1
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel J, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. Mol Psychiatry 2025:10.1038/s41380-025-02909-1. [PMID: 39875589 DOI: 10.1038/s41380-025-02909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no difference in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th+/Vglut2+ neurons, Th and Vglut2 transcripts decreased with aging. However, Th and Vglut2 protein levels in striatal synaptic release sites (e.g., terminals and axonal projections) did not differ throughout aging. Similar to the mouse, an initial study of human brain showed no effect of aging on midbrain neuron number with a concomitant decrease in TH and VGLUT2 mRNA expression. Unlike in mice, the density of striatal TH+ dopaminergic terminals was lower in aged human subjects. However, TH and VGLUT2 protein levels were unaffected in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th+ neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Rossetti M, Stanca S, Panichi LB, Bongioanni P. Brain metabolic profiling of schizophrenia: a path towards a better understanding of the neuropathogenesis of psychosis. Metab Brain Dis 2024; 40:28. [PMID: 39570439 DOI: 10.1007/s11011-024-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Schizophrenia (SCZ) is a complex psychotic syndrome whose pathogenesis involves countless protagonists, none of which, to date, can fully explain how this disorder develops. In this narrative review, an overview of the biochemical impairment is offered according to several perspectives. Indeed, the metabolic framework behind SCZ dopaminergic hypotheses, glutamate - gamma-amynobutyric acid dysregulation, norepinephrine and serotonin, calcium channel dysfunction is addressed together with the energetic impairment, involving glucose and lipids in SCZ etiopathogenesis, in order to highlight the multilevel pathways affected in this neuropsychiatric disorder. Furthermore, neuroinflammation is analyzed, by virtue of its important role, widely investigated in recent years, in neurodegeneration. Tracing the neurotransmitter activity at the brain level by assessing the metabolic network behind the abovementioned molecules puts into light as unavoidable the need for future studies to adopt an integrate approach to address SCZ pathological and clinical picture. The combination of all these factors, essential in acquiring an overview on the complexity of SCZ pathophysiology represents a crucial step in the development of a more targeted management of SCZ patients.
Collapse
Affiliation(s)
- Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, Pisa, 56126, Italy
- NeuroCare Onlus, Pisa, 56100, Italy
| | - Stefano Stanca
- Department of Humanities, University of Naples Federico II, Via Porta di Massa 1, Naples, 80133, Italy.
| | - Leona Bokulic Panichi
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| |
Collapse
|
3
|
Zhang QX, Wu SS, Wang PJ, Zhang R, Valenzuela RK, Shang SS, Wan T, Ma J. Schizophrenia-Like Deficits and Impaired Glutamate/Gamma-aminobutyric acid Homeostasis in Zfp804a Conditional Knockout Mice. Schizophr Bull 2024; 50:1411-1426. [PMID: 38988003 PMCID: PMC11548938 DOI: 10.1093/schbul/sbae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Zinc finger protein 804A (ZNF804A) was the first genome-wide associated susceptibility gene for schizophrenia (SCZ) and played an essential role in the pathophysiology of SCZ by influencing neurodevelopment regulation, neurite outgrowth, synaptic plasticity, and RNA translational control; however, the exact molecular mechanism remains unclear. STUDY DESIGN A nervous-system-specific Zfp804a (ZNF804A murine gene) conditional knockout (cKO) mouse model was generated using clustered regularly interspaced short palindromic repeat/Cas9 technology and the Cre/loxP method. RESULTS Multiple and complex SCZ-like behaviors, such as anxiety, depression, and impaired cognition, were observed in Zfp804a cKO mice. Molecular biological methods and targeted metabolomics assay validated that Zfp804a cKO mice displayed altered SATB2 (a cortical superficial neuron marker) expression in the cortex; aberrant NeuN, cleaved caspase 3, and DLG4 (markers of mature neurons, apoptosis, and postsynapse, respectively) expressions in the hippocampus and a loss of glutamate (Glu)/γ-aminobutyric acid (GABA) homeostasis with abnormal GAD67 (Gad1) expression in the hippocampus. Clozapine partly ameliorated some SCZ-like behaviors, reversed the disequilibrium of the Glu/GABA ratio, and recovered the expression of GAD67 in cKO mice. CONCLUSIONS Zfp804a cKO mice reproducing SCZ-like pathological and behavioral phenotypes were successfully developed. A novel mechanism was determined in which Zfp804a caused Glu/GABA imbalance and reduced GAD67 expression, which was partly recovered by clozapine treatment. These findings underscore the role of altered gene expression in understanding the pathogenesis of SCZ and provide a reliable SCZ model for future therapeutic interventions and biomarker discovery.
Collapse
Affiliation(s)
- Qiao-xia Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shan-shan Wu
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng-jie Wang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Rui Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, College of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Robert K Valenzuela
- JAX Center for Alzheimer’s and Dementia Research, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shan-shan Shang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ting Wan
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
5
|
Rodrigues T, Bressan GN, Krum BN, Soares FAA, Fachinetto R. Influence of the dose of ketamine used on schizophrenia-like symptoms in mice: A correlation study with TH, GAD 67, and PPAR-γ. Pharmacol Biochem Behav 2023; 233:173658. [PMID: 37804866 DOI: 10.1016/j.pbb.2023.173658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Ciancone-Chama AG, Bonaldo V, Biasini E, Bozzi Y, Balasco L. Gene Expression Profiling in Trigeminal Ganglia from Cntnap2 -/- and Shank3b -/- Mouse Models of Autism Spectrum Disorder. Neuroscience 2023; 531:75-85. [PMID: 37699442 DOI: 10.1016/j.neuroscience.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. Although tactile abnormalities have been reported in monogenic cohorts of patients and genetic mouse models of ASD, the underlying mechanisms are still unknown. Traditionally, autism research has focused on the central nervous system as the target to infer the neurobiological bases of such tactile abnormalities. Nonetheless, the peripheral nervous system represents the initial site of processing of sensory information and a potential site of dysfunction in the sensory cascade. Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.
Collapse
Affiliation(s)
- Alessandra G Ciancone-Chama
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy
| | - Valerio Bonaldo
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy; CNR Neuroscience Institute, via Moruzzi 1, 56124 Pisa, Italy.
| | - Luigi Balasco
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy.
| |
Collapse
|
7
|
Santa C, Rodrigues D, Coelho JF, Anjo SI, Mendes VM, Bessa-Neto D, Dunn MJ, Cotter D, Baltazar G, Monteiro P, Manadas B. Chronic treatment with D2-antagonist haloperidol leads to inhibitory/excitatory imbalance in striatal D1-neurons. Transl Psychiatry 2023; 13:312. [PMID: 37803004 PMCID: PMC10558446 DOI: 10.1038/s41398-023-02609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Striatal dysfunction has been implicated in the pathophysiology of schizophrenia, a disorder characterized by positive symptoms such as hallucinations and delusions. Haloperidol is a typical antipsychotic medication used in the treatment of schizophrenia that is known to antagonize dopamine D2 receptors, which are abundantly expressed in the striatum. However, haloperidol's delayed therapeutic effect also suggests a mechanism of action that may go beyond the acute blocking of D2 receptors. Here, we performed proteomic analysis of striatum brain tissue and found more than 400 proteins significantly altered after 30 days of chronic haloperidol treatment in mice, namely proteins involved in glutamatergic and GABAergic synaptic transmission. Cell-type specific electrophysiological recordings further revealed that haloperidol not only reduces the excitability of striatal medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) but also affects D1-MSNs by increasing the ratio of inhibitory/excitatory synaptic transmission (I/E ratio) specifically onto D1-MSNs but not D2-MSNs. Therefore, we propose the slow remodeling of D1-MSNs as a mechanism mediating the delayed therapeutic effect of haloperidol over striatum circuits. Understanding how haloperidol exactly contributes to treating schizophrenia symptoms may help to improve therapeutic outcomes and elucidate the molecular underpinnings of this disorder.
Collapse
Affiliation(s)
- Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- III - Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Joana F Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Diogo Bessa-Neto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Michael J Dunn
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Dublin, Ireland
| | - David Cotter
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont, Dublin, Ireland
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal.
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
8
|
Dowling KF, Dienel SJ, Barile Z, Bazmi HH, Lewis DA. Localization and Diagnostic Specificity of Glutamic Acid Decarboxylase Transcript Alterations in the Dorsolateral Prefrontal Cortex in Schizophrenia. Biol Psychiatry 2023; 94:322-331. [PMID: 37061080 PMCID: PMC10524522 DOI: 10.1016/j.biopsych.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Working memory (WM) deficits in schizophrenia are thought to reflect altered inhibition in the dorsolateral prefrontal cortex (DLPFC). This interpretation is supported by findings of lower transcript levels of the 2 enzymes, GAD67 and GAD65, which mediate basal and activity-dependent GABA (gamma-aminobutyric acid) synthesis, respectively. However, the relative magnitude, location within the depth of the DLPFC, and specificity to the disease process of schizophrenia of alterations in GAD67 and/or GAD65 remain unclear. METHODS Levels of GAD67 and GAD65 messenger RNAs (mRNAs) in superficial (layers 2/superficial 3) and deep (deep layer 6/white matter) zones of the DLPFC were quantified by quantitative polymerase chain reaction in subjects with schizophrenia (n = 41), major depression (n = 42), or bipolar disorder (n = 39) and unaffected comparison (n = 43) subjects. RESULTS Relative to the unaffected comparison group, GAD67 and GAD65 mRNA levels in the schizophrenia group were lower (p = .039, effect size = -0.69 and p = .027, effect size = -0.72, respectively) in the superficial zone but were unaltered in the deep zone. In the major depression group, only GAD67 mRNA levels were lower and only in the superficial zone (p = .089, effect size = 0.70). No differences were detected in the bipolar disorder group. Neither GAD67 nor GAD65 mRNA alterations were explained by psychosis, mood disturbance, or common comorbid factors. CONCLUSIONS Alterations in markers of GABA synthesis demonstrated transcript, DLPFC zone, and diagnostic specificity. Given the dependence of WM on GABA neurotransmission in the superficial DLPFC, our findings suggest that limitations to GABA synthesis in this location contribute to WM impairments in schizophrenia, especially during demanding WM tasks, when GABA synthesis requires the activity of both GAD67 and GAD65.
Collapse
Affiliation(s)
- Kevin F Dowling
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Zackery Barile
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Vid Prkačin M, Banovac I, Petanjek Z, Hladnik A. Cortical interneurons in schizophrenia - cause or effect? Croat Med J 2023; 64:110-122. [PMID: 37131313 PMCID: PMC10183954 DOI: 10.3325/cmj.2023.64.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/15/2023] [Indexed: 12/09/2024] Open
Abstract
GABAergic cortical interneurons are important components of cortical microcircuits. Their alterations are associated with a number of neurological and psychiatric disorders, and are thought to be especially important in the pathogenesis of schizophrenia. Here, we reviewed neuroanatomical and histological studies that analyzed different populations of cortical interneurons in postmortem human tissue from patients with schizophrenia and adequately matched controls. The data strongly suggests that in schizophrenia only selective interneuron populations are affected, with alterations of somatostatin and parvalbumin neurons being the most convincing. The most prominent changes are found in the prefrontal cortex, which is consistent with the impairment of higher cognitive functions characteristic of schizophrenia. In contrast, calretinin neurons, the most numerous interneuron population in primates, seem to be largely unaffected. The selective alterations of cortical interneurons are in line with the neurodevelopmental model and the multiple-hit hypothesis of schizophrenia. Nevertheless, a large number of data on interneurons in schizophrenia is still inconclusive, with different studies yielding opposing findings. Furthermore, no studies found a clear link between interneuron alterations and clinical outcomes. Future research should focus on the causes of changes in the cortical microcircuitry in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | - Ivan Banovac
- Ivan Banovac, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, 10 000 Zagreb, Croatia,
| | | | | |
Collapse
|
10
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
11
|
Jiang W, Kakizaki T, Fujihara K, Miyata S, Zhang Y, Suto T, Kato D, Saito S, Shibasaki K, Ishizaki Y, Isoda K, Yokoo H, Obinata H, Hirano T, Miyasaka Y, Mashimo T, Yanagawa Y. Impact of GAD65 and/or GAD67 deficiency on perinatal development in rats. FASEB J 2022; 36:e22123. [PMID: 34972242 DOI: 10.1096/fj.202101389r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.
Collapse
Affiliation(s)
- Weiru Jiang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Isoda
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideru Obinata
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Touko Hirano
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
12
|
Förster A, Model V, Gos T, Frodl T, Schiltz K, Dobrowolny H, Meyer-Lotz G, Guest PC, Mawrin C, Bernstein HG, Bogerts B, Schlaaff K, Steiner J. Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. J Psychiatr Res 2021; 145:50-59. [PMID: 34864489 DOI: 10.1016/j.jpsychires.2021.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND GABAergic interneuron dysfunction has been implicated in the pathophysiology of schizophrenia. Expression of glutamic acid decarboxylase (GAD), a key enzyme in GABA synthesis, may also be altered. Here, we have simultaneously evaluated GAD-immunoreactive (GAD-ir) neuropil and cell profiles in schizophrenia-relevant brain regions, and analysed disease-course related differences. METHODS GAD65/67 immunoreactivity was quantified in specific brain regions for profiles of fibres and cell bodies of interneurons by automated digital image analysis in post-mortem brains of 16 schizophrenia patients from paranoid (n = 10) and residual (n = 6) diagnostic subgroups and 16 matched controls. Regions of interest were superior temporal gyrus (STG) layers III and V, mediodorsal (MD) and laterodorsal (LD) thalamus, and hippocampal CA1 and dentate gyrus (DG) regions. RESULTS A reduction in GAD-ir neuropil profiles (p < 0.001), particularly in STG layer V (p = 0.012) and MD (p = 0.001), paralleled decreased GAD-ir cell profiles (p = 0.029) in schizophrenia patients compared to controls. Paranoid schizophrenia patients had lower GAD-ir neuron cell profiles in STG layers III (p = 0.007) and V (p = 0.001), MD (p = 0.002), CA1 (p = 0.001) and DG (p = 0.043) than residual patients. There was no difference in GAD-ir neuropil profiles between paranoid and residual subgroups (p = 0.369). CONCLUSIONS These results support the hypothesis of GABAergic dysfunction in schizophrenia. They show a more prominent reduction of GAD-ir interneurons in paranoid versus residual patients, suggestive of more pronounced GABAergic dysfunction in the former. Fully automated analyses of histological sections represent a step towards user-independent assessment of brain structure.
Collapse
Affiliation(s)
- Antonia Förster
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Vera Model
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Tomasz Gos
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Thomas Frodl
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Forensic Psychiatry, Mental Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Christian Mawrin
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Salus Institute, Magdeburg, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
13
|
Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry 2021; 90:47-57. [PMID: 33892915 PMCID: PMC8243491 DOI: 10.1016/j.biopsych.2021.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Visuospatial working memory (vsWM), which is commonly impaired in schizophrenia, involves information processing across the primary visual cortex, association visual cortex, posterior parietal cortex, and dorsolateral prefrontal cortex (DLPFC). Within these regions, vsWM requires inhibition from parvalbumin-expressing basket cells (PVBCs). Here, we analyzed indices of PVBC axon terminals across regions of the vsWM network in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, tissue sections from the primary visual cortex, association visual cortex, posterior parietal cortex, and DLPFC were immunolabeled for PV, the 65- and 67-kDa isoforms of glutamic acid decarboxylase (GAD65 and GAD67) that synthesize GABA (gamma-aminobutyric acid), and the vesicular GABA transporter. The density of PVBC terminals and of protein levels per terminal was quantified in layer 3 of each cortical region using fluorescence confocal microscopy. RESULTS In comparison subjects, all measures, except for GAD65 levels, exhibited a caudal-to-rostral decline across the vsWM network. In subjects with schizophrenia, the density of detectable PVBC terminals was significantly lower in all regions except the DLPFC, whereas PVBC terminal levels of PV, GAD67, and GAD65 proteins were lower in all regions. A composite measure of inhibitory strength was lower in subjects with schizophrenia, although the magnitude of the diagnosis effect was greater in the primary visual, association visual, and posterior parietal cortices than in the DLPFC. CONCLUSIONS In schizophrenia, alterations in PVBC terminals across the vsWM network suggest the presence of a shared substrate for cortical dysfunction during vsWM tasks. However, regional differences in the magnitude of the disease effect on an index of PVBC inhibitory strength suggest region-specific alterations in information processing during vsWM tasks.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M DeDionisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci 2021; 53:3960-3987. [PMID: 33070392 PMCID: PMC8359380 DOI: 10.1111/ejn.15009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Pavel Katsel
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Vahram Haroutunian
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Gabriele Chelini
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Translational Molecular Genomics LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryUniversity Medical Center GöttingenGöttingenGermany
| | - Sabina Berretta
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Program in NeuroscienceHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
15
|
Kakizaki T, Ohshiro T, Itakura M, Konno K, Watanabe M, Mushiake H, Yanagawa Y. Rats deficient in the GAD65 isoform exhibit epilepsy and premature lethality. FASEB J 2020; 35:e21224. [PMID: 33236473 DOI: 10.1096/fj.202001935r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
GABA is synthesized by glutamate decarboxylase (GAD), which has two isoforms, namely, GAD65 and GAD67, encoded by the Gad2 and Gad1 genes, respectively. GAD65-deficient (Gad2-/- ) mice exhibit a reduction in brain GABA content after 1 month of age and show spontaneous seizures in adulthood. Approximately 25% of Gad2-/- mice died by 6 months of age. Our Western blot analysis demonstrated that the protein expression ratio of GAD65 to GAD67 in the brain was greater in rats than in mice during postnatal development, suggesting that the contribution of each GAD isoform to GABA functions differs between these two species. To evaluate whether GAD65 deficiency causes different phenotypes between rats and mice, we generated Gad2-/- rats using TALEN genome editing technology. Western blot and immunohistochemical analyses with new antibodies demonstrated that the GAD65 protein was undetectable in the Gad2-/- rat brain. Gad2-/- pups exhibited spontaneous seizures and paroxysmal discharge in EEG at postnatal weeks 3-4. More than 80% of the Gad2-/- rats died at postnatal days (PNDs) 17-23. GABA content in Gad2-/- brains was significantly lower than those in Gad2+/- and Gad2+/+ brains at PND17-19. These results suggest that the low levels of brain GABA content in Gad2-/- rats may lead to epilepsy followed by premature death, and that Gad2-/- rats are more severely affected than Gad2-/- mice. Considering that the GAD65/GAD67 ratio in human brains is more similar to that in rat brains than in mouse brains, Gad2-/- rats would be useful for further investigating the roles of GAD65 in vivo.
Collapse
Affiliation(s)
- Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Δ-9-Tetrahydrocannabinol treatment during adolescence and alterations in the inhibitory networks of the adult prefrontal cortex in mice subjected to perinatal NMDA receptor antagonist injection and to postweaning social isolation. Transl Psychiatry 2020; 10:177. [PMID: 32488050 PMCID: PMC7266818 DOI: 10.1038/s41398-020-0853-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
The prefrontal cortex (PFC) continues its development during adolescence and alterations in its structure and function, particularly of inhibitory networks, have been detected in schizophrenic patients. Since cannabis use during adolescence is a risk factor for this disease, our main objective was to investigate whether THC administration during this period might exacerbate alterations in prefrontocortical inhibitory networks in mice subjected to a perinatal injection of MK801 and postweaning social isolation. This double-hit model (DHM) combines a neurodevelopmental manipulation and the exposure to an aversive experience during early life; previous work has shown that DHM mice have important alterations in the structure and connectivity of PFC interneurons. In the present study we found that DHM had reductions in prepulse inhibition of the startle reflex (PPI), GAD67 expression and cingulate 1 cortex volume. Interestingly, THC by itself induced increases in PPI and decreases in the dendritic complexity of somatostatin expressing interneurons. Both THC and DHM reduced the density of parvalbumin expressing cells surrounded by perineuronal nets and, when combined, they disrupted the ratio between the density of puncta expressing excitatory and inhibitory markers. Our results support previous work showing alterations in parameters involving interneurons in similar animal models and schizophrenic patients. THC treatment does not modify further these parameters, but changes some others related also to interneurons and their plasticity, in some cases in the opposite direction to those induced by the DHM, suggesting a protective effect.
Collapse
|
17
|
Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, Gaisler‐Salomon I. Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. GENES BRAIN AND BEHAVIOR 2020; 19:e12636. [DOI: 10.1111/gbb.12636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergiy Chornyy
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Hazem Safory
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Amit Gross
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Herman Wolosker
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | | |
Collapse
|
18
|
Scott MR, Meador-Woodruff JH. Intracellular compartment-specific proteasome dysfunction in postmortem cortex in schizophrenia subjects. Mol Psychiatry 2019; 25:776-790. [PMID: 30683941 PMCID: PMC6658356 DOI: 10.1038/s41380-019-0359-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Protein homeostasis is an emerging component of schizophrenia (SZ) pathophysiology. Proteomic alterations in SZ are well-documented and changes in transcript expression are frequently not associated with changes in protein expression in SZ brain. The underlying mechanism driving these changes remains unknown, though altered expression of ubiquitin proteasome system (UPS) components have implicated protein degradation. Previous studies have been limited to protein and transcript expression, however, and do not directly test the function of the proteasome. To address this gap in knowledge, we measured enzymatic activity associated with the proteasome (chymotrypsin-, trypsin-, and caspase-like) in the superior temporal gyrus (STG) of 25 SZ and 25 comparison subjects using flourogenic substrates. As localization regulates which cellular processes the proteasome contributes to, we measured proteasome activity and subunit expression in fractions enriched for nucleus, cytosolic, and membrane compartments. SZ subjects had decreased trypsin-like activity in total homogenate. This finding was specific to the nucleus-enriched fraction and was not associated with changes in proteasome subunit expression. Interestingly, both chymotrypsin-like activity and protein expression of 19S RP subunits, which facilitate ubiquitin-dependent degradation, were decreased in the cytosol-enriched fraction of SZ subjects. Intracellular compartment-specific proteasome dysfunction implicates dysregulation of protein expression both through altered ubiquitin-dependent degradation of cytosolic proteins and regulation of protein synthesis due to degradation of transcription factors and transcription machinery in the nucleus. Together, these findings implicate proteasome dysfunction in SZ, which likely has a broad impact on the proteomic landscape and cellular function in the pathophysiology of this illness.
Collapse
Affiliation(s)
- Madeline R. Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Woźniak M, Cieślik P, Marciniak M, Lenda T, Pilc A, Wieronska JM. Neurochemical changes underlying schizophrenia-related behavior in a modified forced swim test in mice. Pharmacol Biochem Behav 2018; 172:50-58. [DOI: 10.1016/j.pbb.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 10/14/2022]
|
20
|
Büki A, Horvath G, Benedek G, Ducza E, Kekesi G. Impaired GAD1 expression in schizophrenia‐related WISKET rat model with sex‐dependent aggressive behavior and motivational deficit. GENES BRAIN AND BEHAVIOR 2018; 18:e12507. [DOI: 10.1111/gbb.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Affiliation(s)
- A. Büki
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Horvath
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - G. Benedek
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| | - E. Ducza
- Department of Pharmacodynamics and BiopharmacyFaculty of Pharmacy, University of Szeged Szeged Hungary
| | - G. Kekesi
- Department of Physiology, Faculty of MedicineUniversity of Szeged Szeged Hungary
| |
Collapse
|
21
|
Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 2017; 7:e1147. [PMID: 28585933 PMCID: PMC5537645 DOI: 10.1038/tp.2017.124] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023] Open
Abstract
Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy (1H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABAA/benzodiazepine receptor (GABAA/BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I2>50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABAA/BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.
Collapse
|
22
|
Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic Biomarkers for Schizophrenia. Int J Mol Sci 2017; 18:E733. [PMID: 28358316 PMCID: PMC5412319 DOI: 10.3390/ijms18040733] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.
Collapse
Affiliation(s)
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, 10090 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
23
|
Yee JY, Nurjono M, Teo SR, Lee TS, Lee J. GAD1 Gene Expression in Blood of Patients with First-Episode Psychosis. PLoS One 2017; 12:e0170805. [PMID: 28122016 PMCID: PMC5266282 DOI: 10.1371/journal.pone.0170805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 11/23/2022] Open
Abstract
γ-Aminobutyric acid (GABA), the primary inhibitory neurotransmitter, has often been studied in relation to its role in the pathophysiology of schizophrenia. GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD), derived from two genes, GAD1 and GAD2. GAD1 is expressed as both GAD67 and GAD25 mRNA transcripts with the former reported to have a lower expression level in schizophrenia compared to healthy controls and latter was reported to be predominantly expressed fetally, suggesting a role in developmental process. In this study, GAD67 and GAD25 mRNA levels were measured by quantitative PCR (qPCR) in peripheral blood of subjects with first-episode psychosis (FEP) and from healthy controls. We observed low GAD25 and GAD67 gene expression levels in human peripheral blood. There was no difference in GAD25 and GAD67 gene expression level, and GAD25/GAD67 ratio between patients with FEP and healthy controls. PANSS negative symptoms were associated with levels of GAD25 mRNA transcripts in patients with FEP. While the current study provides information on GAD25 and GAD67 mRNA transcript levels in whole blood of FEP patients, further correlation and validation work between brain regions, cerebrospinal fluid and peripheral blood expression profiling are required to provide a better understanding of GAD25 and GAD67.
Collapse
Affiliation(s)
- Jie Yin Yee
- Research Division, Institute of Mental Health, Singapore, Singapore
- * E-mail:
| | - Milawaty Nurjono
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Stephanie Ruth Teo
- Neuroscience & Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Tih-Shih Lee
- Neuroscience & Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jimmy Lee
- Research Division, Institute of Mental Health, Singapore, Singapore
- Department of General Psychiatry 1, Institute of Mental Health, Singapore, Singapore
| |
Collapse
|
24
|
de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry 2017; 8:118. [PMID: 28848455 PMCID: PMC5554536 DOI: 10.3389/fpsyt.2017.00118] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/22/2017] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia is a psychiatric disorder characterized by hallucinations, delusions, disorganized thinking, and impairments in cognitive functioning. Evidence from postmortem studies suggests that alterations in cortical γ-aminobutyric acid (GABAergic) neurons contribute to the clinical features of schizophrenia. In vivo measurement of brain GABA levels using magnetic resonance spectroscopy (MRS) offers the possibility to provide more insight into the relationship between problems in GABAergic neurotransmission and clinical symptoms of schizophrenia patients. This study reviews and links alterations in the GABA system in postmortem studies, animal models, and human studies in schizophrenia. Converging evidence implicates alterations in both presynaptic and postsynaptic components of GABAergic neurotransmission in schizophrenia, and GABA may thus play an important role in the pathophysiology of schizophrenia. MRS studies can provide direct insight into the GABAergic mechanisms underlying the development of schizophrenia as well as changes during its course.
Collapse
Affiliation(s)
- Jeroen C de Jonge
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hilleke E Hulshoff Pol
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anouk Marsman
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
25
|
GABAergic mRNA expression is differentially expressed across the prelimbic and orbitofrontal cortices of rats sensitized to methamphetamine: Relevance to psychosis. Neuropharmacology 2016; 111:107-118. [PMID: 27580848 DOI: 10.1016/j.neuropharm.2016.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022]
Abstract
Psychotic disorders, such as schizophrenia, are characterized by prevalent and persistent executive deficits that are believed to be the result of dysfunctional inhibitory gamma-aminobutyric acid (GABA) processing of the prefrontal cortex (PFC). Methamphetamine (METH) is a commonly used psychostimulant that can induce psychotic and cognitive symptoms that are indistinguishable to schizophrenia, suggesting that METH-induced psychosis may have a similar GABAergic profile of the PFC. As the PFC consists of multiple subregions, the aim of the current study was to investigate changes to GABAergic mRNA expression in the prelimbic (PRL) and orbitofrontal (OFC) cortices of the PFC in rats sensitized to repeated METH administration. Male Sprague Dawley rats underwent daily METH or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute METH administration, RNA was isolated from the PRL and OFC and quantitative PCR was used to compare the relative expression of GABA enzymes, transporters, metabolites and receptor subunits. GAD67, GAD65, GAT1, GAT3, VGAT and GABAT mRNA expression were upregulated in the PRL. Ionotropic GABAA receptor subunits α1, α3, α5 and β2 were specifically upregulated in the OFC. These findings suggest that alterations to GABAergic mRNA expression following sensitization to METH are biologically dissociated between the OFC and PRL, suggesting that GABAergic gene expression is significantly altered following chronic METH exposure in a brain-region and GABA-specific manner. These changes may lead to profound consequences on central inhibitory mechanisms of localized regions of the PFC and may underpin common behavioral phenotypes seen across psychotic disorders.
Collapse
|
26
|
Davis KN, Tao R, Li C, Gao Y, Gondré-Lewis MC, Lipska BK, Shin JH, Xie B, Ye T, Weinberger DR, Kleinman JE, Hyde TM. GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders. PLoS One 2016; 11:e0148558. [PMID: 26848839 PMCID: PMC4744057 DOI: 10.1371/journal.pone.0148558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023] Open
Abstract
Genetic variation and early adverse environmental events work together to increase risk for schizophrenia. γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adult mammalian brain, plays a major role in normal brain development, and has been strongly implicated in the pathobiology of schizophrenia. GABA synthesis is controlled by two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce a number of alternative transcripts. Genetic variants in the GAD1 gene are associated with increased risk for schizophrenia, and reduced expression of its major transcript in the human dorsolateral prefrontal cortex (DLPFC). No consistent changes in GAD2 expression have been found in brains from patients with schizophrenia. In this work, with the use of RNA sequencing and PCR technologies, we confirmed and tracked the expression of an alternative truncated transcript of GAD2 (ENST00000428517) in human control DLPFC homogenates across lifespan besides the well-known full length transcript of GAD2. In addition, using quantitative RT-PCR, expression of GAD2 full length and truncated transcripts were measured in the DLPFC of patients with schizophrenia, bipolar disorder and major depression. The expression of GAD2 full length transcript is decreased in the DLPFC of schizophrenia and bipolar disorder patients, while GAD2 truncated transcript is increased in bipolar disorder patients but decreased in schizophrenia patients. Moreover, the patients with schizophrenia with completed suicide or positive nicotine exposure showed significantly higher expression of GAD2 full length transcript. Alternative transcripts of GAD2 may be important in the growth and development of GABA-synthesizing neurons as well as abnormal GABA signaling in the DLPFC of patients with schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Kasey N. Davis
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892–1385, United States of America
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., 20059, United States of America
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Chao Li
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Yuan Gao
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., 20059, United States of America
| | - Barbara K. Lipska
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892–1385, United States of America
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Bin Xie
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Tianzhang Ye
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Daniel R. Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Department of Psychiatry and Behavior Sciences, and Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University Medical Campus, Baltimore, Maryland, 21205, United States of America
- Departments of Neuroscience and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Joel E. Kleinman
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Thomas M. Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Department of Psychiatry and Behavior Sciences, and Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University Medical Campus, Baltimore, Maryland, 21205, United States of America
- * E-mail:
| |
Collapse
|
27
|
Wearne TA, Parker LM, Franklin JL, Goodchild AK, Cornish JL. GABAergic mRNA expression is upregulated in the prefrontal cortex of rats sensitized to methamphetamine. Behav Brain Res 2016; 297:224-30. [PMID: 26475507 DOI: 10.1016/j.bbr.2015.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Inhibitory gamma-aminobutyric acid (GABA)-mediated neurotransmission plays an important role in the regulation of the prefrontal cortex (PFC), with increasing evidence suggesting that dysfunctional GABAergic processing of the PFC may underlie certain deficits reported across psychotic disorders. Methamphetamine (METH) is a psychostimulant that induces chronic psychosis in a subset of users, with repeat administration producing a progressively increased vulnerability to psychotic relapse following subsequent drug administration (sensitization). The aim here was to investigate changes to GABAergic mRNA expression in the PFC of rats sensitized to METH using quantitative polymerase chain reaction (qPCR). Male Sprague-Dawley rats (n=12) underwent repeated methamphetamine (intraperitoneal (i.p.) or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute methamphetamine (1mg/kg i.p.) and RNA was isolated from the PFC to compare the relative mRNA expression of a range of GABA enzymes, transporters and receptors subunits. METH challenge resulted in a significant sensitized behavioral (locomotor) response in METH pre-treated animals compared with saline pre-treated controls. The mRNAs of transporters (GAT1 and GAT3), ionotropic GABAA receptor subunits (α3 and β1), together with the metabotropic GABAB1 receptor, were upregulated in the PFC of sensitized rats compared with saline controls. These findings indicate that GABAergic mRNA expression is significantly altered at the pre and postsynaptic level following sensitization to METH, with sensitization resulting in the transcriptional upregulation of several inhibitory genes. These changes likely have significant consequences on GABA-mediated neurotransmission in the PFC and may underlie certain symptoms conserved across psychotic disorders, such as executive dysfunction.
Collapse
Affiliation(s)
- Travis A Wearne
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Lindsay M Parker
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Jane L Franklin
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Ann K Goodchild
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 2015; 167:28-34. [PMID: 25458568 PMCID: PMC4417100 DOI: 10.1016/j.schres.2014.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Expression of GAD1 GABA synthesis enzyme is highly regulated by neuronal activity and reaches mature levels in the prefrontal cortex not before adolescence. A significant portion of cases diagnosed with schizophrenia show deficits in GAD1 RNA and protein levels in multiple areas of adult cerebral cortex, possibly reflecting molecular or cellular defects in subtypes of GABAergic interneurons essential for network synchronization and cognition. Here, we review 20years of progress towards a better understanding of disease-related regulation of GAD1 gene expression. For example, deficits in cortical GAD1 RNA in some cases of schizophrenia are associated with changes in the epigenetic architecture of the promoter, affecting DNA methylation patterns and nucleosomal histone modifications. These localized chromatin defects at the 5' end of GAD1 are superimposed by disordered locus-specific chromosomal conformations, including weakening of long-range promoter-enhancer loopings and physical disconnection of GAD1 core promoter sequences from cis-regulatory elements positioned 50 kilobases further upstream. Studies on the 3-dimensional architecture of the GAD1 locus in neurons, including developmentally regulated higher order chromatin compromised by the disease process, together with exploration of locus-specific epigenetic interventions in animal models, could pave the way for future treatments of psychosis and schizophrenia.
Collapse
|
29
|
Sun YJ, Yu Y, Zhu GC, Sun ZH, Xu J, Cao JH, Ge JX. Association between single nucleotide polymorphisms in MiR219-1 and MiR137 and susceptibility to schizophrenia in a Chinese population. FEBS Open Bio 2015; 5:774-8. [PMID: 26609515 PMCID: PMC4655900 DOI: 10.1016/j.fob.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/10/2015] [Accepted: 08/15/2015] [Indexed: 12/23/2022] Open
Abstract
A case-control study investigated rs107822, rs1625579 and risk of schizophrenia. rs107822 was negatively associated with susceptibility to schizophrenia. No association was found between rs1625579 and the disorder.
Schizophrenia is one of the most common mental disorders to severely affect human health worldwide. Single nucleotide polymorphisms (SNPs) within related genes are candidate susceptible factors for the disorder. Rs107822 within MiR219-1 and rs1625579 within MiR137 were genotyped in 589 cases and 622 controls to investigate the possible association between the loci and schizophrenia in a Chinese population. Our results showed significant association between rs107822 and the disorder in allele (C vs. T: adjusted OR = 0.773, 95%CI = 0.655–0.912), co-dominant (TC vs. TT: adjusted OR = 0.734, 95%CI = 0.571–0.943; CC vs. TT: adjusted OR = 0.655, 95%CI = 0.459–0.936), dominant (TC + CC vs. TT: adjusted OR = 0.707, 95%CI = 0.559–0.895), and recessive (CC vs. TC + TT: adjusted OR = 0.724, 95%CI = 0.524–0.999) models, respectively. Meanwhile, negative associations were also observed between rs107822 and the disorder in male and female subgroups, and genotype CC of the locus was significantly associated with a lower positive symptom score of PANSS compared to genotype TT carrier in the cases group. However, we didn’t observe a significant association between rs1625579 and the disorder. These findings indicate that rs107822 within MiR219-1 might be involved in pathogenesis of schizophrenia and that genotypes TC, CC and allele C of the locus are protective factors for schizophrenia in a Chinese population.
Collapse
Affiliation(s)
- Ya-Jun Sun
- Department of Clinical Laboratory, Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| | - Ying Yu
- Department of Clinical Laboratory, Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| | - Gao-Ceng Zhu
- Department of Clinical Laboratory, Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| | - Zhu-Hua Sun
- Department of Clinical Laboratory, Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| | - Jian Xu
- Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| | - Jian-Hua Cao
- Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| | - Jian-Xin Ge
- Affiliated Mental and Health Center of Nantong University, Nantong Fourth People's Hospital, Nantong 226001, Jiangsu, China
| |
Collapse
|
30
|
Abstract
Schizophrenia is a major psychiatric disorder that lacks a unifying neuropathology, while currently available pharmacological treatments provide only limited benefits to many patients. This review will discuss how the field of neuroepigenetics could contribute to advancements of the existing knowledge on the neurobiology and treatment of psychosis. Genome-scale mapping of DMA methylation, histone modifications and variants, and chromosomal loopings for promoter-enhancer interactions and other epigenetic determinants of genome organization and function are likely to provide important clues about mechanisms contributing to dysregulated expression of synaptic and metabolic genes in schizophrenia brain, including the potential links to the underlying genetic risk architecture and environmental exposures. In addition, studies in animal models are providing a rapidly increasing list of chromatin-regulatory mechanisms with significant effects on cognition and complex behaviors, thereby pointing to the therapeutic potential of epigenetic drug targets in the nervous system.
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
31
|
Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia. Biol Psychiatry 2015; 77:167-76. [PMID: 24993056 PMCID: PMC4247819 DOI: 10.1016/j.biopsych.2014.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. METHODS GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. RESULTS Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. CONCLUSIONS In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity.
Collapse
|
32
|
|
33
|
Hasan A, Mitchell A, Schneider A, Halene T, Akbarian S. Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. Eur Arch Psychiatry Clin Neurosci 2013; 263:273-84. [PMID: 23381549 DOI: 10.1007/s00406-013-0395-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/18/2013] [Indexed: 12/22/2022]
Abstract
Notwithstanding the considerable advances in the treatment options for schizophrenia, the cognitive symptoms in particular are not receptive to antipsychotic treatment and considered one of the main predictors for poor social and functional outcome of the disease. Recent findings in preclinical model systems indicate that epigenetic modulation might emerge as a promising target for the treatment of cognitive disorders. The aim of this review is to introduce some of the principles of chromatin biology to the reader and to discuss a possible role in the neurobiology and pathophysiology of schizophrenia. We will discuss potential epigenetic targets for drug therapy, including histone deacetylase inhibitors (HDACi). In a second part, conceptual and practical challenges associated with clinical trials of chromatin-modifying drugs in psychiatric patient populations are discussed, including safety profiles, the potential for adverse effects and general issues revolving around pharmacokinetics and pharmacodynamics. Additional investigations are required in order to fully evaluate the potential of HDACi and similar "epigenetic therapies" as novel treatment options for schizophrenia and other psychotic disease.
Collapse
Affiliation(s)
- Alkomiet Hasan
- Deparment of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Nussbaumstr. 7, 80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
34
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
35
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
36
|
Reduced glutamate decarboxylase 65 protein within primary auditory cortex inhibitory boutons in schizophrenia. Biol Psychiatry 2012; 72:734-43. [PMID: 22624794 PMCID: PMC3465514 DOI: 10.1016/j.biopsych.2012.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. METHODS We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. RESULTS GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. CONCLUSIONS Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex.
Collapse
|
37
|
Tao R, Li C, Newburn EN, Ye T, Lipska BK, Herman MM, Weinberger DR, Kleinman JE, Hyde TM. Transcript-specific associations of SLC12A5 (KCC2) in human prefrontal cortex with development, schizophrenia, and affective disorders. J Neurosci 2012; 32:5216-22. [PMID: 22496567 PMCID: PMC3752043 DOI: 10.1523/jneurosci.4626-11.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/14/2023] Open
Abstract
The neuron-specific K(+)-Cl(-) cotransporter SLC12A5, also known as KCC2, helps mediate the electrophysiological effects of GABA. The pattern of KCC2 expression during early brain development suggests that its upregulation drives the postsynaptic switch of GABA from excitation to inhibition. We previously found decreased expression of full-length KCC2 in the postmortem hippocampus of patients with schizophrenia, but not in the dorsolateral prefrontal cortex (DLPFC). Using PCR and rapid amplification of cDNA ends, we discovered several previously unrecognized alternative KCC2 transcripts in both human adult and fetal brain in addition to the previously identified full-length (NM_020708.3) and truncated (AK098371) transcripts. We measured the expression levels of four relatively abundant truncated splice variants, including three novel transcripts (ΔEXON6, EXON2B, and EXON6B) and one previously described transcript (AK098371), in a large human cohort of nonpsychiatric controls across the lifespan, and in patients with schizophrenia and affective disorders. In SH-SY5Y cell lines, these transcripts were translated into proteins and expressed at their predicted sizes. Expression of the EXON6B transcript is increased in the DLPFC of patients with schizophrenia (p = 0.03) but decreased in patients with major depression (p = 0.04). The expression of AK098371 is associated with a GAD1 single nucleotide polymorphism (rs3749034) that previously has been associated with GAD67 expression and risk for schizophrenia. Our data confirm the developmental regulation of KCC2 expression, and provide evidence that KCC2 transcripts are differentially expressed in schizophrenia and affective disorders. Alternate transcripts from KCC2 may participate in the abnormal GABA signaling in the DLPFC associated with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Chao Li
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Erin N. Newburn
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Tianzhang Ye
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205
| | - Barbara K. Lipska
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Mary M. Herman
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205
| | - Joel E. Kleinman
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Thomas M. Hyde
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205
| |
Collapse
|
38
|
Harvey L, Boksa P. A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy. Neuropharmacology 2012; 62:1767-76. [DOI: 10.1016/j.neuropharm.2011.11.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 02/06/2023]
|
39
|
Gos T, Steiner J, Bielau H, Dobrowolny H, Günther K, Mawrin C, Krzyżanowski M, Hauser R, Brisch R, Bernstein HG, Jankowski Z, Braun K, Bogerts B. Differences between unipolar and bipolar I depression in the quantitative analysis of glutamic acid decarboxylase-immunoreactive neuropil. Eur Arch Psychiatry Clin Neurosci 2012; 262:647-55. [PMID: 22526728 PMCID: PMC3491185 DOI: 10.1007/s00406-012-0315-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Alterations in GABAergic neurotransmission are assumed to play a crucial role in the pathophysiology of mood disorders. Glutamic acid decarboxylase (GAD) is the key enzyme in GABA synthesis. This study aimed to differentiate between unipolar and bipolar I depression using quantitative evaluation of GAD-immunoreactive (GAD-ir) neuropil in several brain regions known to be involved in the pathophysiology of mood disorders. Immunohistochemical staining of GAD 65/67 was performed in the orbitofrontal, anterior cingulate and dorsolateral prefrontal cortex (DLPFC), the entorhinal cortex, the hippocampal formation and the medial dorsal and lateral dorsal (LD) thalamic nuclei, with a quantitative densitometric analysis of GAD-ir neuropil. The study was performed on paraffin-embedded brains from 9 unipolar and 12 bipolar I depressed patients (8 and 6 suicidal patients, respectively) and 18 matched controls. In unipolar patients, compared with controls, only the increased relative density of GAD-ir neuropil in the right LD was different from the previous results in depressed suicides from the same cohort (Gos et al. in J Affect Disord 113:45-55, 2009). On the other hand, the left DLPFC was the only area where a significant decrease was observed, specific for bipolar I depression. Significant differences between both diagnostic groups were found in these regions. By revealing abnormalities in the relative density of GAD-ir neuropil in brain structures, our study suggests a diathesis of the GABAergic system in mood disorders, which may differentiate the pathophysiology of unipolar from that of bipolar I depression.
Collapse
Affiliation(s)
- Tomasz Gos
- Institute of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Hendrik Bielau
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Karoline Günther
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Maciej Krzyżanowski
- Institute of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Roman Hauser
- Institute of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Ralf Brisch
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Zbigniew Jankowski
- Institute of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Katharina Braun
- Department of Zoology, Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
40
|
Sequeira PA, Martin MV, Vawter MP. The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis 2012; 45:23-36. [PMID: 21396449 PMCID: PMC3178722 DOI: 10.1016/j.nbd.2011.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 01/19/2023] Open
Abstract
Gene expression changes in brains of individuals with schizophrenia (SZ) have been hypothesized to reflect possible pathways related to pathophysiology and/or medication. Other factors having robust effects on gene expression profiling in brain and possibly influence the schizophrenia transcriptome such as age and pH are examined. Pathways of curated gene expression or gene correlation networks reported in SZ (white matter, apoptosis, neurogenesis, synaptic plasticity, glutamatergic and GABAergic neurotransmission, immune and stress-response, mitochondrial, and neurodevelopment) are not unique to SZ and have been associated with other psychiatric disorders. Suggestions going forward to improve the next decade of profiling: consider multiple brain regions that are carefully dissected, release large datasets from multiple brain regions in controls to better understand neurocircuitry, integrate genetics and gene expression, measure expression variants on genome wide level, peripheral biomarker studies, and analyze the transcriptome across a developmental series of brains. Gene expression, while an important feature of the genomic landscape, requires further systems biology to advance from control brains to a more precise definition of the schizophrenia interactome.
Collapse
Affiliation(s)
- P. Adolfo Sequeira
- Functional Genomics Laboratory Department of Psychiatry and Human Behavior School of Medicine University of California, Irvine Irvine CA 92697-4260 (949) 824-9014
| | - Maureen V. Martin
- Functional Genomics Laboratory Department of Psychiatry and Human Behavior School of Medicine University of California, Irvine Irvine CA 92697-4260 (949) 824-9014
| | - Marquis P. Vawter
- Functional Genomics Laboratory Department of Psychiatry and Human Behavior School of Medicine University of California, Irvine Irvine CA 92697-4260 (949) 824-9014
| |
Collapse
|
41
|
Vawter MP, Mamdani F, Macciardi F. An integrative functional genomics approach for discovering biomarkers in schizophrenia. Brief Funct Genomics 2011; 10:387-99. [PMID: 22155586 DOI: 10.1093/bfgp/elr036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a complex disorder resulting from both genetic and environmental causes with a lifetime prevalence world-wide of 1%; however, there are no specific, sensitive and validated biomarkers for SZ. A general unifying hypothesis has been put forward that disease-associated single nucleotide polymorphisms (SNPs) from genome-wide association study (GWAS) are more likely to be associated with gene expression quantitative trait loci (eQTL). We will describe this hypothesis and review primary methodology with refinements for testing this paradigmatic approach in SZ. We will describe biomarker studies of SZ and testing enrichment of SNPs that are associated both with eQTLs and existing GWAS of SZ. SZ-associated SNPs that overlap with eQTLs can be placed into gene-gene expression, protein-protein and protein-DNA interaction networks. Further, those networks can be tested by reducing/silencing the gene expression levels of critical nodes. We present pilot data to support these methods of investigation such as the use of eQTLs to annotate GWASs of SZ, which could be applied to the field of biomarker discovery. Those networks that have association with SNP markers, especially cis-regulated expression, might lead to a more clear understanding of important candidate genes that predispose to disease and alter expression. This method has general application to many complex disorders.
Collapse
Affiliation(s)
- Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry, University of California, Irvine, USA.
| | | | | |
Collapse
|
42
|
Schreiber S, Bernstein HG, Fendrich R, Stauch R, Ketzler B, Dobrowolny H, Steiner J, Schreiber F, Bogerts B. Increased density of GAD65/67 immunoreactive neurons in the posterior subiculum and parahippocampal gyrus in treated patients with chronic schizophrenia. World J Biol Psychiatry 2011; 12:57-65. [PMID: 21250934 DOI: 10.3109/15622975.2010.539270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Alterations of glutamic acid decarboxylase (GAD) play a crucial role in schizophrenic pathology. While GAD has been studied in several brain regions, its expression in the posterior hippocampus formation has not been investigated in schizophrenia. METHODS We studied the brains of 17 patients with chronic schizophrenia and 15 controls. Using the optical dissector method we counted GAD65/67 immunoreactive neurons and pyramidal cells in the posterior hippocampus, subiculum, and parahippocampal gyrus, and measured the cortical thickness in posterior subiculum and parahippocampal gyrus. Patients had received typical neuroleptics for the mean of 20.8 years. RESULTS In the patients we observed a significant increase of GAD immunoreactive neurons in the subiculum (left/right P = 0.004) and the parahippocampal gyrus (left P = 0.001, right P = 0.006). The hippocampus showed no or only subtle trends towards higher GAD densities. The density of pyramidal neurons and cortical thickness did not differ between the groups. A significant association between GAD density and the duration of illness was found in women with schizophrenia. CONCLUSIONS The current data on GAD65/67 indicates a dysregulation of the GABAergic system in schizophrenia patients that may be associated with cognitive decline. However, a long term effect of neuroleptics on the GABAergic system cannot be excluded.
Collapse
|
43
|
Lim AL, Taylor DA, Malone DT. Isolation rearing in rats: effect on expression of synaptic, myelin and GABA-related immunoreactivity and its utility for drug screening via the subchronic parenteral route. Brain Res 2011; 1381:52-65. [PMID: 21241674 DOI: 10.1016/j.brainres.2011.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 01/08/2011] [Indexed: 12/31/2022]
Abstract
Depriving weaned rats of social contact by rearing them in isolation brings about a spectrum of behavioural and neuropathological changes in adulthood which resemble some of the characteristics observed in schizophrenia. Hence, isolation rearing provides a non-pharmacological means to induce in an animal model certain aspects of schizophrenia with a neurodevelopmental origin. We compared the prepulse inhibition and locomotor activity behaviours in group-reared and isolation-reared rats in the context of determining the robustness of any behavioural changes following a subchronic parenteral drug administration protocol. The expression of synaptic, myelin and GABA-related proteins was also assessed in the brains of these rats using semi-quantitative fluorescence immunohistochemistry. Compared to their group-reared counterparts, isolation-reared rats displayed disruption in prepulse inhibition which was lost after repeated testing and subchronic vehicle administration. However, isolation-reared rats showed open-field hyperlocomotion post-subchronic vehicle treatment compared to group-reared rats. Isolation rearing resulted in reduced expression of synaptophysin, synapsin I, myelin basic protein and GABA(B1) receptor proteins, along with an increase in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Of the brain areas examined these observed changes were localised to the hippocampal regions and the substantia nigra. These results suggest an alteration in the synaptic, myelin and GABA-related functions in the brains of isolation-reared rats that displayed behavioural anomalies. Since dysfunction in these systems has also been implicated in schizophrenia, our findings provide additional evidence to support the use of isolation rearing for schizophrenia research; however, its use in the screening of putative antipsychotics following subchronic administration needs to be undertaken warily.
Collapse
Affiliation(s)
- Ann Li Lim
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| | | | | |
Collapse
|
44
|
Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 2010; 60:1007-16. [PMID: 21074545 DOI: 10.1016/j.neuropharm.2010.10.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly clear that a dysfunction of the GABAergic/glutamatergic network in telencephalic brain structures may be the pathogenetic mechanism underlying psychotic symptoms in schizophrenia (SZ) and bipolar (BP) disorder patients. Data obtained in Costa's laboratory (1996-2009) suggest that this dysfunction may be mediated primarily by a downregulation in the expression of GABAergic genes (e.g., glutamic acid decarboxylase₆₇[GAD₆₇] and reelin) associated with DNA methyltransferase (DNMT)-dependent hypermethylation of their promoters. A pharmacological strategy to reduce the hypermethylation of GABAergic promoters is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that induce DNA-demethylation when administered at doses that facilitate chromatin remodeling. The benefits elicited by combining VPA with antipsychotics in the treatment of BP disorder suggest that an investigation of the epigenetic interaction of these drugs is warranted. Our studies in mice suggest that when associated with VPA, clinically relevant doses of clozapine elicit a synergistic potentiation of VPA-induced GABAergic promoter demethylation. Olanzapine and quetiapine (two clozapine congeners) also facilitate chromatin remodeling but at doses higher than used clinically, whereas haloperidol and risperidone are inactive. Hence, the synergistic potentiation of VPA's action on chromatin remodeling by clozapine appears to be a unique property of the dibenzepines and is independent of their action on catecholamine or serotonin receptors. By activating DNA-demethylation, the association of clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be considered a promising treatment strategy for normalizing GABAergic promoter hypermethylation and the GABAergic gene expression downregulation detected in the postmortem brain of SZ and BP disorder patients. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
45
|
Abstract
The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
46
|
Marenco S, Savostyanova AA, van der Veen JW, Geramita M, Stern A, Barnett AS, Kolachana B, Radulescu E, Zhang F, Callicott JH, Straub RE, Shen J, Weinberger DR. Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology 2010; 35:1708-17. [PMID: 20357758 PMCID: PMC2891897 DOI: 10.1038/npp.2010.35] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/26/2010] [Accepted: 02/24/2010] [Indexed: 12/15/2022]
Abstract
Gamma-aminobutyric acid (GABA)-ergic transmission is critical for normal cortical function and is likely abnormal in a variety of neuropsychiatric disorders. We tested the in vivo effects of variations in two genes implicated in GABA function on GABA concentrations in prefrontal cortex of living subjects: glutamic acid decarboxylase 1 (GAD1), which encodes GAD67, and catechol-o-methyltransferase (COMT), which regulates synaptic dopamine in the cortex. We studied six single nucleotide polymorphisms (SNPs) in GAD1 previously associated with risk for schizophrenia or cognitive dysfunction and the val158met polymorphism in COMT in 116 healthy volunteers using proton magnetic resonance spectroscopy. Two of the GAD1 SNPs (rs1978340 (p=0.005) and rs769390 (p=0.004)) showed effects on GABA levels as did COMT val158met (p=0.04). We then tested three SNPs in GAD1 (rs1978340, rs11542313, and rs769390) for interaction with COMT val158met based on previous clinical results. In this model, rs11542313 and COMT val158met showed significant main effects (p=0.001 and 0.003, respectively) and a trend toward a significant interaction (p=0.05). Interestingly, GAD1 risk alleles for schizophrenia were associated with higher GABA/Cre, and Val-Val homozygotes had high GABA/Cre levels when on a GAD1 risk genotype background (N=6). These results support the importance of genetic variation in GAD1 and COMT in regulating prefrontal cortical GABA function. The directionality of the effects, however, is inconsistent with earlier evidence of decreased GABA activity in schizophrenia.
Collapse
Affiliation(s)
- Stefano Marenco
- Clinical Brain Disorders Branch, GCAP, IRP, NIMH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xu Y, Li F, Zhang B, Zhang K, Zhang F, Huang X, Sun N, Ren Y, Sui M, Liu P. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 2010; 119:219-27. [PMID: 20347265 DOI: 10.1016/j.schres.2010.02.1070] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/18/2010] [Accepted: 02/26/2010] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the stability and translation of mRNA targets. Increasing evidence suggests that miRNAs could be involved in the initiation and progression of neuropsychiatric disorders. Prior to this study, six miRNAs had been reported to show a significantly abnormal expression level in schizophrenic brains. Also, common single nucleotide polymorphisms within two miRNA transcripts have shown genetic associations with schizophrenia. However, it remains largely unknown whether variants in these miRNA genes and/or in their target sites are associated with schizophrenia. Here, we selected the above eight miRNAs, plus 15 of their experimentally validated target sites, as candidate susceptibility factors for schizophrenia, for mutation screening and further association studies in Chinese case-control samples. We identified a new potentially functional variant ss178077483 located in the pre-mir-30e, which was strongly associated with schizophrenia (allelic P=0.00017; genotypic P=0.00015), with an odds ratio of 4.952 (95% confidence interval: 1.887-12.998). We also demonstrated that this new variant ss178077483, combined with mir-30e rs7556088 and mir-24-MAPK14 rs3804452, showed a weak gene-gene interaction for schizophrenia risk (P=0.001). In addition, analysis of gene expression demonstrated that expression of the mature mir-30e in the peripheral leukocytes was significantly higher in patients' group than in the control group (P=6.79e-7).This is the first study to indicate that mir-30e ss178077483 plays a role in schizophrenia susceptibility. It suggests that the contribution of mir-30e to the processes that lead to schizophrenia should be further investigated.
Collapse
Affiliation(s)
- Yong Xu
- School of Medicine, Tsinghua University, Hai Dian District, Beijing 100084, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tayoshi S, Nakataki M, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S, Iga JI, Ueno SI, Harada M, Ohmori T. GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010; 117:83-91. [PMID: 20022731 DOI: 10.1016/j.schres.2009.11.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 11/18/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is thought to play a role in the pathophysiology of schizophrenia. High magnetic field proton magnetic resonance spectroscopy ((1)H-MRS) provides a reliable measurement of GABA in specific regions of the brain. This study measured GABA concentration in the anterior cingulate cortex (ACC) and in the left basal ganglia (ltBG) in 38 patients with chronic schizophrenia and 29 healthy control subjects. There was no significant difference in GABA concentration between the schizophrenia patients and the healthy controls in either the ACC (1.36+/-0.45 mmol/l in schizophrenia patients and 1.52+/-0.54 mmol/l in control subjects) or the ltBG (1.13+/-0.26 mmol/l in schizophrenia patients and 1.18+/-0.20 mmol/l in control subjects). Among the right handed schizophrenia patients, the GABA concentration in the ltBG was significantly higher in patients taking typical antipsychotics (1.25+/-0.24 mmol/l) than in those taking atypical antipsychotics (1.03+/-0.24 mmol/l, p=0.026). In the ACC, the GABA concentration was negatively correlated with the dose of the antipsychotics (rs=-0.347, p=0.035). In the ltBG, the GABA concentration was positively correlated with the dose of the anticholinergics (rs=0.403, p=0.015). To the best of our knowledge, this is the first study to have directly measured GABA concentrations in schizophrenia patients using (1)H-MRS. Our results suggest that there are no differences in GABA concentrations in the ACC or the ltBG of schizophrenia patients compared to healthy controls. Antipsychotic medication may cause changes in GABA concentration, and atypical and typical antipsychotics may have differing effects. It is possible that medication effects conceal inherent differences in GABA concentrations between schizophrenia patients and healthy controls.
Collapse
Affiliation(s)
- Shin'Ya Tayoshi
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kajiwara Y, Franciosi S, Takahashi N, Krug L, Schmeidler J, Taddei K, Haroutunian V, Fried U, Ehrlich M, Martins RN, Gandy S, Buxbaum JD. Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease. Mol Neurodegener 2010; 5:1. [PMID: 20205790 PMCID: PMC2823744 DOI: 10.1186/1750-1326-5-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/14/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. RESULTS We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. CONCLUSIONS These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Sonia Franciosi
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Nagahide Takahashi
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Lisa Krug
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - James Schmeidler
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Exercise Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- James J Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Ulrik Fried
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Michelle Ehrlich
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Exercise Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Samuel Gandy
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| |
Collapse
|
50
|
Abstract
Epigenetic regulators of gene expression including DNA cytosine methylation and posttranslational histone modifications could play a role for some of the molecular alterations associated with schizophrenia. For example, in prefrontal cortex of subjects with schizophrenia, abnormal DNA or histone methylation at sites of specific genes and promoters is associated with changes in RNA expression. These findings are of interest from a neurodevelopmental perspective because there is increasing evidence that epigenetic markings for a substantial portion of genes and loci are highly regulated during the first years of life. Furthermore, there is circumstantial evidence that a subset of antipsychotic drugs, including the atypical, Clozapine, interfere with chromatin remodeling mechanisms. Challenges for the field include (1) no clear consensus yet regarding disease-associated changes, (2) the lack of cell-specific chromatin assays which makes it difficult to ascribe epigenetic alterations to specific cell populations, and (3) lack of knowledge about the stability or turnover of epigenetic markings at specific loci in (brain) chromatin. Despite these shortcomings, the study of DNA and histone modifications in chromatin extracted from diseased and control brain tissue is likely to provide valuable insight into the genomic risk architecture of schizophrenia, particularly in the large majority of cases for which a straightforward genetic cause still remains elusive,
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA.
| |
Collapse
|