1
|
Fraser J, Essebier A, Brown AS, Davila RA, Harkins D, Zalucki O, Shapiro LP, Penzes P, Wainwright BJ, Scott MP, Gronostajski RM, Bodén M, Piper M, Harvey TJ. Common Regulatory Targets of NFIA, NFIX and NFIB during Postnatal Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2020; 19:89-101. [PMID: 31838646 PMCID: PMC7815246 DOI: 10.1007/s12311-019-01089-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation plays a central role in controlling neural stem and progenitor cell proliferation and differentiation during neurogenesis. For instance, transcription factors from the nuclear factor I (NFI) family have been shown to co-ordinate neural stem and progenitor cell differentiation within multiple regions of the embryonic nervous system, including the neocortex, hippocampus, spinal cord and cerebellum. Knockout of individual Nfi genes culminates in similar phenotypes, suggestive of common target genes for these transcription factors. However, whether or not the NFI family regulates common suites of genes remains poorly defined. Here, we use granule neuron precursors (GNPs) of the postnatal murine cerebellum as a model system to analyse regulatory targets of three members of the NFI family: NFIA, NFIB and NFIX. By integrating transcriptomic profiling (RNA-seq) of Nfia- and Nfix-deficient GNPs with epigenomic profiling (ChIP-seq against NFIA, NFIB and NFIX, and DNase I hypersensitivity assays), we reveal that these transcription factors share a large set of potential transcriptional targets, suggestive of complementary roles for these NFI family members in promoting neural development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Matthew P Scott
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mikael Bodén
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
2
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
3
|
Fraser J, Essebier A, Brown AS, Davila RA, Sengar AS, Tu Y, Ensbey KS, Day BW, Scott MP, Gronostajski RM, Wainwright BJ, Boden M, Harvey TJ, Piper M. Granule neuron precursor cell proliferation is regulated by NFIX and intersectin 1 during postnatal cerebellar development. Brain Struct Funct 2018; 224:811-827. [PMID: 30511336 DOI: 10.1007/s00429-018-1801-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebellar granule neurons are the most numerous neuronal subtype in the central nervous system. Within the developing cerebellum, these neurons are derived from a population of progenitor cells found within the external granule layer of the cerebellar anlage, namely the cerebellar granule neuron precursors (GNPs). The timely proliferation and differentiation of these precursor cells, which, in rodents occurs predominantly in the postnatal period, is tightly controlled to ensure the normal morphogenesis of the cerebellum. Despite this, our understanding of the factors mediating how GNP differentiation is controlled remains limited. Here, we reveal that the transcription factor nuclear factor I X (NFIX) plays an important role in this process. Mice lacking Nfix exhibit reduced numbers of GNPs during early postnatal development, but elevated numbers of these cells at postnatal day 15. Moreover, Nfix-/- GNPs exhibit increased proliferation when cultured in vitro, suggestive of a role for NFIX in promoting GNP differentiation. At a mechanistic level, profiling analyses using both ChIP-seq and RNA-seq identified the actin-associated factor intersectin 1 as a downstream target of NFIX during cerebellar development. In support of this, mice lacking intersectin 1 also displayed delayed GNP differentiation. Collectively, these findings highlight a key role for NFIX and intersectin 1 in the regulation of cerebellar development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - YuShan Tu
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - Kathleen S Ensbey
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Bryan W Day
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Mikael Boden
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia. .,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
4
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
5
|
Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L, Gronostajski RM, Richards LJ, Piper M. Combined allelic dosage of Nfia and Nfib regulates cortical development. Brain Neurosci Adv 2017; 1:2398212817739433. [PMID: 32166136 PMCID: PMC7058261 DOI: 10.1177/2398212817739433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of Nfia and Nfib would culminate in more severe defects in the cerebral cortex than loss of a single member. Methods: We combined immunofluorescence, co-immunoprecipitation, gene expression analysis and immunohistochemistry on knockout mouse models to investigate whether nuclear factor I A and nuclear factor I B function similarly and whether increasing allelic loss of Nfia and Nfib caused a more severe phenotype. Results: We determined that the biological functions of nuclear factor I A and nuclear factor I B overlap during early cortical development. These proteins are co-expressed and can form heterodimers in vivo. Differentially regulated genes that are shared between Nfia and Nfib knockout mice are highly enriched for nuclear factor I binding sites in their promoters and are associated with neurodevelopment. We found that compound heterozygous deletion of both genes resulted in a cortical phenotype similar to that of single homozygous Nfia or Nfib knockout embryos. This was characterised by retention of the interhemispheric fissure, dysgenesis of the corpus callosum and a malformed dentate gyrus. Double homozygous knockout of Nfia and Nfib resulted in a more severe phenotype, with increased ventricular enlargement and decreased numbers of differentiated glia and neurons. Conclusion: In the developing cerebral cortex, nuclear factor I A and nuclear factor I B share similar biological functions and function additively, as the combined allelic loss of these genes directly correlates with the severity of the developmental brain phenotype.
Collapse
Affiliation(s)
- Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason M Osinski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan Wc Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunan Ye
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R O'Connor
- School of Chemical and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Lett 2017; 410:124-138. [PMID: 28962832 DOI: 10.1016/j.canlet.2017.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023]
Abstract
The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer. Our review includes all cancer types in which the NFI genes are implicated, focusing predominantly on studies demonstrating their oncogenic or tumour-suppressive potential. We conclude by presenting the challenges impeding our understanding of NFI function in cancer biology, and demonstrate how a developmental perspective may contribute towards overcoming such hurdles.
Collapse
|
7
|
Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct 2016; 222:2251-2270. [PMID: 27878595 DOI: 10.1007/s00429-016-1340-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.
Collapse
|
8
|
Takeuchi M, Yamaguchi S, Sakakibara Y, Hayashi T, Matsuda K, Hara Y, Tanegashima C, Shimizu T, Kuraku S, Hibi M. Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum. J Comp Neurol 2016; 525:1558-1585. [DOI: 10.1002/cne.24114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
| | - Shingo Yamaguchi
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yoshimasa Sakakibara
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Takuto Hayashi
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Chiharu Tanegashima
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| |
Collapse
|
9
|
Ding B, Cave JW, Dobner PR, Mullikin-Kilpatrick D, Bartzokis M, Zhu H, Chow CW, Gronostajski RM, Kilpatrick DL. Reciprocal autoregulation by NFI occupancy and ETV1 promotes the developmental expression of dendrite-synapse genes in cerebellar granule neurons. Mol Biol Cell 2016; 27:1488-99. [PMID: 26941328 PMCID: PMC4850036 DOI: 10.1091/mbc.e15-07-0476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/25/2016] [Indexed: 12/30/2022] Open
Abstract
Temporal control of dendritogenesis is poorly understood. Mutual feedback between NFIA temporal occupancy and ETV1 drives the timing of gene expression associated with dendrite formation in maturing neurons. A sequential timing model is proposed in which ETV1 autoregulation precedes activation of downstream NFIA/ETV1 coregulated genes. Nuclear Factor One (NFI) transcription factors regulate temporal gene expression required for dendritogenesis and synaptogenesis via delayed occupancy of target promoters in developing cerebellar granule neurons (CGNs). Mechanisms that promote NFI temporal occupancy have not been previously defined. We show here that the transcription factor ETV1 directly binds to and is required for expression and NFI occupancy of a cohort of NFI-dependent genes in CGNs maturing in vivo. Expression of ETV1 is low in early postnatal cerebellum and increases with maturation, mirroring NFI temporal occupancy of coregulated target genes. Precocious expression of ETV1 in mouse CGNs accelerated onset of expression and NFI temporal occupancy of late target genes and enhanced Map2(+) neurite outgrowth. ETV1 also activated expression and NFI occupancy of the Etv1 gene itself, and this autoregulatory loop preceded ETV1 binding and activation of other coregulated target genes in vivo. These findings suggest a potential model in which ETV1 activates NFI temporal binding to a subset of late-expressed genes in a stepwise manner by initial positive feedback regulation of the Etv1 gene itself followed by activation of downstream coregulated targets as ETV1 expression increases. Sequential transcription factor autoregulation and subsequent binding to downstream promoters may provide an intrinsic developmental timer for dendrite/synapse gene expression.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - John W Cave
- Burke Medical Research Institute, White Plains, NY 10605 Weill Cornell Medical College, Brain and Mind Research Institute, New York, NY 10065
| | - Paul R Dobner
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - Debra Mullikin-Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - Marina Bartzokis
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hong Zhu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Neuroscience and Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
10
|
Heng YHE, Zhou B, Harris L, Harvey T, Smith A, Horne E, Martynoga B, Andersen J, Achimastou A, Cato K, Richards LJ, Gronostajski RM, Yeo GS, Guillemot F, Bailey TL, Piper M. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex 2014; 25:3758-78. [PMID: 25331604 DOI: 10.1093/cercor/bhu253] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcription factors of the nuclear factor one (NFI) family play a pivotal role in the development of the nervous system. One member, NFIX, regulates the development of the neocortex, hippocampus, and cerebellum. Postnatal Nfix(-/-) mice also display abnormalities within the subventricular zone (SVZ) lining the lateral ventricles, a region of the brain comprising a neurogenic niche that provides ongoing neurogenesis throughout life. Specifically, Nfix(-/-) mice exhibit more PAX6-expressing progenitor cells within the SVZ. However, the mechanism underlying the development of this phenotype remains undefined. Here, we reveal that NFIX contributes to multiple facets of SVZ development. Postnatal Nfix(-/-) mice exhibit increased levels of proliferation within the SVZ, both in vivo and in vitro as assessed by a neurosphere assay. Furthermore, we show that the migration of SVZ-derived neuroblasts to the olfactory bulb is impaired, and that the olfactory bulbs of postnatal Nfix(-/-) mice are smaller. We also demonstrate that gliogenesis within the rostral migratory stream is delayed in the absence of Nfix, and reveal that Gdnf (glial-derived neurotrophic factor), a known attractant for SVZ-derived neuroblasts, is a target for transcriptional activation by NFIX. Collectively, these findings suggest that NFIX regulates both proliferation and migration during the development of the SVZ neurogenic niche.
Collapse
Affiliation(s)
| | - Bo Zhou
- Department of Biochemistry, Programs in Neuroscience and Genetics, Genomics & Bioinformatics, Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | | - Ben Martynoga
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, UK
| | - Jimena Andersen
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, UK
| | - Angeliki Achimastou
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, UK
| | | | | | - Richard M Gronostajski
- Department of Biochemistry, Programs in Neuroscience and Genetics, Genomics & Bioinformatics, Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Giles S Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - François Guillemot
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, UK
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences Queensland Brain Institute
| |
Collapse
|
11
|
Harris L, Genovesi LA, Gronostajski RM, Wainwright BJ, Piper M. Nuclear factor one transcription factors: Divergent functions in developmental versus adult stem cell populations. Dev Dyn 2014; 244:227-38. [PMID: 25156673 DOI: 10.1002/dvdy.24182] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor one (NFI) transcription factors are a group of site-specific DNA-binding proteins that are emerging as critical regulators of stem cell biology. During development NFIs promote the production of differentiated progeny at the expense of stem cell fate, with Nfi null mice exhibiting defects such as severely delayed brain and lung maturation, skeletomuscular defects and renal abnormalities, phenotypes that are often consistent with patients with congenital Nfi mutations. Intriguingly, recent research suggests that in adult tissues NFI factors play a qualitatively different role than during development, with NFIs serving to promote the survival and maintenance of slow-cycling adult stem cell populations rather than their differentiation. Here we review the role of NFI factors in development, largely focusing on their role as promoters of stem cell differentiation, and attempt to reconcile this with the emerging role of NFIs in adult stem cell niches.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
12
|
Tsai PC, Bake S, Balaraman S, Rawlings J, Holgate RR, Dubois D, Miranda RC. MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells. Biol Open 2014; 3:741-58. [PMID: 25063196 PMCID: PMC4133727 DOI: 10.1242/bio.20147765] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ethanol exposure during pregnancy is an established cause of birth defects, including neurodevelopmental defects. Most adult neurons are produced during the second trimester-equivalent period. The fetal neural stem cells (NSCs) that generate these neurons are an important but poorly understood target for teratogenesis. A cohort of miRNAs, including miR-153, may serve as mediators of teratogenesis. We previously showed that ethanol decreased, while nicotine increased miR-153 expression in NSCs. To understand the role of miR-153 in the etiology of teratology, we first screened fetal cortical NSCs cultured ex vivo, by microarray and quantitative RT-PCR analyses, to identify cell-signaling mRNAs and gene networks as important miR-153 targets. Moreover, miR-153 over-expression prevented neuronal differentiation without altering neuroepithelial cell survival or proliferation. Analysis of 3'UTRs and in utero over-expression of pre-miR-153 in fetal mouse brain identified Nfia (nuclear factor-1A) and its paralog, Nfib, as direct targets of miR-153. In utero ethanol exposure resulted in a predicted expansion of Nfia and Nfib expression in the fetal telencephalon. In turn, miR-153 over-expression prevented, and partly reversed, the effects of ethanol exposure on miR-153 target transcripts. Varenicline, a partial nicotinic acetylcholine receptor agonist that, like nicotine, induces miR-153 expression, also prevented and reversed the effects of ethanol exposure. These data collectively provide evidence for a role for miR-153 in preventing premature NSC differentiation. Moreover, they provide the first evidence in a preclinical model that direct or pharmacological manipulation of miRNAs have the potential to prevent or even reverse effects of a teratogen like ethanol on fetal development.
Collapse
Affiliation(s)
- Pai-Chi Tsai
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Sridevi Balaraman
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Jeremy Rawlings
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Rhonda R Holgate
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Dustin Dubois
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807-3260, USA
| |
Collapse
|
13
|
Abstract
Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.
Collapse
|
14
|
Lacroix J, Schlund F, Leuchs B, Adolph K, Sturm D, Bender S, Hielscher T, Pfister SM, Witt O, Rommelaere J, Schlehofer JR, Witt H. Oncolytic effects of parvovirus H-1 in medulloblastoma are associated with repression of master regulators of early neurogenesis. Int J Cancer 2013; 134:703-16. [PMID: 23852775 PMCID: PMC4232887 DOI: 10.1002/ijc.28386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
Based on extensive pre-clinical studies, the oncolytic parvovirus H-1 (H-1PV) is currently applied to patients with recurrent glioblastoma in a phase I/IIa clinical trial (ParvOryx01, NCT01301430). Cure rates of about 40% in pediatric high-risk medulloblastoma (MB) patients also indicate the need of new therapeutic approaches. In order to prepare a future application of oncolytic parvovirotherapy to MB, the present study preclinically evaluates the cytotoxic efficacy of H-1PV on MB cells in vitro and characterizes cellular target genes involved in this effect. Six MB cell lines were analyzed by whole genome oligonucleotide microarrays after treatment and the results were matched to known molecular and cytogenetic risk factors. In contrast to non-transformed infant astrocytes and neurons, in five out of six MB cell lines lytic H-1PV infection and efficient viral replication could be demonstrated. The cytotoxic effects induced by H-1PV were observed at LD50s below 0.05 p. f. u. per cell indicating high susceptibility. Gene expression patterns in the responsive MB cell lines allowed the identification of candidate target genes mediating the cytotoxic effects of H-1PV. H-1PV induced down-regulation of key regulators of early neurogenesis shown to confer poor prognosis in MB such as ZIC1, FOXG1B, MYC, and NFIA. In MB cell lines with genomic amplification of MYC, expression of MYC was the single gene most significantly repressed after H-1PV infection. H-1PV virotherapy may be a promising treatment approach for MB since it targets genes of functional relevance and induces cell death at very low titers of input virus.
Collapse
Affiliation(s)
- Jeannine Lacroix
- Division of Tumor Virology, Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg, Germany; Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Harris L, Dixon C, Cato K, Heng YHE, Kurniawan ND, Ullmann JFP, Janke AL, Gronostajski RM, Richards LJ, Burne THJ, Piper M. Heterozygosity for nuclear factor one x affects hippocampal-dependent behaviour in mice. PLoS One 2013; 8:e65478. [PMID: 23776487 PMCID: PMC3679126 DOI: 10.1371/journal.pone.0065478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/25/2013] [Indexed: 01/20/2023] Open
Abstract
Identification of the genes that regulate the development and subsequent functioning of the hippocampus is pivotal to understanding the role of this cortical structure in learning and memory. One group of genes that has been shown to be critical for the early development of the hippocampus is the Nuclear factor one (Nfi) family, which encodes four site-specific transcription factors, NFIA, NFIB, NFIC and NFIX. In mice lacking Nfia, Nfib or Nfix, aspects of early hippocampal development, including neurogenesis within the dentate gyrus, are delayed. However, due to the perinatal lethality of these mice, it is not clear whether this hippocampal phenotype persists to adulthood and affects hippocampal-dependent behaviour. To address this we examined the hippocampal phenotype of mice heterozygous for Nfix (Nfix (+/-)), which survive to adulthood. We found that Nfix (+/-) mice had reduced expression of NFIX throughout the brain, including the hippocampus, and that early hippocampal development in these mice was disrupted, producing a phenotype intermediate to that of wild-type mice and Nfix(-/-) mice. The abnormal hippocampal morphology of Nfix (+/-) mice persisted to adulthood, and these mice displayed a specific performance deficit in the Morris water maze learning and memory task. These findings demonstrate that the level of Nfix expression during development and within the adult is essential for the function of the hippocampus during learning and memory.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Chantelle Dixon
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Kathleen Cato
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yee Hsieh Evelyn Heng
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | | | - Andrew L. Janke
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry and the Program in Neuroscience, Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Linda J. Richards
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Thomas H. J. Burne
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
16
|
Temporal regulation of nuclear factor one occupancy by calcineurin/NFAT governs a voltage-sensitive developmental switch in late maturing neurons. J Neurosci 2013; 33:2860-72. [PMID: 23407945 DOI: 10.1523/jneurosci.3533-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs. Chromatin immunoprecipitation analysis revealed that a central feature of this program was temporally regulated NFI occupancy of late-expressed gene promoters. Developing CGNs undergo a hyperpolarizing shift in membrane potential, and depolarization inhibits their dendritic and synaptic maturation via activation of calcineurin (CaN) (Okazawa et al., 2009). Maintaining immature CGNs in a depolarized state blocked NFI temporal occupancy of late-expressed genes and the NFI switch program via activation of the CaN/nuclear factor of activated T-cells, cytoplasmic (NFATc) pathway and promotion of late-gene occupancy by NFATc4, and these mechanisms inhibited dendritogenesis. Conversely, inhibition of the CaN/NFATc pathway in CGNs maturing under physiological nondepolarizing conditions upregulated the NFI switch program, NFI temporal occupancy, and dendrite formation. NFATc4 occupied the promoters of late-expressed NFI program genes in immature mouse cerebellum, and its binding was temporally downregulated with development. Further, NFI temporal binding and switch gene expression were upregulated in the developing cerebellum of Nfatc4 (-/-) mice. These findings define a novel NFI switch and temporal occupancy program that forms a critical link between membrane potential/CaN and dendritic maturation in CGNs. CaN inhibits the program and NFI occupancy in immature CGNs by promoting NFATc4 binding to late-expressed genes. As maturing CGNs become more hyperpolarized, NFATc4 binding declines leading to onset of NFI temporal binding and the NFI switch program.
Collapse
|
17
|
Abstract
The cerebellum plays an important role in motor control, motor skill acquisition, memory and learning among other brain functions. In rodents, cerebellar development continues after birth, characterized by the maturation of granule neurons. Cerebellar granule neurons (CGNs) are the most abundant neuronal type in the central nervous system, and they provide an excellent model for investigating molecular, -cellular, and physiological mechanisms underlying neuronal development as well as neural circuitry linked to behavior. Here we describe a procedure to isolate and culture CGNs from postnatal day 6 mice. These cultures can be used to examine numerous aspects of CGN differentiation, electrophysiology, and function.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
18
|
Plachez C, Cato K, McLeay RC, Heng YHE, Bailey TL, Gronostasjki RM, Richards LJ, Puche AC, Piper M. Expression of nuclear factor one A and -B in the olfactory bulb. J Comp Neurol 2012; 520:3135-49. [DOI: 10.1002/cne.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Piper M, Harris L, Barry G, Heng YHE, Plachez C, Gronostajski RM, Richards LJ. Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum. J Comp Neurol 2012; 519:3532-48. [PMID: 21800304 DOI: 10.1002/cne.22721] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of the cerebellum involves the coordinated proliferation, differentiation, maturation, and integration of cells from multiple neuronal and glial lineages. In rodent models, much of this occurs in the early postnatal period. However, our understanding of the molecular mechanisms that regulate this phase of cerebellar development remains incomplete. Here, we address the role of the transcription factor nuclear factor one X (NFIX), in postnatal development of the cerebellum. NFIX is expressed by progenitor cells within the external granular layer and by cerebellar granule neurons within the internal granule layer. Using NFIX⁻/⁻ mice, we demonstrate that the development of cerebellar granule neurons and Purkinje cells within the postnatal cerebellum is delayed in the absence of this transcription factor. Furthermore, the differentiation of mature glia within the cerebellum, such as Bergmann glia, is also significantly delayed in the absence of NFIX. Collectively, the expression pattern of NFIX, coupled with the delays in the differentiation of multiple cell populations of the developing cerebellum in NFIX⁻/⁻ mice, suggest a central role for NFIX in the regulation of cerebellar development, highlighting the importance of this gene for the maturation of this key structure.
Collapse
Affiliation(s)
- Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Choi J, Ababon MR, Matteson PG, Millonig JH. Cut-like homeobox 1 and nuclear factor I/B mediate ENGRAILED2 autism spectrum disorder-associated haplotype function. Hum Mol Genet 2012; 21:1566-80. [PMID: 22180456 PMCID: PMC3298280 DOI: 10.1093/hmg/ddr594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/01/2011] [Accepted: 12/12/2011] [Indexed: 02/05/2023] Open
Abstract
Both common and rare variants contribute to autism spectrum disorder (ASD) risk, but few variants have been established as functional. Previously we demonstrated that an intronic haplotype (rs1861972-rs1861973 A-C) in the homeobox transcription factor ENGRAILED2 (EN2) is significantly associated with ASD. Positive association has also been reported in six additional data sets, suggesting EN2 is an ASD susceptibility gene. Additional support for this possibility requires identification of functional variants that affect EN2 regulation or activity. In this study, we demonstrate that the A-C haplotype is a transcriptional activator. Luciferase (luc) assays in mouse neuronal cultures determined that the A-C haplotype increases expression levels (50%, P < 0.01, 24 h; 250%, P < 0.0001, 72 h). Mutational analysis indicates that the A-C haplotype activator function requires both associated A and C alleles. A minimal 202-bp element is sufficient for function and also specifically binds a protein complex. Mass spectrometry identified these proteins as the transcription factors, Cut-like homeobox 1 (Cux1) and nuclear factor I/B (Nfib). Subsequent antibody supershifts and chromatin immunoprecipitations demonstrated that human CUX1 and NFIB bind the A-C haplotype. Co-transfection and knock-down experiments determined that both CUX1 and NFIB are required for the A-C haplotype activator function. These data demonstrate that the ASD-associated A-C haplotype is a transcriptional activator, and both CUX1 and NFIB mediate this activity. These results provide biochemical evidence that the ASD-associated A-C haplotype is functional, further supporting EN2 as an ASD susceptibility gene.
Collapse
Affiliation(s)
- Jiyeon Choi
- Center for Advanced Biotechnology and Medicine and
| | | | | | - James H. Millonig
- Center for Advanced Biotechnology and Medicine and
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Heng YHE, Barry G, Richards LJ, Piper M. Nuclear factor I genes regulate neuronal migration. Neurosignals 2012; 20:159-67. [PMID: 22456058 DOI: 10.1159/000330651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
Neuronal migration plays a central role in the formation of the brain, and deficits in this process can lead to aberrant brain function and subsequent disease. Neuronal migration is a complex process that involves the interaction of the neuron with the surrounding environmental milieu, and as such involves both cell-intrinsic and cell-extrinsic mechanisms. Studies performed in rodent models to investigate the formation of brain structures have provided key insights into how neuronal migration is coordinated during development. Within the cerebral cortex, glutamatergic neurons derived from the cortical ventricular zone migrate radially into the cortical plate, whereas interneurons derived within the ventrally located ganglionic eminences migrate tangentially into the cortex. Within the embryonic cerebellum, cerebellar granule neuron progenitors migrate from the rhombic lip over the surface of the cerebellar anlage, before differentiating and migrating radially into the internal granule layer of the cerebellum perinatally. In this review, we focus on one family of proteins, the nuclear factor I transcription factors, and review our understanding of how these molecules contribute to the formation of the hippocampus and the cerebellum via the regulation of neuronal migration.
Collapse
Affiliation(s)
- Yee Hsieh Evelyn Heng
- School of Biomedical Sciences, Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
22
|
Duval C, Gaudreault M, Vigneault F, Touzel-Deschênes L, Rochette PJ, Masson-Gadais B, Germain L, Guérin SL. Rescue of the transcription factors Sp1 and NFI in human skin keratinocytes through a feeder-layer-dependent suppression of the proteasome activity. J Mol Biol 2012; 418:281-99. [PMID: 22420942 DOI: 10.1016/j.jmb.2012.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/01/2022]
Abstract
Co-culturing human skin keratinocytes along with a feeder layer has proven to considerably improve their proliferative properties by delaying massive induction of terminal differentiation. Through a yet unclear mechanism, we recently reported that irradiated 3T3 (i3T3) fibroblasts used as a feeder layer increase the nuclear content of Sp1, a positive transcription factor (TF) that plays a critical role in many cellular functions including cell proliferation, into both adult skin keratinocytes and newborn skin keratinocytes. In this study, we examined the influence of i3T3 on the expression and DNA binding of NFI, another TF important for cell proliferation and cell cycle progression, and attempted to decipher the mechanism by which the feeder layer contributes at maintaining higher levels of these TFs in skin keratinocytes. Our results indicate that co-culturing both adult skin keratinocytes and newborn skin keratinocytes along with a feeder layer dramatically increases glycosylation of NFI and may prevent it from being degraded by the proteasome.
Collapse
Affiliation(s)
- Céline Duval
- LOEX/CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHA, Québec, QC, Canada G1S4L8
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kilpatrick DL, Wang W, Gronostajski R, Litwack ED. Nuclear factor I and cerebellar granule neuron development: an intrinsic-extrinsic interplay. CEREBELLUM (LONDON, ENGLAND) 2012; 11:41-9. [PMID: 22548229 PMCID: PMC3175246 DOI: 10.1007/s12311-010-0227-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Granule neurons have a central role in cerebellar function via their synaptic interactions with other neuronal cell types both within and outside this structure. Establishment of these synaptic connections and its control is therefore essential to their function. Both intrinsic as well as environmental mechanisms are required for neuronal development and formation of neuronal circuits, and a key but poorly understood question is how these various events are coordinated and integrated in maturing neurons. In this review, we summarize recent work on the role of the Nuclear Factor I family in the transcriptional programming of cerebellar granule neuron maturation and synapse formation. In particular, we describe (1) the involvement of this family of factors in key developmental steps occurring throughout postmitotic granule neuron development, including dendrite and synapse formation and synaptic receptor expression, and (2) the mediation of these actions by critical downstream gene targets that control cell-cell interactions. These findings illustrate how Nuclear Factor I proteins and their regulons function as a “bridge” between cell-intrinsic and cell-extrinsic interactions to control multiple phases of granule neuron development.
Collapse
Affiliation(s)
- Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems, and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
24
|
Bunt J, Hasselt NE, Zwijnenburg DA, Hamdi M, Koster J, Versteeg R, Kool M. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int J Cancer 2011; 131:E21-32. [DOI: 10.1002/ijc.26474] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/16/2011] [Indexed: 12/22/2022]
|
25
|
Wang W, Shin Y, Shi M, Kilpatrick DL. Temporal control of a dendritogenesis-linked gene via REST-dependent regulation of nuclear factor I occupancy. Mol Biol Cell 2011; 22:868-79. [PMID: 21270437 PMCID: PMC3057710 DOI: 10.1091/mbc.e10-10-0817] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
How the timing of gene expression is controlled during neuronal development is largely unknown. Here we describe a temporal mechanism of gene regulation in differentiating postmitotic neurons involving delayed promoter site occupancy by nuclear factor I and the control of its initial onset by the trans-repressor REST. Developing neurons undergo a series of maturational stages, and the timing of these events is critical for formation of synaptic circuitry. Here we addressed temporal regulation of the Gabra6 gene, which is expressed in a delayed manner during dendritogenesis in maturing cerebellar granule neurons (CGNs). Developmental up-regulation of Gabra6 transcription required a binding site for nuclear factor I (NFI) proteins. The amounts and DNA binding activities of NFI proteins were similar in immature and mature CGNs; however, NFI occupancy of the Gabra6 promoter in native chromatin was temporally delayed in parallel with Gabra6 gene expression, both in vivo and in culture. The trans-repressor RE1 silencing transcription factor (REST) occupied the Gabra6 proximal promoter in CGN progenitors and early postmitotic CGNs, and its departure mirrored the initial onset of NFI binding as CGNs differentiated. Furthermore constitutive REST expression blocked both Gabra6 expression and NFI occupancy in mature CGNs, whereas REST knockdown in immature CGNs accelerated the initiation of both events. These studies identify a novel mechanism for controlling the timing of dendritogenesis-associated gene expression in maturing neurons through delayed binding of NFI proteins to chromatin. They also establish a temporal function for REST in preventing premature promoter occupancy by NFI proteins in early-stage postmitotic neurons.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|