1
|
Yepes AF, Cardona-Galeano W, Herrera-Ramírez A, Rada MS, Osorio E, Gonzalez-Molina LA, Miranda-Brand Y, Posada-Duque R. Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease. RSC Med Chem 2025:d4md00804a. [PMID: 39867586 PMCID: PMC11756598 DOI: 10.1039/d4md00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model. Most of the compounds showed promising activity. Among them, the hybrid with 2,5-dimetoxysubstitution (3b) was the most potent analogue, triggering dual potent AChE/BuChE inhibition with low nanomolar affinity (IC50 ∼ 300 nM) and low toxicity to human liver cancer cells (HepG2). This analogue prevented the glutamate excitotoxic stimulus during pre/post treatment testing, maintained ATP levels, possessed an astrocytic protective response, and abolished the glutamate-induced excitotoxicity. Besides, the hit compound 3b exhibited suitable permeability in the blood-brain barrier (BBB) and low degradability in human blood-plasma. In addition, the docking studies suggested that the neuroprotectant response exhibited by 3b can be related to the direct blockage of the NMDA channel pore. Finally, an ideal neuropharmacokinetic profile was estimated for 3b. Overall, the designed conjugates provide a novel multifunctional molecular scaffold that can be used as a prototype drug in further investigations toward novel multipotent therapeutics for treating AD.
Collapse
Affiliation(s)
- Andrés F Yepes
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Wilson Cardona-Galeano
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Angie Herrera-Ramírez
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Marlyn S Rada
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Luis Alfonso Gonzalez-Molina
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia A.A 1226 Medellin 050010 Colombia
| | - Yaneth Miranda-Brand
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia A.A 1226 Medellin 050010 Colombia
| | - Rafael Posada-Duque
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
| |
Collapse
|
2
|
Siddique YH, Naz F, Rahul, Varshney H, Idrisi M, Shahid M. Effect of donepezil hydrochloride on the transgenic Drosophila expressing human Aβ-42. Int J Neurosci 2024; 134:1293-1308. [PMID: 37733478 DOI: 10.1080/00207454.2023.2262109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/03/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
AIM In the present study, the effect of donepezil hydrochloride was studied on the transgenic Drosophila expressing human amyloid beta-42 in the neurons. METHODS Donepezil hydrochloride at final concentration of 0.1, 1 and 10 mM was mixed in the diet and the flies expressing human amyloid beta-42 under Upstream Activation Sequence control (Alzheimer Disease [AD] flies) were allowed to feed on it for 30 days. RESULTS The AD flies exposed to various doses of Donepezil hydrochloride showed a dose dependent significant delay in the loss of climbing ability, increase in activity, reduction in the oxidative stress and apoptotic markers. A significant improvement was also observed in cognitive parameters. A dose dependent significant reduction in the activity of acetylcholinesterase was also observed. The docking studies suggest the positive interaction between donepezil, amyloid beta-42 and acetylcholinesterase. The results obtained from immunohistochemistry also showed a dose dependent significant reduction in the amyloid beta-42 aggregates. CONCLUSION The results suggest that donepezil hydrochloride is potent enough to reduce the AD symptoms being mimicked in transgenic flies.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mantasha Idrisi
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| | - M Shahid
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Mugayar AA, da Silva Guimarães G, de Oliveira PHT, Miranda RL, Dos Santos AA. Apoptosis in the neuroprotective effect of α7 nicotinic receptor in neurodegenerative models. J Neurosci Res 2023; 101:1795-1802. [PMID: 37615647 DOI: 10.1002/jnr.25239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
The α7 subtype of nicotinic receptors (α7 nAChRs) is one of the most abundant nicotinic receptor subtypes in the central nervous system (CNS) and both neurons and nonneuronal cells express α7 nAChRs. When activated, α7 nAChRs become permeable to cations and promote cellular responses such as anti-apoptotic signaling by modulating the caspases and proteins of the Bcl-2 family. Neuroprotection is an important function of these receptors, promoting neuronal survival under pathological conditions, including situations of stress and neuronal degeneration. Studies have demonstrated the relationship between the activation of these receptors and the reduction of neuronal or glial cell injury, by controlling apoptotic processes in different models, including neurodegenerative diseases such as Alzheimer's disease. Therefore, one of the most important signaling pathways activated by α7 nAChRs is the PI3K/Akt signaling cascade, which promotes the stimulation of anti-apoptotic molecules of the Bcl-2 family, Bcl-2 and Bcl-xl, and reduces the expression of caspases and proapoptotic molecules, resulting in cell survival. In Alzheimer's models, the literature shows that α7 nAChR activation attenuates Aβ-induced neurotoxicity through modulation of different intrinsic apoptotic pathways via PI3K/Akt and mitogen-activated protein kinase (MAPK). In this review, we provide an up-to-date summary of the current evidence on the relationship between the activation of α7 nAChRs, a subtype of nicotinic acetylcholine receptor, and its role in neuroprotection by modulating apoptotic pathways.
Collapse
Affiliation(s)
- Amanda Amorim Mugayar
- Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas, Instituto Biomédico, Bloco E, Universidade Federal Fluminense, Niterói, Brazil
| | - Giovanna da Silva Guimarães
- Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas, Instituto Biomédico, Bloco E, Universidade Federal Fluminense, Niterói, Brazil
| | - Paulo Henrique Tavares de Oliveira
- Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas, Instituto Biomédico, Bloco E, Universidade Federal Fluminense, Niterói, Brazil
| | - Renan Lyra Miranda
- Laboratório de Neuropatologia e Genética Molecular, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Aline Araujo Dos Santos
- Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas, Instituto Biomédico, Bloco E, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
4
|
Remya C, Dileep KV, Variyar EJ, Omkumar RV, Sadasivan C. Lobeline: A multifunctional alkaloid modulates cholinergic and glutamatergic activities. IUBMB Life 2023; 75:844-855. [PMID: 37335270 DOI: 10.1002/iub.2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Developing drugs for Alzheimer's disease (AD) is an extremely challenging task due to its devastating pathology. Previous studies have indicated that natural compounds play a crucial role as lead molecules in the development of drugs. Even though, there are remarkable technological advancements in the isolation and synthesis of natural compounds, the targets for many of them are still unknown. In the present study, lobeline, a piperidine alkaloid has been identified as a cholinesterase inhibitor through chemical similarity assisted target fishing method. The structural similarities between lobeline and donepezil, a known acetylcholinesterase (AChE) inhibitor encouraged us to hypothesize that lobeline may also exhibit AChE inhibitory properties. It was further confirmed by in silico, in vitro and biophysical studies that lobeline could inhibit cholinesterase. The binding profiles indicated that lobeline has a higher affinity for AChE than BChE. Since excitotoxicity is one of the major pathological events associated with AD progression, we also investigated the neuroprotective potential of lobeline against glutamate mediated excitotoxicity in rat primary cortical neurons. The cell based NMDA receptor (NMDAR) assay with lobeline suggested that neuroprotective potential of lobeline is mediated through the blockade of NMDAR activity.
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Elessery J Variyar
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| | | | - Chittalakkottu Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| |
Collapse
|
5
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
6
|
Moreira NCDS, Lima JEBDF, Marchiori MF, Carvalho I, Sakamoto-Hojo ET. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer's Disease and Future Perspectives. J Alzheimers Dis Rep 2022; 6:177-193. [PMID: 35591949 PMCID: PMC9108627 DOI: 10.3233/adr-210061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease conceptualized as a continuous process, ranging from mild cognitive impairment (MCI), to the mild, moderate, and severe clinical stages of AD dementia. AD is considered a complex multifactorial disease. Currently, the use of cholinesterase inhibitors (ChEI), such as tacrine, donepezil, rivastigmine, and galantamine, has been the main treatment for AD patients. Interestingly, there is evidence that ChEI also promotes neuroprotective effects, bringing some benefits to AD patients. The mechanisms by which the ChEI act have been investigated in AD. ChEI can modulate the PI3K/AKT pathway, which is an important signaling cascade that is capable of causing a significant functional impact on neurons by activating cell survival pathways to promote neuroprotective effects. However, there is still a huge challenge in the field of neuroprotection, but in the context of unravelling the details of the PI3K/AKT pathway, a new scenario has emerged for the development of more efficient drugs that act on multiple protein targets. Thus, the mechanisms by which ChEI can promote neuroprotective effects and prospects for the development of new drug candidates for the treatment of AD are discussed in this review.
Collapse
Affiliation(s)
| | | | - Marcelo Fiori Marchiori
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Discovery of novel donepezil-M30D hybrids with neuroprotective properties for Alzheimer’s disease treatment. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02886-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Dienel A, Veettil RA, Matsumura K, Savarraj JPJ, Choi HA, Kumar T P, Aronowski J, Dash P, Blackburn SL, McBride DW. α 7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics 2021; 18:1891-1904. [PMID: 33970466 PMCID: PMC8609090 DOI: 10.1007/s13311-021-01052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Remya A Veettil
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Kanako Matsumura
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Jude P J Savarraj
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - H Alex Choi
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Pramod Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Takada-Takatori Y. [Donepezil Reduces Amyloid Precursor Protein Endocytosis by Resulting from Increase in the Expression of Sorting Nexin Protein 33]. YAKUGAKU ZASSHI 2021; 141:851-856. [PMID: 34078793 DOI: 10.1248/yakushi.20-00251-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Donepezil, the most widely used drug for the treatment of Alzheimer's disease (AD), is an acetylcholinesterase (AChE) inhibitor and is thought to improve cognition by stimulating cholinergic neurotransmission. However, no correlation has yet been established between the inhibitory role of AChE inhibitors and their therapeutic effects when used in AD patients. The cleavage pathway of amyloid precursor protein (APP) includes amyloidgenic (β, γ-cleavage) and non-amyloidgenic (α-cleavage) pathways. The intracellular transportation of APP is important in determining these cleavage pathways. It has been suggested that sorting nexin (SNX) family proteins regulates the intracellular transport of APP, thereby enhancing α-cleavage. In this study, we examined the effects of donepezil on SNX33 expression changes and APP processing in primary cultures of fetal rat cortical neurons. While donepezil treatment increased the levels of SNX33 expression and soluble APPα (sAPPα) in culture media, no changes were observed regarding full-length APP expression in the cell lysate. Donepezil also reduced the release of amyloid β (Aβ) into culture media in a concentration- and time-dependent manner. This reduction was not affected by acetylcholine receptor antagonists. The membrane surface expression of APP was elevated by donepezil. Furthermore, SNX knockdown by antisense morpholino oligos prevented the effects of donepezil. These results indicated that donepezil increased APP expression at the surface of the plasma membrane by decreasing APP endocytosis through upregulation of SNX33, suggesting donepezil might stimulate the non-amyloidogenic pathway. This new mechanism of action for the currently used anti-AD drug may provide a valuable basis for future drug discovery.
Collapse
|
10
|
de Farias BX, Costa AB, Engel NA, de Souza Goldim MP, da Rosa Turatti C, Cargnin-Cavalho A, Fortunato JJ, Petronilho F, Jeremias IC, Rezin GT. Donepezil Prevents Inhibition of Cerebral Energetic Metabolism Without Altering Behavioral Parameters in Animal Model of Obesity. Neurochem Res 2020; 45:2487-2498. [PMID: 32789797 DOI: 10.1007/s11064-020-03107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
11
|
Shenzhiling Oral Liquid Protects STZ-Injured Oligodendrocyte through PI3K/Akt-mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4527283. [PMID: 32774416 PMCID: PMC7396001 DOI: 10.1155/2020/4527283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
Abstract
White matter degeneration and demyelination are nonnegligible pathological manifestations of Alzheimer's disease (AD). The damage of myelin sheath consisting of oligodendrocytes is the basis of AD's unique early lesions. Shenzhiling oral liquid (SZL) was the effective Chinese herbal compound approved by the Food and Drug Administration (FDA) for the treatment of AD in China, which plays the exact therapeutic role in clinical AD patients. However, its molecular mechanism remains unclear to date. For this purpose, an in vitro mode of streptozotocin- (STZ-) induced rat oligodendrocyte OLN-93 cell injury was established to mimic the pathological changes of myelin sheath of AD and investigate the mechanism of SZL protecting injured OLN-93 cell. The results showed that STZ can decrease cell viability and downregulate the activity of PI3K/Akt-mTOR signalling pathway and the expression of myelin sheath-related proteins (MBP, MOG, and PLP) in OLN-93 cells. Both SZL-medicated serum and donepezil (positive control) can protect cells from STZ-caused damage. SZL-medicated serum increased OLN-93 cell viability in a dose- and time-dependent manner and enhanced the activity of PI3K/Akt-mTOR signalling pathway. The inhibitor of PI3K (LY294002) inhibited the protective effect of SZL-medicated serum on the STZ-injured OLN-93 cells. Furthermore, rapamycin, the inhibitor of mTOR, inhibited the promotion of cell viability and upregulation of p-mTOR and MBP caused by SZL-medicated serum. In conclusion, our data indicate that SZL plays its therapeutic role on AD by promoting PI3K/Akt-mTOR signalling pathway of oligodendrocytes. Thus, the present study may facilitate the therapeutic research of AD.
Collapse
|
12
|
Cui X, Guo YE, Fang JH, Shi CJ, Suo N, Zhang R, Xie X. Donepezil, a drug for Alzheimer's disease, promotes oligodendrocyte generation and remyelination. Acta Pharmacol Sin 2019; 40:1386-1393. [PMID: 30918344 DOI: 10.1038/s41401-018-0206-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022]
Abstract
Myelin sheaths play important roles in neuronal functions. In the central nervous system (CNS), the myelin is formed by oligodendrocytes (OLs), which are differentiated from oligodendrocyte precursor cells (OPCs). In CNS demyelinating disorders such as multiple sclerosis (MS), the myelin sheaths are damaged and the remyelination process is hindered. Small molecule drugs that promote OPC to OL differentiation and remyelination may provide a new way to treat these demyelinating diseases. Here we report that donepezil, an acetylcholinesterase inhibitor (AChEI) developed for the treatment of Alzheimer's disease (AD), significantly promotes OPC to OL differentiation. Interestingly, other AChEIs, including huperzine A, rivastigmine, and tacrine, have no such effect, indicating that donepezil's effect in promoting OPC differentiation is not dependent on the inhibition of AChE. Donepezil also facilitates the formation of myelin sheaths in OPC-DRG neuron co-culture. More interestingly, donepezil also promotes the repair of the myelin sheaths in vivo and provides significant therapeutic effect in a cuprizone-mediated demyelination animal model. Donepezil is a drug that has been used to treat AD safely for many years; our findings suggest that it might be repurposed to treat CNS demyelinating diseases such as MS by promoting OPC to OL differentiation and remyelination.
Collapse
|
13
|
Wong JC, Thelin JT, Escayg A. Donepezil increases resistance to induced seizures in a mouse model of Dravet syndrome. Ann Clin Transl Neurol 2019; 6:1566-1571. [PMID: 31402621 PMCID: PMC6689688 DOI: 10.1002/acn3.50848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/11/2023] Open
Abstract
De novo loss-of-function mutations in SCN1A are the main cause of Dravet syndrome, a catastrophic encephalopathy characterized by recurrent early-life febrile seizures, a number of other afebrile seizure types that are often refractory to treatment, and behavioral abnormalities including social deficits, motor dysfunction, and cognitive impairment. We previously demonstrated that the reversible acetylcholinesterase inhibitor, Huperzine A, increases seizure resistance in Scn1a mutants. In the present study, we evaluated the therapeutic potential of donepezil, a reversible acetylcholinesterase inhibitor approved by the Food and Drug Administration, in a mouse model of Dravet syndrome (Scn1a+/- ). We found that donepezil conferred robust protection against induced seizures in Scn1a+/- mutants.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, 30322
| | | | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, 30322
| |
Collapse
|
14
|
Influence of Acetylcholinesterase Inhibitors Used in Alzheimer's Disease Treatment on the Activity of Antioxidant Enzymes and the Concentration of Glutathione in THP-1 Macrophages under Fluoride-Induced Oxidative Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 16:ijerph16010010. [PMID: 30577562 PMCID: PMC6339019 DOI: 10.3390/ijerph16010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023]
Abstract
It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE) inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant enzymes and glutathione concentration in macrophages—an important source of reactive oxygen species and crucial for oxidative stress progression. The macrophages were exposed to sodium fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione were measured spectrophotometrically. The generation of reactive oxygen species was visualized by confocal microscopy. The results of our study showed that donepezil and rivastigmine had a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress, the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE inhibitors. Our results may have significance in the clinical practice of treatment of AD and other dementia diseases.
Collapse
|
15
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Tarnowski M, Piotrowska K, Metryka E, Safranow K, Chlubek D. Effect of acetylcholinesterase inhibitors donepezil and rivastigmine on the activity and expression of cyclooxygenases in a model of the inflammatory action of fluoride on macrophages obtained from THP-1 monocytes. Toxicology 2018; 406-407:9-20. [PMID: 29777723 DOI: 10.1016/j.tox.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation is an important factor in the development of many diseases of the central nervous system, including Alzheimer's disease and other types of dementia. Given that acetylcholinesterase inhibitors are also currently believed to have anti-inflammatory properties, the purpose of this study was to investigate the effect of acetylcholinesterase inhibitors (rivastigmine, donepezil) on cyclooxygenase activity and expression using the proinflammatory action of fluoride (F-) on cultured macrophages obtained from THP-1 monocytes. COX-1 and COX-2 activity was determined through measurement of the products of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) in cell culture supernatants. Expression of COX-1 and COX-2 proteins was examined immunocytochemically, and mRNA expression was determined by qRT PCR. Our study confirmed the inhibitory effects of donepezil and rivastigmine on the production of PGE2, TXB2, COX-1 and COX-2 mRNA and protein expression in macrophages. We also demonstrated that the pro-inflammatory effect of fluoride may be reduced by the use of both drugs. The additive effect of these drugs cannot be ruled out, and effects other than those observed in the use of one drug should also be taken into account.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, Szczecin 71-460, Poland.
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| |
Collapse
|
16
|
Kim SH, Kandiah N, Hsu J, Suthisisang C, Udommongkol C, Dash A. Beyond symptomatic effects: potential of donepezil as a neuroprotective agent and disease modifier in Alzheimer's disease. Br J Pharmacol 2017; 174:4224-4232. [PMID: 28901528 PMCID: PMC5715569 DOI: 10.1111/bph.14030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is associated with neurodegenerative changes resulting clinically in progressive cognitive and functional deficits. The only therapies are the cholinesterase inhibitors donepezil, galantamine and rivastigmine and the N-methyl-D-aspartate-receptor antagonist memantine. Donepezil acts primarily on the cholinergic system as a symptomatic treatment, but it also has potential for disease modification and may reduce the rate of progression of AD. This review explores the potential for disease modifying effects of donepezil. Several neuroprotective mechanisms that are independent of cholinesterase inhibition, are suggested. Donepezil has demonstrated a range of effects, including protecting against amyloid β, ischaemia and glutamate toxicity; slowing of progression of hippocampal atrophy; and up-regulation of nicotinic acetylcholine receptors. Clinically, early and continuous treatment with donepezil is considered to preserve cognitive function more effectively than delayed treatment. The possible neuroprotective effects of donepezil and the potential for disease pathway modification highlight the importance of early diagnosis and treatment initiation in AD.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of NeurologyHanyang University College of MedicineSeoulKorea
- Seongdong‐Gu Regional Center for DementiaSeoulKorea
| | - Nagaendran Kandiah
- Department of NeurologyNational Neuroscience Institute and Duke‐NUS SingaporeSingapore
| | - Jung‐Lung Hsu
- Department of NeurologyChang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang‐Gung UniversityTaoyuanTaiwan
| | | | - Chesda Udommongkol
- Division of Neurology, Department of MedicinePhramongkutklao HospitalBangkokThailand
| | | |
Collapse
|
17
|
Donepezil, an acetylcholinesterase inhibitor, attenuates LPS-induced inflammatory response in murine macrophage cell line RAW 264.7 through inhibition of nuclear factor kappa B translocation. Eur J Pharmacol 2016; 789:17-26. [PMID: 27373848 DOI: 10.1016/j.ejphar.2016.06.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that the pharmacotherapy with donepezil, an acetylcholinesterase inhibitor, suppresses cardiac remodeling in a mouse model of ischemic heart failure after myocardial infarction (MI). However, the precise mechanisms of the cardioprotective effect of donepezil have not been completely delineated. Because post-ischemic inflammation is a pathological key event in the cardiac remodeling process following MI, we investigated the hypothesis that donepezil acts as an inhibitor of inflammatory mediators. RAW 264.7 murine macrophage cells were pretreated with donepezil (100µM) prior to a pro-inflammatory stimulation by administration of lipopolysaccharide (LPS, 10ng/ml). Donepezil significantly reduced intra- and extracellular levels of various kinds of inflammatory mediators such as TNF-α, IL-1β, IL-2, IL-6 and IL-18 after the LPS stimulation, and attenuated LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB). These results indicate that donepezil possesses an anti-inflammatory property. However, the inhibitory effect of donepezil on the macrophage inflammatory responses was never reproduced by ACh, nor was disrupted by ACh receptor blockers. Moreover, other kinds of acetylcholinesterase inhibitors failed to inhibit the inflammatory responses in LPS-stimulated macrophage cells. These results suggest that a cholinergic anti-inflammatory pathway would not be involved in the anti-inflammatory effect of donepezil and that the specific characteristics of donepezil in suppressing the LPS-induced cytokine release and the NF-κB activation would be independent of its acetylcholinesterase inhibition. The present study showed that donepezil exerts an anti-inflammatory effect independently of acetylcholinesterase inhibitory action, thereby donepezil may contribute to cardioprotection during cardiac remodeling process in an ischemic heart failure after MI.
Collapse
|
18
|
Imamura O, Arai M, Dateki M, Ogata T, Uchida R, Tomoda H, Takishima K. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation. J Neurochem 2015; 135:1086-98. [DOI: 10.1111/jnc.13294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Osamu Imamura
- Department of Biochemistry; National Defense Medical College; Tokorozawa Saitama Japan
| | - Masaaki Arai
- Department of Biochemistry; National Defense Medical College; Tokorozawa Saitama Japan
| | - Minori Dateki
- Department of Biochemistry; National Defense Medical College; Tokorozawa Saitama Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions; Research Institute; National Rehabilitation Center for Persons with Disabilities; Tokorozawa Saitama Japan
| | - Ryuji Uchida
- Graduate School of Pharmaceutical Sciences; Kitasato University; Minato-ku Tokyo Japan
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences; Kitasato University; Minato-ku Tokyo Japan
| | - Kunio Takishima
- Department of Biochemistry; National Defense Medical College; Tokorozawa Saitama Japan
| |
Collapse
|
19
|
Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, Kim SH. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity. J Neurochem 2013; 127:562-74. [PMID: 23711227 DOI: 10.1111/jnc.12319] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional mechanisms of donepezil including its inhibitory effect on GSK-3β activity and activating role of nicotinic AChRs might be involved.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Yamamoto Y, Fukunaga K. Donepezil rescues the medial septum cholinergic neurons via nicotinic ACh receptor stimulation in olfactory bulbectomized mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aad.2013.24021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
The dorsal motor nucleus of the vagus (DMNV) in sudden infant death syndrome (SIDS): pathways leading to apoptosis. Respir Physiol Neurobiol 2012; 185:203-10. [PMID: 22975482 DOI: 10.1016/j.resp.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/08/2012] [Accepted: 09/04/2012] [Indexed: 12/20/2022]
Abstract
Sudden infant death syndrome (SIDS) remains the commonest cause of death in the post-neonatal period in the developed world. A leading hypothesis is that an abnormality in the brainstem of infants who succumb to SIDS, either causes or predisposes to failure to respond appropriately to an exogenous stressor. Neuronal apoptosis can lead to loss of cardiorespiratory reflexes, compromise of the infant's ability to respond to stressors such as hypoxia, and ultimately a sleep-related death. The dorsal motor nucleus of the vagus (DMNV) is a medullary autonomic nucleus where abnormalities have regularly been identified in SIDS research. This review collates neurochemical findings documented over the last 30 years, including data from our laboratory focusing on neuronal apoptosis and the DMNV, and provides potential therapeutic interventions targeting neurotransmitters, growth factors and/or genes.
Collapse
|
22
|
Alcántara-González F, Mendoza-Perez CR, Zaragoza N, Juarez I, Arroyo-García LE, Gamboa C, De La Cruz F, Zamudio S, Garcia-Dolores F, Flores G. Combined administration of cerebrolysin and donepezil induces plastic changes in prefrontal cortex in aged mice. Synapse 2012; 66:938-49. [DOI: 10.1002/syn.21588] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/02/2012] [Accepted: 07/14/2012] [Indexed: 12/24/2022]
|
23
|
Arikawa M, Kakinuma Y, Handa T, Yamasaki F, Sato T. Donepezil, anti-Alzheimer's disease drug, prevents cardiac rupture during acute phase of myocardial infarction in mice. PLoS One 2011; 6:e20629. [PMID: 21750701 PMCID: PMC3130031 DOI: 10.1371/journal.pone.0020629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI. METHODS AND RESULTS In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group. CONCLUSION The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI.
Collapse
Affiliation(s)
- Mikihiko Arikawa
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan.
| | | | | | | | | |
Collapse
|
24
|
Sakamoto K, Ohki K, Saito M, Nakahara T, Ishii K. Histological protection by donepezil against neurodegeneration induced by ischemia-reperfusion in the rat retina. J Pharmacol Sci 2010; 112:327-35. [PMID: 20197638 DOI: 10.1254/jphs.09302fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although a blockade of acetylcholine esterase has been reported to suppress neuronal cell death induced by exogenous glutamate and beta-amyloid, information is still limited regarding the neuroprotective effects of the acetylcholine esterase inhibitor donepezil. We histologically examined the effects of donepezil on neuronal injury induced by ischemia-reperfusion. Intravenous and intravitreous treatment with donepezil 15 min prior to ischemia dramatically reduced the retinal damage. The protective effect of donepezil in the ganglion cell layer was not affected by mecamylamine, a nicotinic acetylcholine-receptor antagonist, nor scopolamine, a muscarinic acetylcholine-receptor antagonist. The protective effect of donepezil in the inner plexiform layer was reduced not by mecamylamine, but by scopolamine. Neostigmine, a choline-esterase inhibitor, and pilocarpine, a muscarinic acetylcholine-receptor agonist, have protective effects in the inner plexiform layer and the inner nuclear layer. These results suggest that not only the activation of acetylcholine receptors but also a mechanism unrelated to acetylcholine-esterase inhibition contribute to the protective effect of donepezil on the ganglion cells in the ischemic-reperfused rat retina. Donepezil may be useful as a therapeutic drug against retinal diseases that cause neuronal cell death such as glaucoma with high intraocular pressure.
Collapse
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
25
|
Takada-Takatori Y, Kume T, Izumi Y, Niidome T, Fujii T, Sugimoto H, Akaike A. Mechanisms of chronic nicotine treatment-induced enhancement of the sensitivity of cortical neurons to the neuroprotective effect of donepezil in cortical neurons. J Pharmacol Sci 2010; 112:265-72. [PMID: 20173312 DOI: 10.1254/jphs.09311fp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We have previously shown that chronic donepezil treatment induces nicotinic acetylcholine receptor up-regulation and enhances the sensitivity of the neurons to the neuroprotective effect of donepezil. Further analyses revealed that the nicotinic receptor is involved in this enhancement. In this study, we examined whether nicotinic receptor stimulation is sufficient to make neurons more sensitive to donepezil. We treated primary cultures of rat cortical neurons with nicotine and confirmed that chronic nicotine treatment induced nicotinic receptor up-regulation and made the neurons more sensitive to the neuroprotective effects of donepezil. Analyses with receptor antagonists and kinase inhibitors revealed that the effects of chronic nicotine treatment are mediated by nicotinic receptors and their downstream effectors including phosphatidylinositol 3-kinase. In contrast to chronic donepezil treatment that enhanced the level of nicotine-induced Ca(2+) influx, chronic nicotine treatment did not significantly alter the level of Ca(2+) influx.
Collapse
Affiliation(s)
- Yuki Takada-Takatori
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Hwang J, Hwang H, Lee HW, Suk K. Microglia signaling as a target of donepezil. Neuropharmacology 2010; 58:1122-9. [PMID: 20153342 DOI: 10.1016/j.neuropharm.2010.02.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 01/02/2023]
Abstract
Donepezil is a reversible and noncompetitive cholinesterase inhibitor. The drug is considered as a first-line treatment in patients with mild to moderate Alzheimer's disease. Recently, anti-inflammatory and neuroprotective effects of the drug have been reported. "Cholinergic anti-inflammation pathway" has major implications in these effects. Here, we present evidence that donepezil at 5-20 microM directly acts on microglial cells to inhibit their inflammatory activation. Our conclusion is based on the measurement of nitric oxide and proinflammatory mediators using purified microglia cultures and microglia cell lines: donepezil attenuated microglial production of nitric oxide and tumor necrosis factor (TNF)-alpha, and suppressed the gene expression of inducible nitric oxide synthase, interleukin-1 beta, and TNF-alpha. Subsequent studies showed that donepezil inhibited a canonical inflammatory NF-kappaB signaling. Microglia/neuroblastoma coculture and animal experiments supported the anti-inflammatory effects of donepezil. Based on the studies using nicotinic acetylcholine receptor antagonists, the donepezil inhibition of microglial activation was independent of acetylcholine and its receptor. Thus, inflammatory activation signaling of microglia may be one of the direct targets of donepezil in the central nervous system. It should be noted, however, that there is a large gap between the therapeutic dose of the drug used clinically and the concentration of the drug that exerts the direct action on microglial cells.
Collapse
Affiliation(s)
- Jaegyu Hwang
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Joong-gu, Daegu 700-422, Republic of Korea
| | | | | | | |
Collapse
|
27
|
The neuropathy-protective agent acetyl-l-carnitine activates protein kinase C-γ and MAPKs in a rat model of neuropathic pain. Neuroscience 2010; 165:1345-52. [DOI: 10.1016/j.neuroscience.2009.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/25/2009] [Accepted: 11/10/2009] [Indexed: 02/06/2023]
|
28
|
Mechanisms of Neuroprotective Effects of Nicotine and Acetylcholinesterase Inhibitors: Role of α4 and α7 Receptors in Neuroprotection. J Mol Neurosci 2009; 40:211-6. [DOI: 10.1007/s12031-009-9236-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
29
|
Wang J, Zhang HY, Tang XC. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin 2009; 30:879-88. [PMID: 19574993 PMCID: PMC4006646 DOI: 10.1038/aps.2009.82] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/29/2009] [Indexed: 01/08/2023]
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence. Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment. Moreover, cholinergic therapies have shown promising effects on cognitive improvement in VaD patients. The precise mechanisms of these cholinergic agents are currently not fully understood; however, accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway, in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation, although regulation of oxidative stress and energy metabolism, alleviation of apoptosis may also be involved. In this paper, we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation.Acta Pharmacologica Sinica (2009) 30: 879-888; doi: 10.1038/aps.2009.82.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi-can Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
30
|
Bencherif M. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance. Acta Pharmacol Sin 2009; 30:702-14. [PMID: 19498416 PMCID: PMC4002381 DOI: 10.1038/aps.2009.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/09/2009] [Indexed: 01/18/2023]
Abstract
A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuroprotection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflammatory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes.
Collapse
|
31
|
Fernández-Bachiller MI, Pérez C, Campillo NE, Páez JA, González-Muñoz GC, Usán P, García-Palomero E, López M, Villarroya M, García A, Martínez A, Rodríguez-Franco MI. Tacrine-Melatonin Hybrids as Multifunctional Agents for Alzheimer's Disease, with Cholinergic, Antioxidant, and Neuroprotective Properties. ChemMedChem 2009; 4:828-41. [DOI: 10.1002/cmdc.200800414] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Additive protective effects of donepezil and nicotine against salsolinol-induced cytotoxicity in SH-SY5Y cells. Neurotox Res 2009; 16:194-204. [PMID: 19526284 DOI: 10.1007/s12640-009-9040-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/01/2009] [Accepted: 03/01/2009] [Indexed: 10/20/2022]
Abstract
Although the etiology of Parkinson's disease (PD) remains elusive, a number of toxins including elevated salsolinol, an endogenous metabolite of dopamine may contribute to its pathology. It was reported recently that nicotine may have protective effects against salsolinol-induced toxicity in human neuroblastoma derived SH-SY5Y cells and that these effects of nicotine are mediated by nicotinic receptors. Donepezil (Aricept) is a reversible non-competitive acetylcholinesterase inhibitor that is approved for use in mild to moderate Alzheimer's disease. The increase in acetylcholine concentrations is believed to be the major contributory factor in donepezil's therapeutic efficacy. However, cholinesterase inhibitors may also directly interact with nicotinic receptors and possess neuroprotective properties. In this study, we sought to determine whether donepezil may have protective effects against salsolinol-induced toxicity in SH-SY5Y cells and whether the combination of donepezil and nicotine may result in additive protection. Moreover, it was of interest to elucidate the role of nicotinic receptors as well as cell cycle and apoptosis in mechanism of action of these compounds. SH-SY5Y cells were exposed to 0.6 mM salsolinol with and without various drug pretreatments for 48 h. Nicotine (50 muM) resulted in approximately 54% protection and donepezil (5 muM) resulted in approximately 40% protection, and the combination of the two resulted in an additive (approximately 93%) protection against salsolinol-induced toxicity. Salsolinol caused an arrest of the cells in G(1)-phase of cell cycle and an increase in apoptotic indices that were blocked by the combination of donepezil and nicotine. Mecamylamine, a non-selective nicotinic receptor antagonist completely blocked the effects of nicotine and partially attenuated the effects of donepezil. A combination of atropine, a muscarinic receptor antagonist and mecamylamine completely blocked the effects of donepezil, indicating involvement of both nicotinic and muscarinic receptors in donepezil's actions. The findings suggest a therapeutic potential for the combination of donepezil and nicotine in PD.
Collapse
|
33
|
Takada-Takatori Y, Kume T, Izumi Y, Ohgi Y, Niidome T, Fujii T, Sugimoto H, Akaike A. Roles of Nicotinic Receptors in Acetylcholinesterase Inhibitor-Induced Neuroprotection and Nicotinic Receptor Up-Regulation. Biol Pharm Bull 2009; 32:318-24. [DOI: 10.1248/bpb.32.318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Takada-Takatori
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuta Ohgi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Tetsuhiro Niidome
- Department of Neuroscience for Drug Discovery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College
| | - Hachiro Sugimoto
- Department of Neuroscience for Drug Discovery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|