1
|
Brown G. Retinoic acid receptor regulation of decision-making for cell differentiation. Front Cell Dev Biol 2023; 11:1182204. [PMID: 37082619 PMCID: PMC10110968 DOI: 10.3389/fcell.2023.1182204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
All-trans retinoic acid (ATRA) activation of retinoic acid receptors (RARs) is crucial to an organism's proper development as established by findings for mouse foetuses from dams fed a vitamin A-deficient diet. ATRA influences decision-making by embryonic stem (ES) cells for differentiation including lineage fate. From studies of knockout mice, RARα and RARγ regulate haematopoiesis whereby active RARα modulates the frequency of decision-making for myeloid differentiation, but is not essential for myelopoiesis, and active RARγ supports stem cell self-renewal and maintenance. From studies of zebrafish embryo development, active RARγ plays a negative role in stem cell decision-making for differentiation whereby, in the absence of exogenous ATRA, selective agonism of RARγ disrupted stem cell decision-making for differentiation patterning for development. From transactivation studies, 0.24 nM ATRA transactivated RARγ and 19.3 nM (80-fold more) was needed to transactivate RARα. Therefore, the dose of ATRA that cells are exposed to in vivo, from gradients created by cells that synthesize and metabolize, is important to RARγ versus RARα and RARγ activation and balancing of the involvements in modulating stem cell maintenance versus decision-making for differentiation. RARγ activation favours stemness whereas concomitant or temporal activation of RARγ and RARα favours differentiation. Crosstalk with signalling events that are provoked by membrane receptors is also important.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Segal D, Coulombe S, Sim J, Dostie J. A conserved HOTAIRM1-HOXA1 regulatory axis contributes early to neuronal differentiation. RNA Biol 2023; 20:1523-1539. [PMID: 37743644 PMCID: PMC10619521 DOI: 10.1080/15476286.2023.2258028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 09/26/2023] Open
Abstract
HOTAIRM1 is unlike most long non-coding RNAs in that its sequence is highly conserved across mammals. Such evolutionary conservation points to it having a role in key cellular processes. We previously reported that HOTAIRM1 is required to curb premature activation of downstream HOXA genes in a cell model recapitulating their sequential induction during development. We found that it regulates 3' HOXA gene expression by a mechanism involving epigenetic and three-dimensional chromatin changes. Here we show that HOTAIRM1 participates in proper progression through the early stages of neuronal differentiation. We found that it can associate with the HOXA1 transcription factor and contributes to its downstream transcriptional program. Particularly, HOTAIRM1 affects the NANOG/POU5F1/SOX2 core pluripotency network maintaining an undifferentiated cell state. HOXA1 depletion similarly perturbed expression of these pluripotent factors, suggesting that HOTAIRM1 is a modulator of this transcription factor pathway. Also, given that binding of HOTAIRM1 to HOXA1 was observed in different cell types and species, our results point to this ribonucleoprotein complex as an integral part of a conserved HOTAIRM1-HOXA1 regulatory axis modulating the transition from a pluripotent to a differentiated neuronal state.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Samy Coulombe
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- School of Computer Science, and McGill Center for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Jasper Sim
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Josée Dostie
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Su G, Wang W, Zhao X, Chen J, Zheng J, Liu M, Bi J, Guo D, Chen B, Zhao Z, Shi J, Zhang L, Lu W. Enhancer architecture-dependent multilayered transcriptional regulation orchestrates RA signaling-induced early lineage differentiation of ESCs. Nucleic Acids Res 2021; 49:11575-11595. [PMID: 34723340 PMCID: PMC8599802 DOI: 10.1093/nar/gkab1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Signaling pathway-driven target gene transcription is critical for fate determination of embryonic stem cells (ESCs), but enhancer-dependent transcriptional regulation in these processes remains poorly understood. Here, we report enhancer architecture-dependent multilayered transcriptional regulation at the Halr1–Hoxa1 locus that orchestrates retinoic acid (RA) signaling-induced early lineage differentiation of ESCs. We show that both homeobox A1 (Hoxa1) and Hoxa adjacent long non-coding RNA 1 (Halr1) are identified as direct downstream targets of RA signaling and regulated by RARA/RXRA via RA response elements (RAREs). Chromosome conformation capture-based screens indicate that RA signaling promotes enhancer interactions essential for Hoxa1 and Halr1 expression and mesendoderm differentiation of ESCs. Furthermore, the results also show that HOXA1 promotes expression of Halr1 through binding to enhancer; conversely, loss of Halr1 enhances interaction between Hoxa1 chromatin and four distal enhancers but weakens interaction with chromatin inside the HoxA cluster, leading to RA signaling-induced Hoxa1 overactivation and enhanced endoderm differentiation. These findings reveal complex transcriptional regulation involving synergistic regulation by enhancers, transcription factors and lncRNA. This work provides new insight into intrinsic molecular mechanisms underlying ESC fate determination during RA signaling-induced early differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wenbin Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Xueyuan Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jun Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jian Zheng
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Man Liu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jinfang Bi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Dianhao Guo
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Bohan Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jiandang Shi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Lei Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wange Lu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| |
Collapse
|
4
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
5
|
Tang D, Zhang Z, Zboril E, Wetzel MD, Xu X, Zhang W, Chen L, Liu Z. Pontin Functions as A Transcriptional Co-activator for Retinoic Acid-induced HOX Gene Expression. J Mol Biol 2021; 433:166928. [PMID: 33713676 PMCID: PMC8184613 DOI: 10.1016/j.jmb.2021.166928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Pontin is a AAA+ ATPase protein that has functions in various biological contexts including gene transcription regulation, chromatin remodeling, DNA damage sensing and repair, as well as assembly of protein and ribonucleoprotein complexes. Pontin is known to regulate the transcription of several important signaling pathways, including Wnt signaling. However, its role in early embryonic signaling regulation remains unclear. Retinoic acid (RA) signaling plays a central role in vertebrate development. Using an in vivo biotin tagging technology, we mapped the genome-wide binding pattern of Pontin before and after RA-induced differentiation in the pluripotent embryo carcinoma cell line NTERA-2. Biotin ChIP-seq revealed significant changes in genome-wide Pontin binding sites upon RA stimulation. We also identified a substantial amount of overlapping binding peaks between Pontin and RARα, especially on all of the HOX gene loci (A-D clusters). Pontin knockdown experiments showed that its chromatin binding at the HOX gene clusters is required for RA-induced HOX gene expression. Furthermore, we performed Global Run-On sequencing (GRO-seq) to map de novo transcripts genome-wide and found that Pontin knockdown significantly diminished nascent HOX gene transcripts, indicating that Pontin regulates HOX gene expression at the transcriptional level. Finally, proteomic analysis demonstrated that Pontin associates with chromatin organization/remodeling complexes and various other functional complexes. Altogether, we have demonstrated that Pontin is a critical transcriptional co-activator for RA-induced HOX gene activation.
Collapse
Affiliation(s)
- Dan Tang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emily Zboril
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael D Wetzel
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Asson-Batres MA, Norwood CW. Effects of vitamin A and retinoic acid on mouse embryonic stem cells and their differentiating progeny. Methods Enzymol 2021; 637:341-365. [PMID: 32359652 DOI: 10.1016/bs.mie.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Embryonic development is controlled by retinoids, and one approach that has been used to investigate the mechanisms for retinoid actions in developmental processes has been to study the effects of adding retinoids to cultures of pluripotent embryonic stem cells (ESC). To date, most in vitro retinoid research has been directed at deciphering the actions of all-trans retinoic acid (atRA). atRA is a derivative of all-trans retinol (a.k.a. vitamin A, VA), which mammals can generate via an enzyme-catalyzed pathway. atRA's effects on development result from its (1) activation of receptor complexes (RARs and RXRs) in the nucleus which then bind to and activate RA response elements (RAREs) in genes and (2) its interactions with processes that are initiated in the cytoplasm. While much work has focused on the impact of atRA on cell differentiation, VA, itself, has been shown to exert effects on the maintenance of ESC identity that are not dependent upon classic RA-signaling pathways. In this chapter, we present results from our laboratory and others using well-documented approaches for investigating the effects of retinoids on the differentiation of ESC in vitro and introduce a novel method that uses chemically-defined growth conditions. The merits of each approach are discussed.
Collapse
|
7
|
Erickson RP. Autosomal recessive diseases among the Athabaskans of the southwestern United States: anthropological, medical, and scientific aspects. J Appl Genet 2021; 62:445-453. [PMID: 33880741 PMCID: PMC8057858 DOI: 10.1007/s13353-021-00630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
The peopling of the Americas by Native Americans occurred in 4 waves of which the last was Nadene language speakers of whom Athabaskans are the largest group. As the Europeans were entering the Southwestern states of the USA, Athabaskan hunting-gathering tribes were migrating South from Canada along the Rocky Mountains and undergoing potential bottlenecks reflected in autosomal recessive diseases shared by Apaches and Navajos. About 300 years ago, the Navajo developing a sedentary culture learned from Pueblo Indians while the Apache remained hunter-gathers. Although most of the tribe was rounded up and forced to relocate to Bosque Redondo, the adult breeding population was large enough to prevent a genetic bottleneck. However, some Navajo underwent further population bottlenecks while hiding from the brutal US Army action (under Kit Carson’s guidance). This led to an increased frequency of other autosomal recessive diseases. Recent advances in population genetics, pathophysiology of the diseases, and social/ethical issues concerning their study are reviewed.
Collapse
|
8
|
Wei C, Xu X, Zhu H, Zhang X, Gao Z. Promotive role of microRNA‑150 in hippocampal neurons apoptosis in vascular dementia model rats. Mol Med Rep 2021; 23:257. [PMID: 33576461 PMCID: PMC7893740 DOI: 10.3892/mmr.2021.11896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Cognitive impairment is one of the primary features of vascular dementia (VD). However, the specific mechanism underlying the regulation of cognition function in VD is not completely understood. The present study aimed to explore the effects of microRNA (miR)‑150 on VD. To determine the effects of miR‑150 on cognitive function and hippocampal neurons in VD model rats, rats were subjected to intracerebroventricular injections of miR‑150 antagomiR. The Morris water maze test results demonstrated that spatial learning ability was impaired in VD model rats compared with control rats. Moreover, compared with antagomiR negative control (NC), miR‑150 antagomiR alleviated cognitive impairment and enhanced memory ability in VD model rats. The triphenyltetrazolium chloride, Nissl staining and immunohistochemistry results further demonstrated that miR‑150 knockdown improved the activity of hippocampal neurons in VD model rats compared with the antagomiR NC group. To validate the role of miR‑150 in neurons in vitro, the PC12 cell line was used. The flow cytometry and Hoechst 33342/PI double staining results indicated that miR‑150 overexpression significantly increased cell apoptosis compared with the mimic NC group. Moreover, the dual‑luciferase reporter gene assay results indicated that miR‑150 targeted HOXA1 and negatively regulated HOXA1 expression. Therefore, the present study indicated that miR‑150 knockdown ameliorated VD symptoms by upregulating HOXA1 expression in vivo and in vitro.
Collapse
Affiliation(s)
- Chengqun Wei
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuzhi Xu
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Hongyan Zhu
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuyan Zhang
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Zhan Gao
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
9
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. Role of PIWI-like 4 in modulating neuronal differentiation from human embryonal carcinoma cells. RNA Biol 2020; 17:1613-1624. [PMID: 32372724 DOI: 10.1080/15476286.2020.1757896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PIWI homologs constitute a subclass of the Argonaute family. Traditionally, they have been shown to associate with a specific class of small RNAs, piRNAs, to suppress transposable elements and protect genomic integrity in germ cells. Recent studies imply that PIWI proteins may also exert important biological functions in somatic contexts, including the brain. However, their exact role in neural development remains unknown. Hence we investigated whether PIWI proteins are involved in neuronal differentiation. By using an established cell model for studying neurogenesis, NTera2/D1 (NT2) cells, we found that a particular PIWI homolog, PIWIL4 was increasingly upregulated throughout the course of all-trans retinoic acid (RA)-mediated neuronal differentiation. During this process, PIWIL4 knockdown led to partial recovery of embryonic stem cell markers, while suppressing RA-induced expression of neuronal markers. Consistently, PIWIL4 overexpression further elevated their expression levels. Furthermore, co-immunoprecipitation revealed an RA-induced interaction between PIWIL4 and the H3K27me3 demethylase UTX. Chromatin immunoprecipitation showed that this interaction could be essential for the removal of H3K27me3 from the promoters of RA-inducible genes. By a similar mechanism, PIWIL4 knockdown also suppressed the expression of PTN and NLGN3, two important neuronal factors secreted to regulate glioma activity. We further noted that the conditioned medium collected from PIWIL4-silenced NT2 cells significantly reduced the proliferation of glioma cells. Thus, our data suggest a novel somatic role of PIWIL4 in modulating the expression of neuronal genes that can be further characterized to promote neuronal differentiation and to modulate the activity of glioma cells.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
10
|
Serio RN, Gudas LJ. Modification of stem cell states by alcohol and acetaldehyde. Chem Biol Interact 2019; 316:108919. [PMID: 31846616 PMCID: PMC7036011 DOI: 10.1016/j.cbi.2019.108919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Ethanol (EtOH) is a recreationally ingested compound that is both teratogenic and carcinogenic in humans. Because of its abundant consumption worldwide and the vital role of stem cells in the formation of birth defects and cancers, delineating the effects of EtOH on stem cell function is currently an active and urgent pursuit of scientific investigation to explicate some of the mechanisms contributing to EtOH toxicity. Stem cells represent a primordial, undifferentiated phase of development; thus encroachment on normal physiologic processes of differentiation into terminal lineages by EtOH can greatly alter the function of progenitors and terminally differentiated cells, leading to pathological consequences that manifest as fetal alcohol spectrum disorders and cancers. In this review we explore the disruptive role of EtOH in differentiation of stem cells. Our primary objective is to elucidate the mechanisms by which EtOH alters differentiation-related gene expression and lineage specifications, thus modifying stem cells to promote pathological outcomes. We additionally review the effects of a reactive metabolite of EtOH, acetaldehyde (AcH), in causing both differentiation defects in stem cells as well as genomic damage that incites cellular aging and carcinogenesis.
Collapse
Affiliation(s)
- Ryan N Serio
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA.
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA; Department of Pharmacology, Weill Cornell Medical College of Cornell University, USA.
| |
Collapse
|
11
|
Serio RN, Lu C, Gross SS, Gudas LJ. Different Effects of Knockouts in ALDH2 and ACSS2 on Embryonic Stem Cell Differentiation. Alcohol Clin Exp Res 2019; 43:1859-1871. [PMID: 31283017 PMCID: PMC6722009 DOI: 10.1111/acer.14146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ethanol (EtOH) is a teratogen that causes severe birth defects, but the mechanisms by which EtOH affects stem cell differentiation are unclear. Our goal here is to examine the effects of EtOH and its metabolites, acetaldehyde (AcH) and acetate, on embryonic stem cell (ESC) differentiation. METHODS We designed ESC lines in which aldehyde dehydrogenase (ALDH2, NCBI#11669) and acyl-CoA synthetase short-chain family member 2 (ACSS2, NCBI#60525) were knocked out by CRISPR-Cas9 technology. We selected these genes because of their key roles in EtOH oxidation in order to dissect the effects of EtOH metabolism on differentiation. RESULTS By using kinetic assays, we confirmed that AcH is primarily oxidized by ALDH2 rather than ALDH1A2. We found increases in mRNAs of differentiation-associated genes (Hoxa1, Cyp26a1, and RARβ2) upon EtOH treatment of WT and Acss2-/- ESCs, but not Aldh2-/- ESCs. The absence of ALDH2 reduced mRNAs of some pluripotency factors (Nanog, Sox2, and Klf4). Treatment of WT ESCs with AcH or 4-hydroxynonenal (4-HNE), another substrate of ALDH2, increased differentiation-associated transcripts compared to levels in untreated cells. mRNAs of genes involved in retinoic acid (RA) synthesis (Stra6 and Rdh10) were also increased by EtOH, AcH, and 4-HNE treatment. Retinoic acid receptor-γ (RARγ) is required for both EtOH- and AcH-mediated increases in Hoxa1 and Stra6, demonstrating the critical role of RA:RARγ signaling in AcH-induced ESC differentiation. CONCLUSIONS ACSS2 knockouts showed no changes in differentiation phenotype, while pluripotency-related transcripts were decreased in ALDH2 knockout ESCs. We demonstrate that AcH increases differentiation-associated mRNAs in ESCs via RARγ.
Collapse
Affiliation(s)
- Ryan N Serio
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Steven S Gross
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Lorraine J Gudas
- Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
12
|
CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. J Mol Biol 2018; 430:4168-4182. [PMID: 30153436 PMCID: PMC6186513 DOI: 10.1016/j.jmb.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at RA-responsive elements and/or RA-responsive regions of RA-regulated genes. Coactivator-associated arginine methyltransferase 1 (CARM1, PRMT4) is a protein arginine methyltransferase that also functions as a transcriptional coactivator. Previous studies highlight CARM1's importance in the differentiation of different cell types. We address CARM1 function during RA-induced differentiation of murine embryonic stem cells (mESCs) using shRNA lentiviral transduction and CRISPR/Cas9 technology to deplete CARM1 in mESCs. We identify CARM1 as a novel transcriptional coactivator required for the RA-associated decrease in Rex1 (Zfp42) and for the RA induction of a subset of RA-regulated genes, including CRABP2 and NR2F1 (Coup-TF1). Furthermore, CARM1 is required for mESCs to differentiate into extraembryonic endoderm in response to RA. We next characterize the epigenetic mechanisms that contribute to RA-induced transcriptional activation of CRABP2 and NR2F1 in mESCs and show for the first time that CARM1 is required for this activation. Collectively, our data demonstrate that CARM1 is required for transcriptional activation of a subset of RA target genes, and we uncover changes in the recruitment of Suz12 and the epigenetic H3K27me3 and H3K27ac marks at gene regulatory regions for CRABP2 and NR2F1 during RA-induced differentiation.
Collapse
|
13
|
Laursen KB, Gudas LJ. Combinatorial knockout of RARα, RARβ, and RARγ completely abrogates transcriptional responses to retinoic acid in murine embryonic stem cells. J Biol Chem 2018; 293:11891-11900. [PMID: 29848550 PMCID: PMC6066298 DOI: 10.1074/jbc.ra118.001951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (RA), a potent inducer of cellular differentiation, functions as a ligand for retinoic acid receptors (RARα, β, and γ). RARs are activated by ligand binding, which induces transcription of direct genomic targets. However, whether embryonic stem cells respond to RA through routes that do not involve RARs is unknown. Here, we used CRISPR technology to introduce biallelic frameshift mutations in RARα, RARβ, and RARγ, thereby abrogating all RAR functions in murine embryonic stem cells. We then evaluated RA-responsiveness of the RAR-null cells using RNA-Seq transcriptome analysis. We found that the RAR-null cells display no changes in transcripts in response to RA, demonstrating that the RARs are essential for the regulation of all transcripts in murine embryonic stem cells in response to RA. Our key finding, that in embryonic stem cells the transcriptional effects of RA all depend on RARs, addresses a long-standing topic of discussion in the field of retinoic acid signaling.
Collapse
Affiliation(s)
| | - Lorraine J Gudas
- From the Departments of Pharmacology and
- Medicine, Weill Cornell Medical College Cornell University, New York, New York 10065
| |
Collapse
|
14
|
Hu Q, Khanna P, Ee Wong BS, Lin Heng ZS, Subhramanyam CS, Thanga LZ, Sing Tan SW, Baeg GH. Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget 2017; 9:4223-4238. [PMID: 29423117 PMCID: PMC5790534 DOI: 10.18632/oncotarget.23786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in fundamental cellular processes such as proliferation and survival. Here we investigated the effect of oxidative stress on stem cell maintenance and neuronal differentiation in a human embryonic stem cell (hESC) model, Ntera2 (NT2). CM-H2DCFDA and DHE assays confirmed that the oxidizing agent paraquat could induce a high level of ROS in NT2 cells. Quantitative PCR, Western blotting and immunocytochemistry showed that paraquat-induced oxidative stress suppressed the expression of stemness markers, including NANOG, OCT4 and TDGF1, whereas it enhanced the spontaneous expression of neuronal differentiation markers such as PAX6, NEUROD1, HOXA1, NCAM, GFRA1 and TUJ1. The treated cells even exhibited a strikingly different morphology from control cells, extending out long neurite-like processes. The neurogenic effect of ROS on stem cell behaviour was confirmed by the observations that the expression of neuronal markers in the paraquat-treated cells was suppressed by an antioxidant while further enhanced by knocking down Nrf2, a key transcription factor associated with antioxidant signaling. Lastly, paraquat dose-dependently activated the neurogenic MAPK-ERK1/2, which can be reversed by the MEK1/2 inhibitor SL327. Our study suggests that excessive intracellular ROS can trigger the exit from stem cell state and promote the neuronal differentiation of hESCs, and that MAPK-ERK1/2 signaling may play a proactive role in the ROS-induced neuronal differentiation of hESCs.
Collapse
Affiliation(s)
- Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | | | - Lal Zo Thanga
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Sharon Wui Sing Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| |
Collapse
|
15
|
Kona SL, Shrestha A, Yi X, Joseph S, Barona HM, Martinez-Ceballos E. RARβ2-dependent signaling represses neuronal differentiation in mouse ES cells. Differentiation 2017; 98:55-61. [PMID: 29154149 PMCID: PMC5726922 DOI: 10.1016/j.diff.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Embryonic Stem (ES) cells are pluripotent cells that can be induced to differentiate into cells of all three lineages: mesoderm, endoderm, and ectoderm. In culture, ES cells can be differentiated into mature neurons by treatment with Retinoic Acid (RA) and this effect is mediated mainly through the activation of the RA nuclear receptors (RAR α, β, and γ), and their isoforms. However, little is known about the role played by specific RAR types on ES cell differentiation. Here, we found that treatment of ES cells with AC55649, an RARβ2 agonist, increased endodermal marker gene expression. On the other hand, we found that the inhibition of RARβ with 5μM LE135, together with RA treatment, increased the efficiency of mouse ES cell differentiation into neurons by more than 4-fold as compared to cells treated with RA only. Finally, we performed proteomic analyses on ES cells treated with RA vs RA plus AC55649 in order to identify the signaling pathways activated by the RARβ agonist. Our proteomic analyses using antibody microarrays indicated that proteins such as p38 and AKT were upregulated in cells treated with RA plus the agonist, as compared to cells treated with RA alone. Our results indicate that RARβ may function as a repressor of neuronal differentiation through the activation of major cell signaling pathways, and that the pharmacological inhibition of this nuclear receptor may constitute a novel method to increase the efficiency of ES to neuronal differentiation in culture.
Collapse
Affiliation(s)
- Sri L Kona
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Amita Shrestha
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Xiaoping Yi
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Serenthia Joseph
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Humberto Munoz Barona
- Department of Physics and Mathematics, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Eduardo Martinez-Ceballos
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA.
| |
Collapse
|
16
|
Chen Y, Reese DH. Corexit-EC9527A Disrupts Retinol Signaling and Neuronal Differentiation in P19 Embryonal Pluripotent Cells. PLoS One 2016; 11:e0163724. [PMID: 27684493 PMCID: PMC5042420 DOI: 10.1371/journal.pone.0163724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022] Open
Abstract
Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), which controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. The surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell.
Collapse
Affiliation(s)
- Yanling Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, United States of America
- * E-mail:
| | - David H. Reese
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, United States of America
| |
Collapse
|
17
|
Mendoza-Parra MA, Malysheva V, Mohamed Saleem MA, Lieb M, Godel A, Gronemeyer H. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis. Genome Res 2016; 26:1505-1519. [PMID: 27650846 PMCID: PMC5088593 DOI: 10.1101/gr.208926.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
Cell lineages, which shape the body architecture and specify cell functions, derive from the integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a multiplicity of decisions at several levels to modulate the activity of dynamic gene regulatory networks (GRNs), which ensure both general and cell-specific functions within a given lineage, thereby establishing cell fates. Significant knowledge about these events and the involved key drivers comes from homogeneous cell differentiation models. Even a single chemical trigger, such as the morphogen all-trans retinoic acid (RA), can induce the complex network of gene-regulatory decisions that matures a stem/precursor cell to a particular step within a given lineage. Here we have dissected the GRNs involved in the RA-induced neuronal or endodermal cell fate specification by integrating dynamic RXRA binding, chromatin accessibility, epigenetic promoter epigenetic status, and the transcriptional activity inferred from RNA polymerase II mapping and transcription profiling. Our data reveal how RA induces a network of transcription factors (TFs), which direct the temporal organization of cognate GRNs, thereby driving neuronal/endodermal cell fate specification. Modeling signal transduction propagation using the reconstructed GRNs indicated critical TFs for neuronal cell fate specification, which were confirmed by CRISPR/Cas9-mediated genome editing. Overall, this study demonstrates that a systems view of cell fate specification combined with computational signal transduction models provides the necessary insight in cellular plasticity for cell fate engineering. The present integrated approach can be used to monitor the in vitro capacity of (engineered) cells/tissues to establish cell lineages for regenerative medicine.
Collapse
Affiliation(s)
- Marco-Antonio Mendoza-Parra
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Valeriya Malysheva
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Mohamed Ashick Mohamed Saleem
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Michele Lieb
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Aurelie Godel
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Hinrich Gronemeyer
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
18
|
Laurent A, Calabrese M, Warnatz HJ, Yaspo ML, Tkachuk V, Torres M, Blasi F, Penkov D. ChIP-Seq and RNA-Seq analyses identify components of the Wnt and Fgf signaling pathways as Prep1 target genes in mouse embryonic stem cells. PLoS One 2015; 10:e0122518. [PMID: 25875616 PMCID: PMC4395233 DOI: 10.1371/journal.pone.0122518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/11/2015] [Indexed: 01/18/2023] Open
Abstract
The Prep1 (Pknox1) homeodomain transcription factor is essential at multiple stages of embryo development. In the E11.5 embryo trunk, we previously estimated that Prep1 binds about 3,300 genomic sites at a highly specific decameric consensus sequence, mainly governing basal cellular functions. We now show that in embryonic stem (ES) cells Prep1 binding pattern only partly overlaps that of the embryo trunk, with about 2,000 novel sites. Moreover, in ES cells Prep1 still binds mostly to promoters, as in total embryo trunk but, among the peaks bound exclusively in ES cells, the percentage of enhancers was three-fold higher. RNA-seq identifies about 1800 genes down-regulated in Prep1-/- ES cells which belong to gene ontology categories not enriched in the E11.5 Prep1i/i differentiated embryo, including in particular essential components of the Wnt and Fgf pathways. These data agree with aberrant Wnt and Fgf expression levels in the Prep1-/- ES cells with a deficient embryoid bodies (EBs) formation and differentiation. Re-establishment of the Prep1 level rescues the phenotype.
Collapse
Affiliation(s)
- Audrey Laurent
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Manuela Calabrese
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Vsevolod Tkachuk
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Miguel Torres
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francesco Blasi
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Dmitry Penkov
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
- Department of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russia
| |
Collapse
|
19
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
20
|
Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, Cooney AJ, Li W, Barton MC. Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 2014; 42:205-23. [PMID: 24078252 PMCID: PMC3874181 DOI: 10.1093/nar/gkt866] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022] Open
Abstract
How tumor suppressor p53 selectively responds to specific signals, especially in normal cells, is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation, induced by retinoic acid, versus DNA damage, caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and, in pluripotent hESCs, are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases, UTX and JMJD3, to chromatin. In contrast, genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation, a process highly distinct from stress-induced p53 response in hESCs.
Collapse
Affiliation(s)
- Kadir C. Akdemir
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinav K. Jain
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendra Allton
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bruce Aronow
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueping Xu
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Austin J. Cooney
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Program in Genes & Development, UT Graduate School in Biomedical Sciences at Houston, Center for Stem Cell & Development Biology, Department of Biochemistry & Molecular Biology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and Dan L. Duncan Cancer Center, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Addae C, Cheng H, Martinez-Ceballos E. Effect of the environmental pollutant hexachlorobenzene (HCB) on the neuronal differentiation of mouse embryonic stem cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5244-56. [PMID: 24157519 PMCID: PMC3823326 DOI: 10.3390/ijerph10105244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/06/2013] [Accepted: 02/16/2013] [Indexed: 11/21/2022]
Abstract
Exposure to persistent environmental pollutants may constitute an important factor on the onset of a number of neurological disorders such as autism, Parkinson’s disease, and Attention Deficit Disorder (ADD), which have also been linked to reduced GABAergic neuronal function. GABAergic neurons produce γ-aminobutyric acid (GABA), which is the main inhibitory neurotransmitter in the brain. However, the lack of appropriate models has hindered the study of suspected environmental pollutants on GABAergic function. In this work, we have examined the effect of hexachlorobenzene (HCB), a persistent and bioaccumulative environmental pollutant, on the function and morphology of GABAergic neurons generated in vitro from mouse embryonic stem (ES) cells. We observed that: (1) treatment with 0.5 nM HCB did not affect cell viability, but affected the neuronal differentiation of ES cells; (2) HCB induced the production of reactive oxygen species (ROS); and (3) HCB repressed neurite outgrowth in GABAergic neurons, but this effect was reversed by the ROS scavenger N-acetylcysteine (NAC). Our study also revealed that HCB did not significantly interfere with the function of K+ ion channels in the neuronal soma, which indicates that this pollutant does not affect the maturation of the GABAergic neuronal soma. Our results suggest a mechanism by which environmental pollutants interfere with normal GABAergic neuronal function and may promote the onset of a number of neurological disorders such as autism and ADD.
Collapse
Affiliation(s)
- Cynthia Addae
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA; E-Mail:
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; E-Mail:
| | - Eduardo Martinez-Ceballos
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-225-771-3606; Fax: +1-225-771-3606
| |
Collapse
|
22
|
Barber BA, Liyanage VRB, Zachariah RM, Olson CO, Bailey MAG, Rastegar M. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat 2013; 195:431-40. [PMID: 23756022 DOI: 10.1016/j.aanat.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Benjamin A Barber
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Addae C, Yi X, Gernapudi R, Cheng H, Musto A, Martinez-Ceballos E. All-trans-retinoid acid induces the differentiation of encapsulated mouse embryonic stem cells into GABAergic neurons. Differentiation 2012; 83:233-41. [PMID: 22466603 DOI: 10.1016/j.diff.2012.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells that can differentiate into all three main germ layers: endoderm, mesoderm, and ectoderm. Although a number of methods have been developed to differentiate ES cells into neuronal phenotypes such as sensory and motor neurons, the efficient generation of GABAergic interneurons from ES cells still presents an ongoing challenge. Because the main output of inhibitory GABAergic interneurons is the gamma-aminobutyric-acid (GABA), a neurotransmitter whose controlled homeostasis is required for normal brain function, the efficient generation in culture of functional interneurons may have future implications on the treatment of neurological disorders such as epilepsy, autism, and schizophrenia. The goal of this work was to examine the generation of GABAergic neurons from mouse ES cells by comparing an embryoid body-based methodology versus a hydrogel-based encapsulation protocol that involves the use of all-trans-retinoid acid (RA). We observed that (1) there was a 2-fold increase in neuronal differentiation in encapsulated versus non-encapsulated cells and (2) there was an increase in the specificity for interneuronal differentiation in encapsulated cells, as assessed by mRNA expression and electrophysiology approaches. Furthermore, our results indicate that most of the neurons obtained from encapsulated mouse ES cells are GABA-positive (∼87%). Thus, these results suggest that combining encapsulation of ES cells and RA treatment provide a more efficient and scalable differentiation strategy for the generation in culture of functional GABAergic interneurons. This technology may have implications for future cell replacement therapies and the treatment of CNS disorders.
Collapse
Affiliation(s)
- Cynthia Addae
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | | | | | | | | | | |
Collapse
|
24
|
Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:213-21. [PMID: 21855651 DOI: 10.1016/j.bbalip.2011.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
The vitamin A (retinol) metabolite, all-trans retinoic acid (RA), is a signaling molecule that plays key roles in the development of the body plan and induces the differentiation of many types of cells. In this review the physiological and pathophysiological roles of retinoids (retinol and related metabolites) in mature animals are discussed. Both in the developing embryo and in the adult, RA signaling via combinatorial Hox gene expression is important for cell positional memory. The genes that require RA for the maturation/differentiation of T cells are only beginning to be cataloged, but it is clear that retinoids play a major role in expression of key genes in the immune system. An exciting, recent publication in regeneration research shows that ALDH1a2 (RALDH2), which is the rate-limiting enzyme in the production of RA from retinaldehyde, is highly induced shortly after amputation in the regenerating heart, adult fin, and larval fin in zebrafish. Thus, local generation of RA presumably plays a key role in fin formation during both embryogenesis and in fin regeneration. HIV transgenic mice and human patients with HIV-associated kidney disease exhibit a profound reduction in the level of RARβ protein in the glomeruli, and HIV transgenic mice show reduced retinol dehydrogenase levels, concomitant with a greater than 3-fold reduction in endogenous RA levels in the glomeruli. Levels of endogenous retinoids (those synthesized from retinol within cells) are altered in many different diseases in the lung, kidney, and central nervous system, contributing to pathophysiology. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
25
|
Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 2011; 286:3250-60. [PMID: 21087926 PMCID: PMC3030330 DOI: 10.1074/jbc.m110.157545] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/29/2010] [Indexed: 12/19/2022] Open
Abstract
Retinoic acid (RA) regulates clustered Hox gene expression during embryogenesis and is required to establish the anterior-posterior body plan. Using mutant embryonic stem cell lines deficient in the RA receptor γ (RARγ) or Hoxa1 3'-RA-responsive element, we studied the kinetics of transcriptional and epigenomic patterning responses to RA. RARγ is essential for RA-induced Hox transcriptional activation, and deletion of its binding site in the Hoxa1 enhancer attenuates transcriptional and epigenomic activation of both Hoxa and Hoxb gene clusters. The kinetics of epigenomic reorganization demonstrate that complete erasure of the polycomb repressive mark H3K27me3 is not necessary to initiate Hox transcription. RARγ is not required to establish the bivalent character of Hox clusters, but RA/RARγ signaling is necessary to erase H3K27me3 from activated Hox genes during embryonic stem cell differentiation. Highly coordinated, long range epigenetic Hox cluster reorganization is closely linked to transcriptional activation and is triggered by RARγ located at the Hoxa1 3'-RA-responsive element.
Collapse
Affiliation(s)
| | - Lorraine J. Gudas
- From the Departments of Pharmacology and
- Medicine, Weill Cornell Medical College, New York, New York 10065 and
| | - Fabienne Brenet
- Medicine, Weill Cornell Medical College, New York, New York 10065 and
| | - Patricia Funk
- Medicine, Weill Cornell Medical College, New York, New York 10065 and
| | - Agnes Viale
- the Genomics Core Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
26
|
Abstract
Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
27
|
Lomberk GA, Imoto I, Gebelein B, Urrutia R, Cook TA. Conservation of the TGFbeta/Labial homeobox signaling loop in endoderm-derived cells between Drosophila and mammals. Pancreatology 2010; 10:74-84. [PMID: 20339309 PMCID: PMC2865486 DOI: 10.1159/000276895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/12/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Midgut formation in Drosophila melanogaster is dependent upon the integrity of a signaling loop in the endoderm which requires the TGFbeta-related peptide, Decapentaplegic, and the Hox transcription factor, Labial. Interestingly, although Labial-like homeobox genes are present in mammals, their participation in endoderm morphogenesis is not clearly understood. METHODS We report the cloning, expression, localization, TGFbeta inducibility, and biochemical properties of the mammalian Labial-like homeobox, HoxA1, in exocrine pancreatic cells that are embryologically derived from the gut endoderm. RESULTS HoxA1 is expressed in pancreatic cell populations as two alternatively spliced messages, encoding proteins that share their N-terminal domain, but either lack or include the homeobox at the C-terminus. Transcriptional regulatory assays demonstrate that the shared N-terminal domain behaves as a strong transcriptional activator in exocrine pancreatic cells. HoxA1 is an early response gene for TGFbeta(1) in pancreatic epithelial cell populations and HoxA1 protein co-localizes with TGFbeta(1) receptors in the embryonic pancreatic epithelium at a time when exocrine pancreatic morphogenesis occurs (days E16 and E17). CONCLUSIONS These results report a role for HoxA1 in linking TGFbeta-mediated signaling to gene expression in pancreatic epithelial cell populations, thus suggesting a high degree of conservation for a TGFbeta/labial signaling loop in endoderm-derived cells between Drosophila and mammals. and IAP.
Collapse
Affiliation(s)
- Gwen A. Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minn., USA
| | - Issei Imoto
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan,Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minn., USA
| | - Tiffany A. Cook
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA,Department of Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA,*Tiffany A. Cook, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7003, Cincinnati, OH 45229 (USA), Tel. +1 513 636 6991, Fax +1 513 803 0740, E-Mail
| |
Collapse
|
28
|
LIM protein Ajuba functions as a nuclear receptor corepressor and negatively regulates retinoic acid signaling. Proc Natl Acad Sci U S A 2010; 107:2938-43. [PMID: 20133701 DOI: 10.1073/pnas.0908656107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corepressors play an essential role in nuclear receptor-mediated transcriptional repression. In general, corepressors directly bind to nuclear receptors via CoRNR boxes (L/I-X-X-I/V-I) in the absence of ligand and appear to act as scaffolds to further recruit chromatin remodeling complexes to specific target genes. Here, we describe the identification of the multiple LIM domain protein Ajuba as a unique corepressor for a subset of nuclear hormone receptors. Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) subtypes in a ligand-dependent manner. Simultaneous mutation of these motifs abolishes RAR binding and concomitantly leads to loss of repression on RARE reporter genes. P19 cells depleted of Ajuba are highly sensitized to all-trans retinoic acid (atRA)-induced transcription and differentiation. In the absence of atRA, Ajuba can be readily found at the RARE control elements of RAR endogenous target genes. Stimulation of cells with atRA results in the dissociation of Ajuba from these regions. Moreover, we observed that coexpression of the known Ajuba binding partner Prmt5 (protein arginine methyltransferase-5) inhibited the Ajuba/RAR interaction. The high-affinity Ajuba-RAR/RXR interaction site overlaps the region responsible for Ajuba/Prmt5 binding, and thus binding appears to be mutually exclusive, providing a potential mechanism for these observations. Identification of Ajuba as a unique corepressor for nuclear receptors sheds new light on mechanisms for nuclear receptor-mediated repression and provides a unique target for developing more effective therapeutics to modulate this important pathway.
Collapse
|
29
|
Fernandez CC, Gudas LJ. The truncated Hoxa1 protein interacts with Hoxa1 and Pbx1 in stem cells. J Cell Biochem 2009; 106:427-43. [PMID: 19115252 DOI: 10.1002/jcb.22023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hox genes contain a homeobox encoding a 60-amino acid DNA binding sequence. The Hoxa1 gene (Hox1.6, ERA1) encodes two alternatively spliced mRNAs that encode distinct proteins, one with the homeodomain (Hoxa1-993), and another protein lacking this domain (Hoxa1-399). The functions of Hoxa1-399 are unknown. We detected Hoxa1-993 and Hoxa1-399 by immunoprecipitation using Hoxa1 antibodies. To assess whether Hoxa1-399 functions in cellular differentiation, we analyzed Hoxb1, a Hoxa1 target gene. Hoxa1-993 and its cofactor, Pbx1, bind to the Hoxb1 SOct-R3 promoter to transcriptionally activate a luciferase reporter. Results from F9 stem cells that stably express ectopic Hoxa1-399 (the F9-399 line) show that Hoxa1-399 reduces this transcriptional activation. Gel shift assays demonstrate that Hoxa1-399 reduces Hoxa1-993/Pbx1 binding to the Hoxb1 SOct-R3 region. GST pull-down experiments suggest that Hoxa1-399, Hoxa1-993, and Pbx1 form a trimer. However, the F9-399 line exhibits no differences in RA-induced proliferation arrest or endogenous Hoxb1, Pbx1, Hoxa5, Cyp26a1, GATA4, or Meis mRNA levels when compared to F9 wild-type.
Collapse
Affiliation(s)
- Cristina C Fernandez
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|