1
|
Ren H, Luan Z, Zhang R, Zhang H, Bian C. A novel approach to explore metabolic diseases: Neddylation. Pharmacol Res 2024; 210:107532. [PMID: 39637955 DOI: 10.1016/j.phrs.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Protein post translational modification (PTM) is the main regulatory mechanism for eukaryotic cell function, among which ubiquitination is based on the reversible degradation of proteins by the ubiquitin proteasome system to regulate cell homeostasis. The neural precursor cell expressed developmental downregulated gene 8 (NEDD8) is a kind of ubiquitin like protein that shares 80 % homology and 60 % identity with ubiquitin. The PTM process by covalently binding NEDD8 to lysine residues in proteins is called neddylation. The neddylation reaction could be regulated by NEDD8, its precursors, substrates, E1 activating enzymes, E2 binding enzymes, E3 ligases, de-neddylases, and its inhibitors, such as MLN4924. NEDD8 is widely expressed in the whole cell structure of multiple tissues and species, and neddylation related factors are highly expressed in metabolism related adrenal glands, thyroid glands, parathyroid glands, skeletal muscles, myocardium, and adipose tissues, related to metabolic cardiovascular, cerebrovascular and liver diseases, adipogenic and osteogenic differentiation, as well as tumor glycolysis and glucose metabolism resulting from angiogenesis and endothelial disfunction, hepatotoxicity, adipogenesis, osteogenesis, Warburg effect, and insulin function. This review provides researchers with a new approach to explore metabolic diseases via searching and analyzing the histological, cytological, and subcellular localization of neddylation specific molecules in databases, and exploring specific mechanism neddylation mediating metabolic diseases by searching for neddylation related terms with the development of pre-clinical neddylation pharmacological inhibitors.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haibo Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Wu Q, Geng Z, Lu J, Wang S, Yu Z, Wang S, Ren X, Guan S, Liu T, Zhu C. Neddylation of protein, a new strategy of protein post-translational modification for targeted treatment of central nervous system diseases. Front Neurosci 2024; 18:1467562. [PMID: 39564524 PMCID: PMC11573765 DOI: 10.3389/fnins.2024.1467562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Neddylation, a type of protein post-translational modification that links the ubiquitin-like protein NEDD8 to substrate proteins, can be involved in various significant cellular processes and generate multiple biological effects. Currently, the best-characterized substrates of neddylation are the Cullin protein family, which is the core subunit of the Cullin-RING E3 ubiquitin ligase complex and controls many important biological processes by promoting ubiquitination and subsequent degradation of various key regulatory proteins. The normal or abnormal process of protein neddylation in the central nervous system can lead to a series of occurrences of normal functions and the development of diseases, providing an attractive, reasonable, and effective targeted therapeutic strategy. Therefore, this study reviews the phenomenon of neddylation in the central nervous system and summarizes the corresponding substrates. Finally, we provide a detailed description of neddylation involved in CNS diseases and treatment methods that may be used to regulate neddylation for the treatment of related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Lu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shisong Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Marchesan E, Nardin A, Mauri S, Bernardo G, Chander V, Di Paola S, Chinellato M, von Stockum S, Chakraborty J, Herkenne S, Basso V, Schrepfer E, Marin O, Cendron L, Medina DL, Scorrano L, Ziviani E. Activation of Ca 2+ phosphatase Calcineurin regulates Parkin translocation to mitochondria and mitophagy in flies. Cell Death Differ 2024; 31:217-238. [PMID: 38238520 PMCID: PMC10850161 DOI: 10.1038/s41418-023-01251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024] Open
Abstract
Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.
Collapse
Affiliation(s)
| | - Alice Nardin
- Department of Biology, University of Padova, Padova, Italy
| | - Sofia Mauri
- Department of Biology, University of Padova, Padova, Italy
| | - Greta Bernardo
- Department of Biology, University of Padova, Padova, Italy
| | - Vivek Chander
- Department of Biology, University of Padova, Padova, Italy
| | - Simone Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Napoli, Italy
| | | | | | | | | | | | - Emilie Schrepfer
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Jiang Y, Gao S, Sun H, Wu X, Gu J, Wu H, Liao Y, Ben-Ami R, Miao C, Shen R, Liu J, Chen W. Targeting NEDD8 suppresses surgical stress-facilitated metastasis of colon cancer via restraining regulatory T cells. Cell Death Dis 2024; 15:8. [PMID: 38177106 PMCID: PMC10767093 DOI: 10.1038/s41419-023-06396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Regulatory T cells (Tregs) are a key determinant for the immunosuppressive and premetastatic niche for cancer progression after surgery resection. However, the precise mechanisms regulating Tregs function during surgical stress-facilitated cancer metastasis remain unknown. This study aims to unravel the mechanisms and explore potential strategies for preventing surgical stress-induced metastasis by targeting NEDD8. Using a surgical stress mouse model, we found that surgical stress results in the increased expression of NEDD8 in Tregs. NEDD8 depletion abrogates postoperative lung metastasis of colon cancer cells by inhibiting Treg immunosuppression and thereby partially recovering CD8+T cell and NK cell-mediated anti-tumor immunity. Furthermore, Treg mitophagy and mitochondrial respiration exacerbated in surgically stressed mice were attenuated by NEDD8 depletion. Our observations suggest that cancer progression may result from surgery-induced enhancement of NEDD8 expression and the subsequent immunosuppressive function of Tregs. More importantly, depleting or inhibiting NEDD8 can be an efficient strategy to reduce cancer metastasis after surgery resection by regulating the function of Tregs.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Yun Liao
- School of Basic Medical Science, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Rong Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China.
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, 201104, China.
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201799, China.
| |
Collapse
|
6
|
Connelly EM, Frankel KS, Shaw GS. Parkin and mitochondrial signalling. Cell Signal 2023; 106:110631. [PMID: 36803775 DOI: 10.1016/j.cellsig.2023.110631] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Aging, toxic chemicals and changes to the cellular environment are sources of oxidative damage to mitochondria which contribute to neurodegenerative conditions including Parkinson's disease. To counteract this, cells have developed signalling mechanisms to identify and remove select proteins and unhealthy mitochondria to maintain homeostasis. Two important proteins that work in concert to control mitochondrial damage are the protein kinase PINK1 and the E3 ligase parkin. In response to oxidative stress, PINK1 phosphorylates ubiquitin present on proteins at the mitochondrial surface. This signals the translocation of parkin, accelerates further phosphorylation, and stimulates ubiquitination of outer mitochondrial membrane proteins such as Miro1/2 and Mfn1/2. The ubiquitination of these proteins is the key step needed to target them for degradation via the 26S proteasomal machinery or eliminate the entire organelle through mitophagy. This review highlights the signalling mechanisms used by PINK1 and parkin and presents several outstanding questions yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth M Connelly
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Karling S Frankel
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
7
|
Govindarajulu M, Ramesh S, Shankar T, Kora MK, Moore T, Dhanasekaran M. Role of Neddylation in Neurodegenerative Diseases. NEUROSCI 2022; 3:533-545. [PMID: 39483771 PMCID: PMC11523694 DOI: 10.3390/neurosci3040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons in specific regions of the brain. Neuronal death is often associated with the accumulation of misfolded proteins due to genetic mutations or abnormal protein homeostasis. An essential mechanism for regulating the clearance of misfolded proteins is neddylation, a post-translational modification closely related to ubiquitination. Neddylation is brought about by conjugating neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to target substrates through a cascade of cellular events. Neddylation is crucial for many biological processes, and dysfunctional neddylation is implicated in several neurodegenerative diseases. This review discusses the current understanding of the role of neddylation pathways in neurodegenerative disorders and the emergence of neddylation signaling as a potential target for drug discovery and development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Tharanth Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India
| | | | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
9
|
He X, Zhu A, Feng J, Wang X. Role of neddylation in neurological development and diseases. Biotechnol Appl Biochem 2022; 69:330-341. [PMID: 33469954 DOI: 10.1002/bab.2112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Neddylation, a posttranslational protein modification, refers to the specific conjugation of NEDD8 to substrates, which is of great significance to various biological processes. Besides members of the cullin protein family, other key proteins can act as a substrate for neddylation modification, which remarkably influences neurodevelopment and neurodegenerative diseases. Normal levels of protein neddylation contribute to nerve growth, synapse strength, neurotransmission, and synaptic plasticity, whereas overactivation of protein neddylation pathways lead to apoptosis, autophagy of neurons, and tumorigenesis. Furthermore, impaired neddylation causes neurodegenerative diseases. These facts suggest that neddylation may be a target for treatment of these diseases. This review focuses on the current understanding of neddylation function in neurodevelopment as well as neurodegenerative diseases. Meanwhile, the recent view that different level of neddylation pathway may contribute to the opposing disease progression, such as neoplasms and Alzheimer's disease, is discussed. The review also discusses neddylation inhibitors, which are currently being tested in clinical trials. However, potential drawbacks of these drugs are noted, which may benefit the development of new pharmaceutical strategies in the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Xin He
- Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ainong Zhu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Affiliated Xinhui Hospital, Southern Medical University (People's Hospital of Xinhui District), Jiangmen, Guangdong, People's Republic of China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
10
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
11
|
Stuber K, Schneider T, Werner J, Kovermann M, Marx A, Scheffner M. Structural and functional consequences of NEDD8 phosphorylation. Nat Commun 2021; 12:5939. [PMID: 34642328 PMCID: PMC9020517 DOI: 10.1038/s41467-021-26189-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin (Ub) and Ub-like proteins (Ubls) such as NEDD8 are best known for their function as covalent modifiers of other proteins but they are also themselves subject to post-translational modifications including phosphorylation. While functions of phosphorylated Ub (pUb) have been characterized, the consequences of Ubl phosphorylation remain unclear. Here we report that NEDD8 can be phosphorylated at S65 - the same site as Ub - and that S65 phosphorylation affects the structural dynamics of NEDD8 and Ub in a similar manner. While both pUb and phosphorylated NEDD8 (pNEDD8) can allosterically activate the Ub ligase Parkin, they have different protein interactomes that in turn are distinct from those of unmodified Ub and NEDD8. Among the preferential pNEDD8 interactors are HSP70 family members and we show that pNEDD8 stimulates HSP70 ATPase activity more pronouncedly than unmodified NEDD8. Our findings highlight the general importance of Ub/NEDD8 phosphorylation and support the notion that the function of pUb/pNEDD8 does not require their covalent attachment to other proteins. Both ubiquitin and NEDD8 can be phosphorylated, but the biological role of NEDD8 phosphorylation remains unclear. Here, the authors identify similarities and differences of ubiquitin and NEDD8 phosphorylation, showing that phosphorylated NEDD8 has a distinct interactome and regulates HSP70 proteins.
Collapse
Affiliation(s)
- Katrin Stuber
- Dept. of Biology, University of Konstanz, Konstanz, Germany.,Dept. of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Tobias Schneider
- Dept. of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jill Werner
- Dept. of Biology, University of Konstanz, Konstanz, Germany.,Dept. of Chemistry, University of Konstanz, Konstanz, Germany
| | - Michael Kovermann
- Dept. of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Andreas Marx
- Dept. of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Martin Scheffner
- Dept. of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
12
|
Vijayasimha K, Dolan BP. The Many Potential Fates of Non-Canonical Protein Substrates Subject to NEDDylation. Cells 2021; 10:2660. [PMID: 34685640 PMCID: PMC8534235 DOI: 10.3390/cells10102660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) is a ubiquitin-like protein (UBL) whose canonical function involves binding to, and thus, activating Cullin-Ring finger Ligases (CRLs), one of the largest family of ubiquitin ligases in the eukaryotic cell. However, in recent years, several non-canonical protein substrates of NEDD8 have been identified. Here we attempt to review the recent literature regarding non-canonical NEDDylation of substrates with a particular focus on how the covalent modification of NEDD8 alters the protein substrate. Like much in the study of ubiquitin and UBLs, there are no clear and all-encompassing explanations to satisfy the textbooks. In some instances, NEDD8 modification appears to alter the substrates localization, particularly during times of stress. NEDDylation may also have conflicting impacts upon a protein's stability: some reports indicate NEDDylation may protect against degradation whereas others show NEDDylation can promote degradation. We also examine how many of the in vitro studies measuring non-canonical NEDDylation were conducted and compare those conditions to those which may occur in vivo, such as cancer progression. It is likely that the conditions used to study non-canonical NEDDylation are similar to some types of cancers, such as glioblastoma, colon and rectal cancers, and lung adenocarcinomas. Although the full outcomes of non-canonical NEDDylation remain unknown, our review of the literature suggests that researchers keep an open mind to the situations where this modification occurs and determine the functional impacts of NEDD8-modification to the specific substrates which they study.
Collapse
Affiliation(s)
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
13
|
Murillo-González FE, García-Aguilar R, Vega L, Elizondo G. Regulation of Parkin expression as the key balance between neural survival and cancer cell death. Biochem Pharmacol 2021; 190:114650. [PMID: 34111426 DOI: 10.1016/j.bcp.2021.114650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Parkin is a cytosolic E3 ubiquitin ligase that plays an important role in neuroprotection by targeting several proteins to be degraded by the 26S proteasome. Its dysfunction has been associated not only with Parkinson's disease (PD) but also with other neurodegenerative pathologies, such as Alzheimer's disease and Huntington's disease. More recently, Parkin has been identified as a tumor suppressor gene implicated in cancer development. Due to the important roles that this E3 ubiquitin ligase plays in cellular homeostasis, its expression, activity, and turnover are tightly regulated. Several reviews have addressed Parkin regulation; however, genetic and epigenetic regulation have been excluded. In addition to posttranslational modifications (PTMs), this review examines the regulatory mechanisms that control Parkin function through gene expression, epigenetic regulation, and degradation. Furthermore, the consequences of disrupting these regulatory processes on human health are discussed.
Collapse
Affiliation(s)
| | | | - Libia Vega
- Department of Toxicology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico
| | - Guillermo Elizondo
- Department of Cellular Biology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico.
| |
Collapse
|
14
|
Zhou Q, Zheng Y, Sun Y. Neddylation regulation of mitochondrial structure and functions. Cell Biosci 2021; 11:55. [PMID: 33731189 PMCID: PMC7968265 DOI: 10.1186/s13578-021-00569-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular processes including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future perspectives on this emerging and exciting field of mitochondrial research.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Yawen Zheng
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
15
|
Roverato ND, Sailer C, Catone N, Aichem A, Stengel F, Groettrup M. Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep 2021; 34:108857. [PMID: 33730565 DOI: 10.1016/j.celrep.2021.108857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase belonging to the RING-between-RING family. Mutations in the Parkin-encoding gene PARK2 are associated with familial Parkinson's disease. Here, we investigate the interplay between Parkin and the inflammatory cytokine-induced ubiquitin-like modifier FAT10. FAT10 targets hundreds of proteins for degradation by the 26S proteasome. We show that FAT10 gets conjugated to Parkin and mediates its degradation in a proteasome-dependent manner. Parkin binds to the E2 enzyme of FAT10 (USE1), auto-FAT10ylates itself, and facilitates FAT10ylation of the Parkin substrate Mitofusin2 in vitro and in cells, thus identifying Parkin as a FAT10 E3 ligase. On mitochondrial depolarization, FAT10ylation of Parkin inhibits its activation and ubiquitin-ligase activity causing impairment of mitophagy progression and aggravation of rotenone-mediated death of dopaminergic neuronal cells. In conclusion, FAT10ylation inhibits Parkin and mitophagy rendering FAT10 a likely inflammation-induced exacerbating factor and potential drug target for Parkinson's disease.
Collapse
Affiliation(s)
- Nicola D Roverato
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany
| | - Carolin Sailer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Annette Aichem
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcus Groettrup
- Department of Biology, Division of Immunology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| |
Collapse
|
16
|
Li J, Zou J, Littlejohn R, Liu J, Su H. Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Front Physiol 2020; 11:612927. [PMID: 33391028 PMCID: PMC7773599 DOI: 10.3389/fphys.2020.612927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rodney Littlejohn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
17
|
Zou T, Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J 2020; 288:3884-3912. [PMID: 33025631 DOI: 10.1111/febs.15584] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Neddylation is one type of protein post-translational modification by conjugating a ubiquitin-like protein neural precursor cell-expressed developmentally downregulated protein 8 to substrate proteins via a cascade involving E1, E2, and E3 enzymes. The best-characterized substrates of neddylation are cullins, essential components of cullin-RING E3 ubiquitin-ligase complexes. The discovery of noncullin neddylation targets indicates that neddylation may have diverse biological functions. Indeed, neddylation has been implicated in various cellular processes including cell cycle progression, metabolism, immunity, and tumorigenesis. Here, we summarized the reported neddylation substrates and also discuss the functions of neddylation in the immune system and metabolism.
Collapse
Affiliation(s)
- Tao Zou
- Beijing Institute of Brain Sciences, China
| | | |
Collapse
|
18
|
Neddylation activity modulates the neurodegeneration associated with fragile X associated tremor/ataxia syndrome (FXTAS) through regulating Sima. Neurobiol Dis 2020; 143:105013. [PMID: 32653676 DOI: 10.1016/j.nbd.2020.105013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expansion of CGG repeats in the 5' UTR of the fragile X mental retardation 1 (FMR1) gene. Using the well-established FXTAS Drosophila model, we performed a high-throughput chemical screen using 3200 small molecules. NSC363998 was identified to suppress the neurodegeneration caused by riboCGG (rCGG) repeats. Three predicted targets of a NSC363998 derivative are isopeptidases in the neddylation pathway and could modulate the neurotoxicity caused by the rCGG repeats. Decreasing levels of neddylation resulted in enhancing neurodegeneration phenotypes, while up-regulation could rescue the phenotypes. Furthermore, known neddylation substrates, Cul3 and Vhl, and their downstream target, Sima, were found to modulate rCGG90-dependent neurotoxicity. Our results suggest that altered neddylation activity can modulate the rCGG repeat-mediated toxicity by regulating Sima protein levels, which could serve as a potential therapeutic target for FXTAS.
Collapse
|
19
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
20
|
Wei B, Bosland PW, Zhang Z, Wang Y, Zhang G, Wang L, Yu J. A predicted NEDD8 conjugating enzyme gene identified as a Capsicum candidate Rf gene using bulk segregant RNA sequencing. HORTICULTURE RESEARCH 2020; 7:210. [PMID: 35051251 PMCID: PMC7721708 DOI: 10.1038/s41438-020-00425-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 05/09/2023]
Abstract
Cytoplasmic male sterility (CMS) is an important tool for producing F1 hybrids, which can exhibit heterosis. The companion system, restorer-of-fertility (Rf), is poorly understood at the molecular level and would be valuable in producing restorer lines for hybrid seed production. The identity of the Rf gene in Capsicum (pepper) is currently unclear. In this study, using bulked segregant RNA sequencing (BSR-seq), a strong candidate Rf gene, Capana06g002866, which is annotated as a NEDD8 conjugating enzyme E2, was identified. Capana06g002866 has an ORF of 555 bp in length encoding 184 amino acids; it can be cloned from F1 plants from the hybridization of the CMS line 8A and restorer line R1 but is not found in CMS line 8A. With qRT-PCR validation, Capana06g002866 was found to be upregulated in restorer accessions compared to sterile accessions. The relative expression in flower buds increased with the developmental stage in F1 plants, while the expression was very low in all flower bud stages of the CMS lines. These results provide new insights into the Rf gene in pepper and will be useful for other crops utilizing the CMS system.
Collapse
Affiliation(s)
- Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Paul W. Bosland
- Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003, Las Cruces, 88001 NM USA
| | - Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, 100081 Beijing, China
| | - Yongfu Wang
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Lanlan Wang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, 1 Nongkeyuan New Village, 730070 Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| |
Collapse
|
21
|
Balasubramaniam M, Parcon PA, Bose C, Liu L, Jones RA, Farlow MR, Mrak RE, Barger SW, Griffin WST. Interleukin-1β drives NEDD8 nuclear-to-cytoplasmic translocation, fostering parkin activation via NEDD8 binding to the P-ubiquitin activating site. J Neuroinflammation 2019; 16:275. [PMID: 31882005 PMCID: PMC6935243 DOI: 10.1186/s12974-019-1669-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Background Neuroinflammation, typified by elevated levels of interleukin-1 (IL-1) α and β, and deficits in proteostasis, characterized by accumulation of polyubiquitinated proteins and other aggregates, are associated with neurodegenerative disease independently and through interactions of the two phenomena. We investigated the influence of IL-1β on ubiquitination via its impact on activation of the E3 ligase parkin by either phosphorylated ubiquitin (P-Ub) or NEDD8. Methods Immunohistochemistry and Proximity Ligation Assay were used to assess colocalization of parkin with P-tau or NEDD8 in hippocampus from Alzheimer patients (AD) and controls. IL-1β effects on PINK1, P-Ub, parkin, P-parkin, and GSK3β—as well as phosphorylation of parkin by GSK3β—were assessed in cell cultures by western immunoblot, using two inhibitors and siRNA knockdown to suppress GSK3β. Computer modeling characterized the binding and the effects of P-Ub and NEDD8 on parkin. IL-1α, IL-1β, and parkin gene expression was assessed by RT-PCR in brains of 2- and 17-month-old PD-APP mice and wild-type littermates. Results IL-1α, IL-1β, and parkin mRNA levels were higher in PD-APP mice compared with wild-type littermates, and IL-1α-laden glia surrounded parkin- and P-tau-laden neurons in human AD. Such neurons showed a nuclear-to-cytoplasmic translocation of NEDD8 that was mimicked in IL-1β-treated primary neuronal cultures. These cultures also showed higher parkin levels and GSK3β-induced parkin phosphorylation; PINK1 levels were suppressed. In silico simulation predicted that binding of either P-Ub or NEDD8 at a singular position on parkin opens the UBL domain, exposing Ser65 for parkin activation. Conclusions The promotion of parkin- and NEDD8-mediated ubiquitination by IL-1β is consistent with an acute neuroprotective role. However, accumulations of P-tau and P-Ub and other elements of proteostasis, such as translocated NEDD8, in AD and in response to IL-1β suggest either over-stimulation or a proteostatic failure that may result from chronic IL-1β elevation, easily envisioned considering its early induction in Down’s syndrome and mild cognitive impairment. The findings further link autophagy and neuroinflammation, two important aspects of AD pathogenesis, which have previously been only loosely related.
Collapse
Affiliation(s)
| | - Paul A Parcon
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Chhanda Bose
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Richard A Jones
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Geriatric Research Education and Clinical Center at the Central Arkansas Healthcare Veterans System, Little Rock, AR, 72205, USA
| | - Martin R Farlow
- Department of Neurology, Indiana Alzheimer Disease Center, Indiana University, Bloomington, USA
| | - Robert E Mrak
- Department of Pathology, University of Toledo Health Sciences Campus, Toledo, OH, 43614, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Geriatric Research Education and Clinical Center at the Central Arkansas Healthcare Veterans System, Little Rock, AR, 72205, USA
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA. .,Geriatric Research Education and Clinical Center at the Central Arkansas Healthcare Veterans System, Little Rock, AR, 72205, USA.
| |
Collapse
|
22
|
Post-translational modification of Parkin and its research progress in cancer. Cancer Commun (Lond) 2019; 39:77. [PMID: 31753025 PMCID: PMC6873554 DOI: 10.1186/s40880-019-0421-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Clinical practice has shown that Parkin is the major causative gene found in an autosomal recessive juvenile parkinsonism (AR-JP) via Parkin mutations and that the Parkin protein is the core expression product of the Parkin gene, which itself belongs to an E3 ubiquitin ligase. Since the discovery of the Parkin gene in the late 1990s, researchers in many countries have begun extensive research on this gene and found that in addition to AR-JP, the Parkin gene is associated with many diseases, including type 2 diabetes, leprosy, Alzheimer’s, autism, and cancer. Recent studies have found that the loss or dysfunction of Parkin has a certain relationship with tumorigenesis. In general, the Parkin gene, a well-established tumor suppressor, is deficient and mutated in a variety of malignancies. Parkin overexpression inhibits tumor cell growth and promotes apoptosis. However, the functions of Parkin in tumorigenesis and its regulatory mechanisms are still not fully understood. This article describes the structure, functions, and post-translational modifications of Parkin, and summarizes the recent advances in the tumor suppressive function of Parkin and its underlying mechanisms.
Collapse
|
23
|
Lee SH, Lee S, Du J, Jain K, Ding M, Kadado AJ, Atteya G, Jaji Z, Tyagi T, Kim W, Herzog RI, Patel A, Ionescu CN, Martin KA, Hwa J. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol Med 2019; 11:e10409. [PMID: 31282614 PMCID: PMC6685081 DOI: 10.15252/emmm.201910409] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Mitophagy can selectively remove damaged toxic mitochondria, protecting a cell from apoptosis. The molecular spatial-temporal mechanisms governing autophagosomal selection of reactive oxygen species (ROS)-damaged mitochondria, particularly in a platelet (no genomic DNA for transcriptional regulation), remain unclear. We now report that the mitochondrial matrix protein MsrB2 plays an important role in switching on mitophagy by reducing Parkin methionine oxidation (MetO), and transducing mitophagy through ubiquitination by Parkin and interacting with LC3. This biochemical signaling only occurs at damaged mitochondria where MsrB2 is released from the mitochondrial matrix. MsrB2 platelet-specific knockout and in vivo peptide inhibition of the MsrB2/LC3 interaction lead to reduced mitophagy and increased platelet apoptosis. Pathophysiological importance is highlighted in human subjects, where increased MsrB2 expression in diabetes mellitus leads to increased platelet mitophagy, and in platelets from Parkinson's disease patients, where reduced MsrB2 expression is associated with reduced mitophagy. Moreover, Parkin mutations at Met192 are associated with Parkinson's disease, highlighting the structural sensitivity at the Met192 position. Release of the enzyme MsrB2 from damaged mitochondria, initiating autophagosome formation, represents a novel regulatory mechanism for oxidative stress-induced mitophagy.
Collapse
Affiliation(s)
- Seung Hee Lee
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Division of Cardiovascular DiseasesCenter for Biomedical SciencesNational Institute of HealthCheongjuChungbukKorea
| | - Suho Lee
- Departments of Neurology and NeurobiologyCellular Neuroscience, Neurodegeneration and Repair ProgramYale University School of MedicineNew HavenCTUSA
| | - Jing Du
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Kanika Jain
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Min Ding
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Anis J Kadado
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Gourg Atteya
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Zainab Jaji
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Tarun Tyagi
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Won‐ho Kim
- Division of Cardiovascular DiseasesCenter for Biomedical SciencesNational Institute of HealthCheongjuChungbukKorea
| | - Raimund I Herzog
- Section of EndocrinologyDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Amar Patel
- Division of Movement DisordersDepartments of Neurology and NeurobiologyYale University School of MedicineNew HavenCTUSA
| | - Costin N Ionescu
- Yale Cardiovascular MedicineDepartment of Internal MedicineYale‐New Haven HospitalNew HavenCTUSA
| | - Kathleen A Martin
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - John Hwa
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
24
|
Liu J, Zhang C, Hu W, Feng Z. Parkinson's disease-associated protein Parkin: an unusual player in cancer. Cancer Commun (Lond) 2018; 38:40. [PMID: 29941042 PMCID: PMC6020249 DOI: 10.1186/s40880-018-0314-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
The mutation of the Parkin gene is a cause of familial Parkinson’s disease. A growing body of evidence suggests that Parkin also functions as a tumor suppressor. Parkin is an ubiquitin E3 ligase, and plays important roles in a variety of cellular processes implicated in tumorigenesis, including cell cycle, cell proliferation, apoptosis, metastasis, mitophagy and metabolic reprogramming. Here we review the role and mechanism of Parkin in cancer.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
25
|
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med (Maywood) 2018; 243:554-562. [PMID: 29316798 DOI: 10.1177/1535370217752351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is a cellular process by which dysfunctional mitochondria are degraded via autophagy. Increasing empirical evidence proposes that this mitochondrial quality-control mechanism is defective in neurons of patients with various neurodegenerative diseases such as Ataxia Telangiectasia, Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Accumulation of defective mitochondria and the production of reactive oxygen species due to defective mitophagy have been identified as causes underlying neurodegenerative disease pathogenesis. However, the reason mitophagy is defective in most neurodegenerative diseases is unclear. Like mitophagy, defects in the ubiquitin/26S proteasome pathway have been linked to neurodegeneration, resulting in the characteristic protein aggregates often seen in neurons of affected patients. Although initiation of mitophagy requires a functional ubiquitin pathway, whether defects in the ubiquitin pathway are causally responsible for defective mitophagy is not known. In this mini-review, we introduce mitophagy and ubiquitin pathways and provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway. We will then briefly review empirical evidence supporting mitophagy defects in neurodegenerative diseases. The review will conclude with a discussion of the constitutively elevated expression of ubiquitin-like protein Interferon-Stimulated Gene 15 (ISG15), an antagonist of the ubiquitin pathway, as a potential cause of defective mitophagy in neurodegenerative diseases. Impact statement Neurodegenerative diseases place an enormous burden on patients and caregivers globally. Over six million people in the United States alone suffer from neurodegenerative diseases, all of which are chronic, incurable, and with causes unknown. Identifying a common molecular mechanism underpinning neurodegenerative disease pathology is urgently needed to aid in the design of effective therapies to ease suffering, reduce economic cost, and improve the quality of life for these patients. Although the development of neurodegeneration may vary between neurodegenerative diseases, they have common cellular hallmarks, including defects in the ubiquitin-proteasome system and mitophagy. In this review, we will provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway and discuss the potential of targeting mitophagy and ubiquitin pathways for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Im E, Yoo L, Hyun M, Shin WH, Chung KC. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol 2017; 6:rsob.160193. [PMID: 27534820 PMCID: PMC5008018 DOI: 10.1098/rsob.160193] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra and accumulation of ubiquitinated proteins in aggregates called Lewy bodies. Several mutated genes have been found in familial PD patients, including SNCA (α-synuclein), PARK2 (parkin), PINK1, PARK7 (DJ-1), LRRK2 and ATP13A2. Many pathogenic mutations of PARK2, which encodes the ubiquitin E3 ligase parkin, result in loss of function, leading to accumulation of parkin substrates and consequently contributing to dopaminergic cell death. ISG15 is a member of the ubiquitin-like modifier family and is induced by stimulation with type I interferons. Similar to ubiquitin and ubiquitination, covalent conjugation of ISG15 to target proteins (ISGylation) regulates their biochemical properties. In this study, we identified parkin as a novel target of ISGylation specifically mediated by the ISG15-E3 ligase HERC5. In addition, we identified two ISGylation sites, Lys-349 and Lys-369, in the in-between-ring domain of parkin. ISGylation of these sites promotes parkin's ubiquitin E3 ligase activity by suppressing the intramolecular interaction that maintains its autoinhibited conformation and increases its cytoprotective effect. In conclusion, covalent ISG15 conjugation is a novel mode of modulating parkin activity, and alteration in this pathway may be associated with PD pathogenesis.
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Minju Hyun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Woo Hyun Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
27
|
Chakraborty J, Basso V, Ziviani E. Post translational modification of Parkin. Biol Direct 2017; 12:6. [PMID: 28222786 PMCID: PMC5319146 DOI: 10.1186/s13062-017-0176-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
Mutations in the gene encoding for the E3 ubiquitin ligase Parkin are associated to a rare form of familiar autosomal recessive Parkinsonism. Despite decades of research on the Parkin protein, whose structure has been recently solved, little is known about the specific signalling pathways that lead to Parkin activation. Parkin activity spans from mitochondria quality control to tumor suppression and stress protection; it is thus tempting to hypothesize that the broad impact of Parkin on cellular physiology might be the result of different post translational modifications that can be controlled by balanced opposing events. Sequence alignment of Parkin from different species indicates high homology between domains across Parkin orthologs and identifies highly conserved amino acid residues that, if modified, impinge on Parkin functions. In this review, we summarize findings on post translational modifications that have been shown to affect Parkin activity and stability. REVIEWERS This article was reviewed by Prof. Dr. Konstanze F. Winklhofer and by Prof. Thomas Simmen. Both reviewers have been nominated by Professor Luca Pellegrini.
Collapse
Affiliation(s)
- Joy Chakraborty
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Valentina Basso
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy. .,Istituto IRCCS San Camillo, Lido di Venezia, Venezia,, Italy.
| |
Collapse
|
28
|
Bastos P, Trindade F, Leite-Moreira A, Falcão-Pires I, Ferreira R, Vitorino R. Methodological approaches and insights on protein aggregation in biological systems. Expert Rev Proteomics 2016; 14:55-68. [DOI: 10.1080/14789450.2017.1264877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Im E, Chung KC. Dyrk1A phosphorylates parkin at Ser-131 and negatively regulates its ubiquitin E3 ligase activity. J Neurochem 2015; 134:756-68. [PMID: 25963095 DOI: 10.1111/jnc.13164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 01/26/2023]
Abstract
Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady-state levels through the ubiquitin-proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co-localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser-131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A-mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin-conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A-mediated phosphorylation inhibited the neuroprotective action of parkin against 6-hydroxydopamine toxicity in dopaminergic SH-SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD-inducing pathological conditions. Mutations of parkin are linked to autosomal recessive forms of familial Parkinson's disease (PD). According to its functional relevance in abnormal protein aggregation and neuronal cell death, a number of post-translational modifications regulate the ubiquitin E3 ligase activity of parkin. Here we propose a novel inhibitory mechanism of parkin E3 ubiquitin ligase through dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A)-mediated phosphorylation as well as its neuroprotective action against 6-hydroxydopamine (6-OHDA)-induced cell death. The present work suggests that parkin phosphorylation by Dyrk1A may affect the pathogenesis of PD under PD-inducing pathological conditions.
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
30
|
Abstract
NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights.
Collapse
|
31
|
Scudder SL, Patrick GN. Synaptic structure and function are altered by the neddylation inhibitor MLN4924. Mol Cell Neurosci 2015; 65:52-7. [PMID: 25701678 DOI: 10.1016/j.mcn.2015.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023] Open
Abstract
The posttranslational modification of proteins by the ubiquitin-like small molecule NEDD8 has previously been shown to be vital in a number of cell signaling pathways. In particular, conjugation of NEDD8 (neddylation) serves to regulate protein ubiquitination through modifications to E3 ubiquitin ligases. Despite the prevalence of NEDD8 in neurons, very little work has been done to characterize the role of this modifier in these cells. Here, we use the recently developed NEDD8 Activating Enzyme (NAE) inhibitor MLN4924 and report evidence of a role for NEDD8 in regulating mammalian excitatory synapses. Application of this drug to dissociated rat hippocampal neurons caused reductions in synaptic strength, surface glutamate receptor levels, dendritic spine width, and spine density, suggesting that neddylation is involved in the maintenance of synapses.
Collapse
Affiliation(s)
- Samantha L Scudder
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | - Gentry N Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
32
|
Abidi N, Xirodimas DP. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer 2015; 22:T55-70. [PMID: 25504797 DOI: 10.1530/erc-14-0315] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) controls a vast if not every biological process in the cell. It is not surprising that deregulation in ubiquitin and UBL signalling has been implicated in the pathogenesis of many diseases and that these pathways are considered as major targets for therapeutic intervention. In this review, we summarise recent advances in our understanding of the role of the UBL neural precursor cell expressed developmentally downregulated-8 (NEDD8) in cancer-related processes and potential strategies for the use of NEDD8 inhibitors as chemotherapeutics.
Collapse
Affiliation(s)
- Naima Abidi
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| | - Dimitris P Xirodimas
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| |
Collapse
|
33
|
Zhao Y, Morgan MA, Sun Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 2014; 21:2383-400. [PMID: 24410571 PMCID: PMC4241876 DOI: 10.1089/ars.2013.5795] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/12/2014] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Protein neddylation is catalyzed by an E1 NEDD8-activating enzyme (NAE), an E2 NEDD8-conjugating enzyme, and an E3 NEDD8 ligase. Known physiological substrates of neddylation are cullin family members. Cullin neddylation leads to activation of cullin-RING ligases (CRLs), the largest family of E3 ubiquitin ligases responsible for ubiquitylation and degradation of many key signaling/regulatory proteins. Thus, through modulating CRLs, neddylation regulates many biological processes, including cell cycle progression, signal transduction, and tumorigenesis. Given that NEDD8 is overexpressed and CRLs are abnormally activated in many human cancers, targeting protein neddylation, in general, and cullin neddylation, in particular, appears to be an attractive anticancer approach. RECENT ADVANCES MLN4924, a small molecule inhibitor of NAE, was discovered that inactivates CRLs and causes accumulation of CRL substrates to suppress tumor cell growth both in vitro and in vivo. Promising preclinical results advanced MLN4924 to several clinical trials for anticancer therapy. CRITICAL ISSUES In preclinical settings, MLN4924 effectively suppresses tumor cell growth by inducing apoptosis, senescence, and autophagy, and causes sensitization to chemoradiation therapies in a cellular context-dependent manner. Signal molecules that determine the cell fate upon MLN4924 treatment, however, remain elusive. Cancer cells develop MLN4924 resistance by selecting target mutations. FUTURE DIRECTIONS In the clinical side, several Phase 1b trials are under way to determine the safety and efficacy of MLN4924, acting alone or in combination with conventional chemotherapy, against human solid tumors. In the preclinical side, the efforts are being made to develop additional neddylation inhibitors by targeting NEDD8 E2s and E3s.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | | | | |
Collapse
|
34
|
Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F, Cui Y, Wang J, He F, Zhang L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 2014; 5:3733. [DOI: 10.1038/ncomms4733] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/25/2014] [Indexed: 02/06/2023] Open
|
35
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
36
|
Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep 2014; 15:142-54. [PMID: 24469331 PMCID: PMC3989860 DOI: 10.1002/embr.201338166] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022] Open
Abstract
The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.
Collapse
Affiliation(s)
- Judith J Smit
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| |
Collapse
|
37
|
Mergner J, Schwechheimer C. The NEDD8 modification pathway in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:103. [PMID: 24711811 PMCID: PMC3968751 DOI: 10.3389/fpls.2014.00103] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/03/2014] [Indexed: 05/19/2023]
Abstract
NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a post-translational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.
Collapse
Affiliation(s)
| | - Claus Schwechheimer
- *Correspondence: Claus Schwechheimer, Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 4, 85354 Freising, Germany e-mail:
| |
Collapse
|
38
|
Zhao B, Zhang K, Villhauer EB, Bhuripanyo K, Kiyokawa H, Schindelin H, Yin J. Phage display to identify Nedd8-mimicking peptides as inhibitors of the Nedd8 transfer cascade. Chembiochem 2013; 14:1323-30. [PMID: 23824602 DOI: 10.1002/cbic.201300234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Indexed: 11/07/2022]
Abstract
The Nedd8 activating enzyme (NAE) launches the transfer of the ubiquitin-like protein Nedd8 through an enzymatic cascade to covalently modify a diverse array of proteins, thus regulating their biological functions in the cell. The C-terminal peptide of Nedd8 extends deeply into the active site of NAE and plays an important role in the specific recognition of Nedd8 by NAE. We used phage display to profile C-terminal mutant sequences of Nedd8 that could be recognized by NAE for the activation reaction. We found that NAE can accommodate diverse changes in the Nedd8 C-terminal sequence (⁷¹ LALRGG⁷⁶), including Arg and Ile replacing Leu71, Leu, Ser, and Gln replacing Ala72, and substitutions by bulky aromatic residues at positions 73 and 74. We also observed that short peptides corresponding to the C-terminal sequences of the Nedd8 variants can be activated by NAE to form peptide~NAE thioester conjugates. Once NAE is covalently loaded with these Nedd8-mimicking peptides, it can no longer activate full-length Nedd8 for transfer to the neddylation targets, such as the cullin subunits of cullin-RING E3 ubiquitin ligases (CRLs). We have thus developed a new method to inhibit protein neddylation by Nedd8-mimicking peptides.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Chemistry, University of Chicago, 929 E57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Protein quality control functions to minimize the level and toxicity of misfolded proteins in the cell. Protein quality control is performed by intricate collaboration among chaperones and target protein degradation. The latter is performed primarily by the ubiquitin-proteasome system and perhaps autophagy. Terminally misfolded proteins that are not timely removed tend to form aggregates. Their clearance requires macroautophagy. Macroautophagy serves in intracellular quality control also by selectively segregating defective organelles (eg, mitochondria) and targeting them for degradation by the lysosome. Inadequate protein quality control is observed in a large subset of failing human hearts with a variety of causes, and its pathogenic role has been experimentally demonstrated. Multiple posttranslational modifications can occur to substrate proteins and protein quality control machineries, promoting or hindering the removal of the misfolded proteins. This article highlights recent advances in posttranslational modification-mediated regulation of intracellular quality control mechanisms and its known involvement in cardiac pathology.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
40
|
Duncan K, Schäfer G, Vava A, Parker MI, Zerbini LF. Targeting neddylation in cancer therapy. Future Oncol 2012; 8:1461-70. [DOI: 10.2217/fon.12.131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neddylation conjugation pathway has a pivotal role in mediating ubiquitination of proteins and regulation of numerous biological processes. Dysregulation in the ubiquitination and neddylation pathways is associated with many cancers. Ubiquitination involves covalent attachment of ubiquitin to target proteins, leading to protein degradation by the proteasome system. The activity of the E3-ubiquitin ligase family, cullin-RING ligases, is essential for promoting ubiquitin transfer to the appropriate substrates. Neddylation, a process mediated by the protein NEDD8, is required for conformational changes of cullins, a scaffolding protein situated in the core of cullin-RING ligases, and regulation of E3 ligase activity. In this review, we present a comprehensive discussion of the recent findings on the neddylation pathway and its importance during tumorigenesis. The ramifications regarding the potential therapeutic use of ubiquination and neddylation inhibition are also discussed.
Collapse
Affiliation(s)
- Kristal Duncan
- International Center for Genetic Engineering & Biotechnology (ICGEB), Cancer Genomics Group, Werner & Beit Building South, Anzio road, UCT Campus, Cape Town, 7925 South Africa
| | - Georgia Schäfer
- Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Akhona Vava
- International Center for Genetic Engineering & Biotechnology (ICGEB), Cancer Genomics Group, Werner & Beit Building South, Anzio road, UCT Campus, Cape Town, 7925 South Africa
| | - M Iqbal Parker
- International Center for Genetic Engineering & Biotechnology (ICGEB), Cancer Genomics Group, Werner & Beit Building South, Anzio road, UCT Campus, Cape Town, 7925 South Africa
| | - Luiz F Zerbini
- International Center for Genetic Engineering & Biotechnology (ICGEB), Cancer Genomics Group, Werner & Beit Building South, Anzio road, UCT Campus, Cape Town, 7925 South Africa
| |
Collapse
|
41
|
Singh RK, Zerath S, Kleifeld O, Scheffner M, Glickman MH, Fushman D. Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 2012; 11:1595-611. [PMID: 23105008 DOI: 10.1074/mcp.m112.022467] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
42
|
Walden H, Martinez-Torres RJ. Regulation of Parkin E3 ubiquitin ligase activity. Cell Mol Life Sci 2012; 69:3053-67. [PMID: 22527713 PMCID: PMC11115052 DOI: 10.1007/s00018-012-0978-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
Abstract
Parkin is an E3 ubiquitin ligase mutated in autosomal recessive juvenile Parkinson's disease. In addition, it is a putative tumour suppressor, and has roles outside its enzymatic activity. It is critical for mitochondrial clearance through mitophagy, and is an essential protein in most eukaryotes. As such, it is a tightly controlled protein, regulated through an array of external interactions with multiple proteins, posttranslational modifications including phosphorylation and S-nitrosylation, and self-regulation through internal associations. In this review, we highlight some of the recent studies into Parkin regulation and discuss future challenges for gaining a full molecular understanding of the regulation of Parkin E3 ligase activity.
Collapse
Affiliation(s)
- Helen Walden
- Protein Structure and Function Laboratory, London Research Institute of Cancer Research UK, Lincoln's Inn Fields Laboratories, London, UK.
| | | |
Collapse
|