced AD-MSCs are also superior to BMSCs in the treatment of adult ischemic stroke. Therefore, we investigated whether delayed post-treatment with adult-sourced AD-MSCs increased the absolute number of striatal MSNs following perinatal HI-induced brain injury. This included investigation of the location of injected AD-MSCs within the brain, which were widespread in the dorsolateral subventricular zone (dlSVZ) at 1 day after their injection. Cells extracted from adult rat tissue were verified to be stem cells by their adherence to tissue culture plastic and their expression of specific ‘cluster of differentiation’ (CD) markers. They were verified to be AD-MSCs by their ability to differentiate into adipocytes and osteocytes in vitro. Postnatal day (PN) 7/8, male Sprague-Dawley rats were exposed to either HI right-sided brain injury or no HI injury. The HI rats were either untreated (HI + Diluent), single stem cell-treated (HI + MSCs×1), or double stem cell-treated (HI + MSCs×2). Control rats that were matched-for-weight and litter had no HI injury and were treated with diluent (Uninjured + Diluent). Treatment with AD-MSCs or diluent occurred either 7 days, or 7 and 9 days, after HI. There was a significant increase in the absolute number of striatal dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-positive MSNs in the double stem cell-treated (HI + MSCs×2) group and the normal control group compared to the HI + Diluent group at PN21. We therefore investigated two potential mechanisms for this effect of double-treatment with AD-MSCs. Specifically, did AD-MSCs: (i) increase the proliferation of cells within the dlSVZ, and (ii) decrease the microglial response in the dlSVZ and striatum? It was found that a primary repair mechanism triggered by double treatment with AD-MSCs involved significantly decreased striatal inflammation. The results may lead to the development of clinically effective and less invasive stem cell therapies for neonatal HI brain injury.
Collapse
|
30
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
31
|
Pathipati P, Lecuyer M, Faustino J, Strivelli J, Phinney DG, Vexler ZS. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells. Neurotherapeutics 2021; 18:1939-1952. [PMID: 34235636 PMCID: PMC8609070 DOI: 10.1007/s13311-021-01076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Matthieu Lecuyer
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Joel Faustino
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | | | - Donald G Phinney
- Department of Molecular Medicine, Scripps Research Institute, Jupiter, FL, USA
| | - Zinaida S Vexler
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
32
|
Nair S, Rocha‐Ferreira E, Fleiss B, Nijboer CH, Gressens P, Mallard C, Hagberg H. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J Neurochem 2021; 158:59-73. [PMID: 33314066 PMCID: PMC8359360 DOI: 10.1111/jnc.15267] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury. Mesenchymal stem cells have immunomodulatory action and exert mitoprotective effects which attenuate production of reactive oxygen species and promote restoration of tissue function and metabolism after perinatal insults. This review summarizes the present state, the underlying causes, challenges and possibilities for effective clinical translation of mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Eridan Rocha‐Ferreira
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Bobbi Fleiss
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
- Université de Paris, NeuroDiderotParisFrance
| | - Cora H Nijboer
- Department for Developmental Origins of DiseaseUniversity Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht UniversityUtrechtNetherlands
| | | | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
33
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
34
|
Robertson NJ, Meehan C, Martinello KA, Avdic-Belltheus A, Boggini T, Mutshiya T, Lingam I, Yang Q, Sokolska M, Charalambous X, Bainbridge A, Hristova M, Kramer BW, Golay X, Weil B, Lowdell MW. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia. Cytotherapy 2021; 23:521-535. [PMID: 33262073 PMCID: PMC8139415 DOI: 10.1016/j.jcyt.2020.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. AIMS The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. METHODS A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1-13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 106 IN PKH-labeled huMSCs were administered. RESULTS HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. CONCLUSIONS After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 106 cells/kg total dose) based on more rapid aEEG recovery, improved 31P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h.
Collapse
Affiliation(s)
| | | | | | | | - Tiziana Boggini
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | | | | | - Alan Bainbridge
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Golay
- Institute for Women's Health, University College London, London, UK
| | - Ben Weil
- Royal Free London NHS Foundation Trust, London, UK
| | - Mark W Lowdell
- Institute for Women's Health, University College London, London, UK; Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
35
|
Law ZK, Tan HJ, Chin SP, Wong CY, Wan Yahya WNN, Muda AS, Zakaria R, Ariff MI, Ismail NA, Cheong SK, S Abdul Wahid SF, Mohamed Ibrahim N. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: a phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy 2021; 23:833-840. [PMID: 33992536 DOI: 10.1016/j.jcyt.2021.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are characterized by paracrine and immunomodulatory functions capable of changing the microenvironment of damaged brain tissue toward a more regenerative and less inflammatory milieu. The authors conducted a phase 2, single-center, assessor-blinded randomized controlled trial to investigate the safety and efficacy of intravenous autologous bone marrow-derived MSCs (BMMSCs) in patients with subacute middle cerebral artery (MCA) infarct. METHODS Patients aged 30-75 years who had severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 10-35) involving the MCA territory were recruited within 2 months of stroke onset. Using permuted block randomization, patients were assigned to receive 2 million BMMSCs per kilogram of body weight (treatment group) or standard medical care (control group). The primary outcomes were the NIHSS, modified Rankin Scale (mRS), Barthel Index (BI) and total infarct volume on brain magnetic resonance imaging (MRI) at 12 months. All outcome assessments were performed by blinded assessors. Per protocol, analyses were performed for between-group comparisons. RESULTS Seventeen patients were recruited. Nine were assigned to the treatment group, and eight were controls. All patients were severely disabled following their MCA infarct (median mRS = 4.0 [4.0-5.0], BI = 5.0 [5.0-25.0], NIHSS = 16.0 [11.5-21.0]). The baseline infarct volume on the MRI was larger in the treatment group (median, 71.7 [30.5-101.7] mL versus 26.7 [12.9-75.3] mL, P = 0.10). There were no between-group differences in median NIHSS score (7.0 versus 6.0, P = 0.96), mRS (2.0 versus 3.0, P = 0.38) or BI (95.0 versus 67.5, P = 0.33) at 12 months. At 12 months, there was significant improvement in absolute change in median infarct volume, but not in total infarct volume, from baseline in the treatment group (P = 0.027). No treatment-related adverse effects occurred in the BMMSC group. CONCLUSIONS Intravenous infusion of BMMSCs in patients with subacute MCA infarct was safe and well tolerated. Although there was no neurological recovery or functional outcome improvement at 12 months, there was improvement in absolute change in median infarct volume in the treatment group. Larger, well-designed studies are warranted to confirm this and the efficacy of BMMSCs in ischemic stroke.
Collapse
Affiliation(s)
- Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | - Wan Nur Nafisah Wan Yahya
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Sobri Muda
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozman Zakaria
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Azimah Ismail
- Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - S Fadilah S Abdul Wahid
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Le VC, Nguyen NH, Le SH. Intra-arterial infusion of autologous bone marrow mononuclear cells combined with intravenous injection of cerebrolysin in the treatment of middle cerebral artery ischemic stroke: Case report. SAGE Open Med Case Rep 2021; 9:2050313X211002313. [PMID: 33796315 PMCID: PMC7975445 DOI: 10.1177/2050313x211002313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
We present a patient with severe middle cerebral artery occlusion who received an
intra-arterial infusion of autologous bone marrow stem cells combined with
Cerebrolysin IV. The patient was evaluated before and after treatment using the
National Institutes of Health Stroke Scale, the Medical Research Council Muscle
Scale, Modified Brunnstrom Classification, Barthel Index and modified Rankin
Scale. After the therapy, the patient showed good outcome with functional as
well as neurological improvements especially in terms of functional motor
recovery without any side effects. Further controlled studies are needed to find
possible side effects and establish net efficacy.
Collapse
Affiliation(s)
- Vien C Le
- Stroke Center, 108 Military Central Hospital, Ha Noi, Vietnam
| | - Ngoc H Nguyen
- Stroke Center, 108 Military Central Hospital, Ha Noi, Vietnam
| | - Song H Le
- 108 Military Central Hospital, Ha Noi, Vietnam
| |
Collapse
|
37
|
Huang D, Siaw-Debrah F, Wang H, Ye S, Wang K, Wu K, Zhang Y, Wang H, Yao C, Chen J, Yan L, Zhang CL, Zhuge Q, Yang J. Transplanting Rac1-silenced bone marrow mesenchymal stem cells promote neurological function recovery in TBI mice. Aging (Albany NY) 2020; 13:2822-2850. [PMID: 33411679 PMCID: PMC7880331 DOI: 10.18632/aging.202334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
Bone marrow mesenchymal stem cells (BMMSCs)-based therapy has emerged as a promising novel therapy for Traumatic Brain Injury (TBI). However, the therapeutic quantity of viable implanted BMMSCs necessary to initiate efficacy is still undetermined. Increased oxidative stress following TBI, which leads to the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase signaling pathway, has been implicated in accounting for the diminished graft survival and therapeutic effect. To prove this assertion, we silenced the expression of NADPH subunits (p22-phox, p47-phox, and p67-phox) and small GTPase Rac1 in BMMSCs using shRNA. Our results showed that silencing these proteins significantly reduced oxidative stress and cell death/apoptosis, and promoted implanted BMMSCs proliferation after TBI. The most significant result was however seen with Rac1 silencing, which demonstrated decreased expression of apoptotic proteins, enhanced in vitro survival ratio, reduction in TBI lesional volume and significant improvement in neurological function post shRac1-BMMSCs transplantation. Additionally, two RNA-seq hub genes (VEGFA and MMP-2) were identified to play critical roles in shRac1-mediated cell survival. In summary, we propose that knockdown of Rac1 gene could significantly boost cell survival and promote the recovery of neurological functions after BMMSCs transplantation in TBI mice.
Collapse
Affiliation(s)
- Dongdong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sheng Ye
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lin Yan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
38
|
Haupt M, Zheng X, Kuang Y, Lieschke S, Janssen L, Bosche B, Jin F, Hein K, Kilic E, Venkataramani V, Hermann DM, Bähr M, Doeppner TR. Lithium modulates miR-1906 levels of mesenchymal stem cell-derived extracellular vesicles contributing to poststroke neuroprotection by toll-like receptor 4 regulation. Stem Cells Transl Med 2020; 10:357-373. [PMID: 33146943 PMCID: PMC7900596 DOI: 10.1002/sctm.20-0086] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Lithium is neuroprotective in preclinical stroke models. In addition to that, poststroke neuroregeneration is stimulated upon transplantation of mesenchymal stem cells (MSCs). Preconditioning of MSCs with lithium further enhances the neuroregenerative potential of MSCs, which act by secreting extracellular vesicles (EVs). The present work analyzed whether MSC preconditioning with lithium modifies EV secretion patterns, enhancing the therapeutic potential of such derived EVs (Li‐EVs) in comparison with EVs enriched from native MSCs. Indeed, Li‐EVs significantly enhanced the resistance of cultured astrocytes, microglia, and neurons against hypoxic injury when compared with controls and to native EV‐treated cells. Using a stroke mouse model, intravenous delivery of Li‐EVs increased neurological recovery and neuroregeneration for as long as 3 months in comparison with controls and EV‐treated mice, albeit the latter also showed significantly better behavioral test performance compared with controls. Preconditioning of MSCs with lithium also changed the secretion patterns for such EVs, modifying the contents of various miRNAs within these vesicles. As such, Li‐EVs displayed significantly increased levels of miR‐1906, which has been shown to be a new regulator of toll‐like receptor 4 (TLR4) signaling. Li‐EVs reduced posthypoxic and postischemic TLR4 abundance, resulting in an inhibition of the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) signaling pathway, decreased proteasomal activity, and declined both inducible NO synthase and cyclooxygenase‐2 expression, all of which culminated in reduced levels of poststroke cerebral inflammation. Conclusively, the present study demonstrates, for the first time, an enhanced therapeutic potential of Li‐EVs compared with native EVs, interfering with a novel signaling pathway that yields both acute neuroprotection and enhanced neurological recovery.
Collapse
Affiliation(s)
- Matteo Haupt
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Xuan Zheng
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Yaoyun Kuang
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Simone Lieschke
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Lisa Janssen
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Bert Bosche
- MediClin Clinic Reichshof, Department of Neurocritical Care, First Stage Rehabilitation and Weaning, Germany.,Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Medical Faculty, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Katharina Hein
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Vivek Venkataramani
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
39
|
Wang Z, Du J, Lachance BB, Mascarenhas C, He J, Jia X. Intracerebroventricular Administration of hNSCs Improves Neurological Recovery after Cardiac Arrest in Rats. Stem Cell Rev Rep 2020; 17:923-937. [PMID: 33140234 DOI: 10.1007/s12015-020-10067-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Irreversible brain injury and neurological dysfunction induced by cardiac arrest (CA) have long been a clinical challenge due to lack of effective therapeutic interventions to reverse neuronal loss and prevent secondary reperfusion injury. The neuronal regenerative potential of neural stem cells (NSCs) provides a possible solution to this clinical deficit. We investigated the neuronal recovery potential of human neural stem cells (hNSCs) via intracerebroventricular (ICV) xenotransplantation after CA in rats and the effects of transplanted NSCs on the proliferation and migration of endogenous NSCs. Outcome measures included neurological functional recovery measured by neurological deficit score (NDS), electrophysiologic analysis of EEG, and assessment of proliferation and migration at the cellular level and the Wnt/β-catenin pathway at the molecular level. Neurological functional assessment based on aggregate neurological deficit score (NDS) showed better recovery of function after hNSCs therapy (P < 0.05). Tracking of stem cells' proliferation with Ki67 antibody suggested that the NSCs group had more prominent proliferation compared to control group (number of Ki67+ cells, Control VS. NSC: 89.0 ± 31.6 VS. 352.7 ± 97.3, P < 0.05). In addition, cell migration tracked by Dcx antibody showed more Dcx + cells migrated to the far distance zone from SVZ in the treatment group (P < 0.05). Further immunofluorescence staining confirmed that the expression of the Wnt signaling pathway protein (β-catenin) was upregulated in the NSC group (P < 0.05). ICV delivery of hNSCs promotes endogenous NSC proliferation and migration and ultimately enhances neuronal survival and neurological functional recovery. Wnt/β-catenin pathway may be involved in the initiation and maintenance of this enhancement.Graphical abstract.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Junyun He
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Clinical Trials of Stem Cell Therapy for Cerebral Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21197380. [PMID: 33036265 PMCID: PMC7582939 DOI: 10.3390/ijms21197380] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Despite recent developments in innovative treatment strategies, stroke remains one of the leading causes of death and disability worldwide. Stem cell therapy is currently attracting much attention due to its potential for exerting significant therapeutic effects on stroke patients. Various types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived stem/stromal cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have enhanced neurological outcomes in animal stroke models. These stem cells have also been tested via clinical trials involving stroke patients. In this article, the authors review potential molecular mechanisms underlying neural recovery associated with stem cell treatment, as well as recent advances in stem cell therapy, with particular reference to clinical trials and future prospects for such therapy in treating stroke.
Collapse
|
41
|
Cai Y, Liu W, Lian L, Xu Y, Bai X, Xu S, Zhang J. Stroke treatment: Is exosome therapy superior to stem cell therapy? Biochimie 2020; 179:190-204. [PMID: 33010339 DOI: 10.1016/j.biochi.2020.09.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Stroke is one of the most common causes of disability and death, and currently, ideal clinical treatment is lacking. Stem cell transplantation is a widely-used treatment approach for stroke. When compared with other types of stem cells, bone marrow mesenchymal stem cells (BMSCs) have been widely studied because of their many advantages. The paracrine effect is the primary mechanism for stem cells to play their role, and exosomes play an essential role in the paracrine effect. When compared with cell therapy, cell-free exosome therapy can prevent many risks and difficulties, and therefore, represents a promising and novel approach for treatment. In this study, we reviewed the research progress in the application of BMSCs-derived exosomes (BMSCs-exos) and BMSCs in the treatment of stroke. In addition, the advantages and disadvantages of cell therapy and cell-free exosome therapy were described, and the possible factors that hinder the introduction of these two treatments into the clinic were analyzed. Furthermore, we reviewed the current optimization methods of cell therapy and cell-free exosome therapy. Taken together, we hypothesize that cell-free exosome therapy will have excellent research prospects in the future, and therefore, it is worth further exploring. There are still some issues that need to be further addressed. For example, differences between the in vivo microenvironment and in vitro culture conditions will affect the paracrine effect of stem cells. Most importantly, we believe that more preclinical and clinical design studies are required to compare the efficacy of stem cells and exosomes.
Collapse
Affiliation(s)
- Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wanying Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingzhi Xu
- Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Xiaodan Bai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| |
Collapse
|
42
|
Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 2020; 334:113456. [PMID: 32889008 DOI: 10.1016/j.expneurol.2020.113456] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Diabetes elevates the risk of stroke, promotes inflammation, and exacerbates vascular and white matter damage post stroke, thereby hindering long term functional recovery. Here, we investigated the neurorestorative effects and the underlying therapeutic mechanisms of treatment of stroke in type 2 diabetic rats (T2DM) using exosomes harvested from bone marrow stromal cells obtained from T2DM rats (T2DM-MSC-Exo). METHODS T2DM was induced in adult male Wistar rats using a combination of high fat diet and Streptozotocin. Rats were subjected to transient 2 h middle cerebral artery occlusion (MCAo) and 3 days later randomized to one of the following treatment groups: 1) phosphate-buffered-saline (PBS, i.v), 2) T2DM-MSC-Exo, (3 × 1011, i.v), 3) T2DM-MSC-Exo with miR-9 over expression (miR9+/+-T2DM-MSC-Exo, 3 × 1011, i.v) or 4) MSC-Exo derived from normoglycemic rats (Nor-MSC-Exo) (3 × 1011, i.v). T2DM sham control group is included as reference. Rats were sacrificed 28 days after MCAo. RESULTS T2DM-MSC-Exo treatment does not alter blood glucose, lipid levels, or lesion volume, but significantly improves neurological function and attenuates post-stroke weight loss compared to PBS treated as well as Nor-MSC-Exo treated T2DM-stroke rats. Compared to PBS treatment, T2DM-MSC-Exo treatment of T2DM-stroke rats significantly 1) increases tight junction protein ZO-1 and improves blood brain barrier (BBB) integrity; 2) promotes white matter remodeling indicated by increased axon and myelin density, and increases oligodendrocytes and oligodendrocyte progenitor cell numbers in the ischemic border zone as well as increases primary cortical neuronal axonal outgrowth; 3) decreases activated microglia, M1 macrophages, and inflammatory factors MMP-9 (matrix mettaloproteinase-9) and MCP-1 (monocyte chemoattractant protein-1) expression in the ischemic brain; and 4) decreases miR-9 expression in serum, and increases miR-9 target ABCA1 (ATP-binding cassette transporter 1) and IGFR1 (Insulin-like growth factor 1 receptor) expression in the brain. MiR9+/+-T2DM-MSC-Exo treatment significantly increases serum miR-9 expression compared to PBS treated and T2DM-MSC-Exo treated T2DM stroke rats. Treatment of T2DM stroke with miR9+/+-T2DM-MSC-Exo fails to improve functional outcome and attenuates T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory effects in T2DM stroke rats. CONCLUSIONS T2DM-MSC-Exo treatment for stroke in T2DM rats promotes neurorestorative effects and improves functional outcome. Down regulation of miR-9 expression and increasing its target ABCA1 pathway may contribute partially to T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory responses.
Collapse
|
43
|
Nguyen LTB, Hsu CC, Ye H, Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. ACTA ACUST UNITED AC 2020; 15:055005. [PMID: 32324167 DOI: 10.1088/1748-605x/ab8c43] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, a novel enzymatically crosslinked injectable hydrogel comprising hyaluronic acid (HyA), dopamine (DA), and 3-(4-hydroxyphenyl) propionic acid (HPA) conjugates was successfully developed. To the best of our knowledge, it is the first time that HPA is conjugated to a HyA-based backbone. In situ hydrogelation of HyA-DA-HPA occurred in the presence of hydrogen peroxide (H2O2) as an oxidant and horseradish peroxidase (HRP) as a catalyst. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to characterize the chemical reactions between HyA, DA, and HPA. Gel formation completed between 3 s to 5 min depending on the concentrations of polymer, HRP, and H2O2. Crosslinked HyA-DA-HPA gels acquired storage moduli ranging from ∼100 Pa to ∼20 000 Pa (at f = 2000 rad s-1). Biocompatibility of the hydrogels was examined with human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cell-derived neural stem cells. The hydrogels made of 2.0 w/v% HyA-DA-HPA hydrogels, 0.24 U ml-1 HRP and ≤ 0.5 µmol ml-1 H2O2 were found biocompatible with hMSCs cultured on and encapsulated within the hydrogels. Since HyA serves as a backbone of the extracellular matrix in the central nervous system (CNS) and DA acquires the ability to restore dopaminergic neurons, use of this injectable HyA-DA-HPA hydrogel for stem cell transplantation is a potential treatment strategy for CNS repair and regeneration.
Collapse
Affiliation(s)
- Linh T B Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom. Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, United Kingdom
| | | | | | | |
Collapse
|
44
|
Mangin G, Kubis N. Cell Therapy for Ischemic Stroke: How to Turn a Promising Preclinical Research into a Successful Clinical Story. Stem Cell Rev Rep 2020; 15:176-193. [PMID: 30443706 DOI: 10.1007/s12015-018-9864-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major public health issue with limited treatment. The pharmacologically or mechanically removing of the clot is accessible to less than 10% of the patients. Stem cell therapy is a promising alternative strategy since it increases the therapeutic time window but many issues remain unsolved. To avoid a new dramatic failure when translating experimental data on the bedside, this review aims to highlight the indispensable checkpoints to make a successful clinical trial based on the current preclinical literature. The large panel of progenitors/ stem cells at the researcher's disposal is to be used wisely, regarding the type of cells, the source of cells, the route of delivery, the time window, since it will directly affect the outcome. Mechanisms are still incompletely understood, although recent studies have focused on the inflammation modulation of most cells types.
Collapse
Affiliation(s)
| | - Nathalie Kubis
- INSERM U965, F-75475, Paris, France. .,Sorbonne Paris Cité, Université Paris Diderot, F-75475, Paris, France. .,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75475, Paris, France.
| |
Collapse
|
45
|
Singh M, Pandey PK, Bhasin A, Padma MV, Mohanty S. Application of Stem Cells in Stroke: A Multifactorial Approach. Front Neurosci 2020; 14:473. [PMID: 32581669 PMCID: PMC7296176 DOI: 10.3389/fnins.2020.00473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Stroke has a debilitating effect on the human body and a serious negative effect on society, with a global incidence of one in every six people. According to the World Health Organization, 15 million people suffer stroke worldwide each year. Of these, 5 million die and another 5 million are permanently disabled. Motor and cognitive deficits like hemiparesis, paralysis, chronic pain, and psychomotor and behavioral symptoms can persist long term and prevent the patient from fully reintegrating into society, therefore continuing to add to the costly healthcare burden of stroke. Regenerative medicine using stem cells seems to be a panacea for sequelae after stroke. Stem cell-based therapy aids neuro-regeneration and neuroprotection for neurological recovery in patients. However, the use of stem cells as a therapy in stroke patients still needs a lot of research at both basic and translational levels. As well as the mode of action of stem cells in reversing the symptoms not being clear, there are several clinical parameters that need to be addressed before establishing stem cell therapy in stroke, such as the type of stem cells to be administered, the number of stem cells, the timing of dosage, whether dose-boosters are required, the route of administration, etc. There are upcoming prospects of cell-free therapy also by using exosomes derived from stem cells. There are several ongoing pre-clinical studies aiming to answer these questions. Despite still being in the development stage, stem cell therapy holds great potential for neurological rehabilitation in patients suffering from stroke.
Collapse
Affiliation(s)
- Manisha Singh
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
- Dr. Solomon H. Snyder Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Pranav K. Pandey
- Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Bhasin
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - M. V. Padma
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Autologous Mesenchymal Stem Cells Improve Motor Recovery in Subacute Ischemic Stroke: a Randomized Clinical Trial. Transl Stroke Res 2020; 11:910-923. [PMID: 32462427 DOI: 10.1007/s12975-020-00787-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
While preclinical stroke studies have shown that mesenchymal stem cells (MSCs) promote recovery, few randomized controlled trials (RCT) have assessed cell therapy in humans. In this RCT, we assessed the safety, feasibility, and efficacy of intravenous autologous bone marrow-derived MSCs in subacute stroke. ISIS-HERMES was a single-center, open-label RCT, with a 2-year follow-up. We enrolled patients aged 18-70 years less than 2 weeks following moderate-severe ischemic carotid stroke. Patients were randomized 2:1 to receive intravenous MSCs or not. Primary outcomes assessed feasibility and safety. Secondary outcomes assessed global and motor recovery. Passive wrist movement functional MRI (fMRI) activity in primary motor cortex (MI) was employed as a motor recovery biomarker. We compared "treated" and "control" groups using as-treated analyses. Of 31 enrolled patients, 16 patients received MSCs. Treatment feasibility was 80%, and there were 10 and 16 adverse events in treated patients, and 12 and 24 in controls at 6-month and 2-year follow-up, respectively. Using mixed modeling analyses, we observed no treatment effects on the Barthel Index, NIHSS, and modified-Rankin scores, but significant improvements in motor-NIHSS (p = 0.004), motor-Fugl-Meyer scores (p = 0.028), and task-related fMRI activity in MI-4a (p = 0.031) and MI-4p (p = 0.002). Intravenous autologous MSC treatment following stroke was safe and feasible. Motor performance and task-related MI activity results suggest that MSCs improve motor recovery through sensorimotor neuroplasticity. ClinicalTrials.gov Identifier NCT00875654.
Collapse
|
47
|
Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 2020; 26:603-615. [PMID: 32356605 PMCID: PMC7248547 DOI: 10.1111/cns.13378] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) comprise two particularly prevalent and costly examples of acquired brain injury (ABI). Following stroke or TBI, primary cell death and secondary cell death closely model disease progression and worsen outcomes. Mounting evidence indicates that long‐term neuroinflammation extensively exacerbates the secondary deterioration of brain structure and function. Due to their immunomodulatory and regenerative properties, mesenchymal stem cell transplants have emerged as a promising approach to treating this facet of stroke and TBI pathology. In this review, we summarize the classification of cell death in ABI and discuss the prominent role of inflammation. We then consider the efficacy of bone marrow–derived mesenchymal stem/stromal cell (BM‐MSC) transplantation as a therapy for these injuries. Finally, we examine recent laboratory and clinical studies utilizing transplanted BM‐MSCs as antiinflammatory and neurorestorative treatments for stroke and TBI. Clinical trials of BM‐MSC transplants for stroke and TBI support their promising protective and regenerative properties. Future research is needed to allow for better comparison among trials and to elaborate on the emerging area of cell‐based combination treatments.
Collapse
Affiliation(s)
- Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
48
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
49
|
Neurovascular protection by peroxisome proliferator-activated receptor α in ischemic stroke. Exp Neurol 2020; 331:113323. [PMID: 32320699 DOI: 10.1016/j.expneurol.2020.113323] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, the only pharmacological therapy for ischemic stroke is thrombolysis with tissue plasminogen activator that has a narrow therapeutic window and increases the risk of intracerebral hemorrhage. New pharmacological treatments for ischemic stroke are desperately needed, but no neuroprotective drugs have successfully made it through clinical trials. Beneficial effects of peroxisome proliferator-activated receptor alpha (PPARα) activation on vascular integrity and function have been reported, and PPARα agonists have clinically been used for many years to manage cardiovascular disease. Thus, PPARα has gained interest in recent years as a target for neurovascular disease such as ischemic stroke. Accumulating preclinical evidence suggests that PPARα activation modulates several pathophysiological hallmarks of stroke such as oxidative stress, blood-brain barrier (BBB) dysfunction, and neuroinflammation to improve functional recovery. Therefore, this review summarizes the various actions PPARα exerts in neurovascular health and disease and the potential of employing exogenous PPARα agonists for future pharmacological treatment of ischemic stroke.
Collapse
|
50
|
Kim GH, Subash M, Yoon JS, Jo D, Han J, Hong JM, Kim SS, Suh-Kim H. Neurogenin-1 Overexpression Increases the Therapeutic Effects of Mesenchymal Stem Cells through Enhanced Engraftment in an Ischemic Rat Brain. Int J Stem Cells 2020; 13:127-141. [PMID: 31887850 PMCID: PMC7119213 DOI: 10.15283/ijsc19111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Stem cell therapy is a promising strategy for treating neurological diseases but its effectiveness is influenced by the route of administration and the characteristics of the stem cells. We determined whether neural induction of mesenchymal stem cells (MSCs) was beneficial when the cells were delivered intra-arterially through the carotid artery. Methods and Results MSCs were neurally induced using a retroviral vector expressing the neurogenic transcription factor neurogenin-1 (Ngn1). The LacZ gene encoding bacterial β-galactosidase was used as a control. Ischemic stroke was induced by transluminal occlusion of the middle cerebral artery and 3 days later the MSCs were delivered intra-arterially through the internal carotid artery. Magnetic resonance imaging analysis indicated that compared to MSCs expressing LacZ (MSCs/LacZ), MSCs expressing Ngn1 (MSCs/Ngn1) exhibited increased recruitment to the ischemic region and populated this area for a longer duration. Immunohistochemical analysis indicated that compared to MSCs/LacZ, MSCs/Ngn1 more effectively alleviated neurological dysfunction by blocking secondary damage associated with neuronal cell death and brain inflammation. Microarray and real-time PCR analysis indicated that MSCs/Ngn1 exhibited increased expression of chemotactic cytokine receptors, adherence to endothelial cells, and migration ability. Conclusions Neural induction with Ngn1 increases the homing ability of MSCs, enhancing their engraftment efficiency in the ischemic rat brain. Intra-arterial delivery of neurally induced MSCs/Ngn1 3 days after ischemic injury blocks neuronal cell death and inflammation, and improves functional recovery. Thus, intra-arterial administration of stem cells with neural properties may be a novel therapy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Gyu-Hee Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Marasini Subash
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Darong Jo
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Research Center CelleBrain Ltd., Jeonju, Korea
| | - Jihun Han
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Research Center CelleBrain Ltd., Jeonju, Korea
| |
Collapse
|