1
|
Noguchi D, Watamura N, Nikkuni M, Saido TC, Goshima Y, Ohshima T. Involvement of CRMP2 Phosphorylation in Amyloid Beta-induced Tau Phosphorylation of Hippocampal Neurons in Alzheimer's Disease Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-04721-y. [PMID: 39891817 DOI: 10.1007/s12035-025-04721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by amyloid-β (Aβ) deposition and the formation of neurofibrillary tangles composed of hyperphosphorylated tau. Collapsin response mediator protein 2 (CRMP2), a microtubule (MT)-binding protein, regulates MT dynamics and is phosphorylated at Ser522 by cyclin-dependent kinase 5. Previous studies have shown increased CRMP2 phosphorylation at Ser522 (CRMP2-pSer522) in early AD stages and AD mouse models, where it colocalizes with phosphorylated tau. However, the role of CRMP-pSer522 in AD pathology remains unclear. In this study, we generated double transgenic mice by crossing tau Tg (PS19) mice and CRMP2 S522A knock-in (CRMP2KI) mice, in which S522 of CRMP2 was replaced with alanine to create a phospho-defective model. No significant change in tau phosphorylation was observed in the hippocampus of tau Tg; CRMP2KI mice compared to tau Tg littermates. However, when Aβ25-35 oligomers were injected into the hippocampus, tau phosphorylation was significantly reduced in Aβ-injected tau Tg; CRMP2KI mice compared to Aβ-injected tau Tg controls. These findings suggest that CRMP2 phosphorylation at Ser522 promotes Aβ-induced tau phosphorylation in this mouse model of AD.
Collapse
Affiliation(s)
- Daisuke Noguchi
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
| | - Naoto Watamura
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
| | - Miyu Nikkuni
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
2
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Wang Y, Ohshima T. Unraveling the Nexus: The Role of Collapsin Response Mediator Protein 2 Phosphorylation in Neurodegeneration and Neuroregeneration. Neuromolecular Med 2024; 26:45. [PMID: 39532785 PMCID: PMC11557666 DOI: 10.1007/s12017-024-08814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disease characterized by the progressive damage of the nervous system, and neuropathies caused by the neuronal injury are both led to substantial impairments in neural function and quality of life among geriatric populations. Recovery from nerve damage and neurodegenerative diseases present a significant challenge, as the central nervous system (CNS) has limited capacity for self-repair. Investigating mechanism of neurodegeneration and regeneration is essential for advancing our understanding and development of effective therapies for nerve damage and degenerative conditions, which can significantly enhance patient outcomes. Collapsin response mediator protein 2 (CRMP2) was first identified as a key mediator of axonal growth and guidance is essential for neurogenesis and neuroregeneration. Phosphorylation as a primary modification approach of CRMP2 facilitates its involvement in numerous physiological processes, including axonal guidance, neuroplasticity, and cytoskeleton dynamics. Prior research on CRMP2 phosphorylation has elucidated its involvement in the mechanisms of neurodegenerative diseases and nerve damage. Pharmacological and genetic interventions that alter CRMP2 phosphorylation have shown the potential to influence neurodegenerative diseases and promote nerve regeneration. Even with decades of research delving into the intricacies of CRMP2 phosphorylation, there remains a scarcity of comprehensive literature reviews addressing this topic. This absence of synthesis and integration of findings hampers the field's progress by preventing a holistic understanding of CRMP2's implications in neurobiology, thereby impeding potential advancements in clinical treatments and interventions. This review intends to compile investigations focused on the role of CRMP2 phosphorylation in both neurodegenerative disease models and injury models to summarizing impacts and offer novel insight for clinical therapies.
Collapse
Affiliation(s)
- Yuebing Wang
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-Ku, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
4
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Ağagündüz D, Gençer Bingöl F, Çelik E, Cemali Ö, Özenir Ç, Özoğul F, Capasso R. Recent developments in the probiotics as live biotherapeutic products (LBPs) as modulators of gut brain axis related neurological conditions. Lab Invest 2022; 20:460. [PMID: 36209124 PMCID: PMC9548122 DOI: 10.1186/s12967-022-03609-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
Probiotics have been defined as “living microorganisms that create health benefits in the host when taken in sufficient amounts. Recent developments in the understanding of the relationship between the microbiom and its host have shown evidence about the promising potential of probiotics to improve certain health problems. However, today, there are some confusions about traditional and new generation foods containing probiotics, naming and classifications of them in scientific studies and also their marketing. To clarify this confusion, the Food and Drug Administration (FDA) declared that it has made a new category definition called "live biotherapeutic products" (LBPs). Accordingly, the FDA has designated LBPs as “a biological product that: i)contains live organisms, such as bacteria; ii)is applicable to the prevention, treatment, or cure of a disease/condition of human beings; and iii) is not a vaccine”. The accumulated literature focused on LBPs to determine effective strains in health and disease, and often focused on obesity, diabetes, and certain diseases like inflammatory bowel disease (IBD).However, microbiome also play an important role in the pathogenesis of diseases that age day by day in the modern world via gut-brain axis. Herein, we discuss the novel roles of LBPs in some gut-brain axis related conditions in the light of recent studies. This article may be of interest to a broad readership including those interested in probiotics as LBPs, their health effects and safety, also gut-brain axis.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, 06490, Ankara, Emek, Turkey.
| | - Feray Gençer Bingöl
- Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, 15030, Burdur, Turkey
| | - Elif Çelik
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, 06490, Ankara, Emek, Turkey
| | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, 06490, Ankara, Emek, Turkey
| | - Çiler Özenir
- Department of Nutrition and Dietetics, Kırıkkale University, 71100, Kırıkkale, Merkez, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Balcali, Adana, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, NA, Italy.
| |
Collapse
|
6
|
Biyong EF, Tremblay C, Leclerc M, Caron V, Alfos S, Helbling JC, Rodriguez L, Pernet V, Bennett DA, Pallet V, Calon F. Role of Retinoid X Receptors (RXRs) and dietary vitamin A in Alzheimer's disease: Evidence from clinicopathological and preclinical studies. Neurobiol Dis 2021; 161:105542. [PMID: 34737043 DOI: 10.1016/j.nbd.2021.105542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of β-amyloid peptides (Aβ), and could thus contribute to the onset of AD. METHODS We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males). We also measured protein levels of Retinoic Acid Receptor β (RARβ) and Retinoid X Receptor γ (RXRγ) in homogenates from the inferior parietal cortex of 60 participants of the Religious Orders study (ROS) divided in three groups: no cognitive impairment (NCI) (n = 20), mild cognitive impairment (MCI) (n = 20) and AD (n = 20). RESULTS The VitA-enriched diet preserved spatial memory of 3xTg-AD mice in the Y maze. VitA-supplementation affected hippocampal RXR expression in an opposite way according to sex by tending to increase in males and decrease in females their mRNA expression. VitA-enriched diet also reduced the amount of hippocampal Aβ40 and Aβ42, as well as the phosphorylation of tau protein at sites Ser396/Ser404 (PHF-1) in males. VitA-supplementation had no effect on tau phosphorylation in females but worsened their hippocampal Aβ load. However, the expression of Rxr-β in the hippocampus was negatively correlated with the amount of both soluble and insoluble Aβ in both males and females. Western immunoblotting in the human cortical samples of the ROS study did not reveal differences in RARβ levels. However, it evidenced a switch from a 60-kDa-RXRγ to a 55-kDa-RXRγ in AD, correlating with ante mortem cognitive decline and the accumulation of neuritic plaques in the brain cortex. CONCLUSION Our data suggest that (i) an altered expression of RXRs receptors is a contributor to β-amyloid pathology in both humans and 3xTg-AD mice, (ii) a chronic exposure of 3xTg-AD mice to a VitA-enriched diet may be protective in males, but not in females.
Collapse
Affiliation(s)
- Essi F Biyong
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Vicky Caron
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Serge Alfos
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Véronique Pallet
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada.
| |
Collapse
|
7
|
Xie X, Shen Z, Hu C, Zhang K, Guo M, Wang F, Qin K. Dexmedetomidine Ameliorates Postoperative Cognitive Dysfunction in Aged Mice. Neurochem Res 2021; 46:2415-2426. [PMID: 34159456 DOI: 10.1007/s11064-021-03386-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/20/2022]
Abstract
Neuroinflammation and oxidative stress coexist and interact in the progression of postoperative cognitive dysfunction (POCD) and other neurodegenerative disease. Mounting studies reveal that Dexmedetomidine (Dex) possesses anti-inflammatory and antioxidant properties. Nevertheless, whether Dex exerts neuroprotective effect on the cognitive sequelae of oxidative stress and inflammatory process remains unclear. A mouse model of abdominal exploratory laparotomy-induced cognitive dysfunction was employed to explore the underlying mechanism of neuroprotective effects exerted by Dex in POCD. Aged mice were treated with Dex (20 µg/kg) 20 min prior to surgery. Open field test (OFT) and Morris water maze (MWM) were employed to examine the cognitive function on postoperative day 3 (POD 3) or POD 7. In the present study, mice underwent surgery exhibited cognitive impairment without altering spontaneous locomotor activity, while the surgery-induced cognitive impairment could be alleviated by Dex pretreatment. Dex inhibited surgery-induced pro-inflammatory cytokines accumulation and microglial activation in the hippocampi of mice. Furthermore, Dex decreased MDA levels, enhanced SOD activity, modulated CDK5 activity and increased BDNF expression in the hippocampus. In addition, Dex remarkably reduced the surgery-induced increased ratio of Bax/Bcl-2 and apoptotic neurons in the hippocampi of aged mice. Collectively, our study provides evidence that Dex may exert neuroprotective effects against surgery-induced cognitive impairment through mechanisms involving its anti-inflammatory and antioxidant properties, as well as the suppression on the mitochondrial permeability transition pore and apoptosis-related pathway.
Collapse
Affiliation(s)
- Xiaolan Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiwen Shen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Mingyan Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Kai Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Qi B, Yang Y, Cheng Y, Sun D, Wang X, Khanna R, Ju W. Nasal delivery of a CRMP2-derived CBD3 adenovirus improves cognitive function and pathology in APP/PS1 transgenic mice. Mol Brain 2020; 13:58. [PMID: 32272942 PMCID: PMC7144060 DOI: 10.1186/s13041-020-00596-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium dysregulation is a key pathological event in Alzheimer's disease (AD). In studying approaches to mitigate this calcium overload, we identified the collapsin response mediator protein 2 (CRMP2), an axonal guidance protein that participates in synapse dynamics by interacting with and regulating activity of N-methyl-D-aspartate receptors (NMDARs). We further identified a 15 amino acid peptide from CRMP2 (designated CBD3, for calcium-binding domain 3), that reduced NMDAR-mediated Ca2+ influx in cultured neurons and post-synaptic NMDAR-mediated currents in cortical slices. Whether targeting CRMP2 could be therapeutically beneficial in AD is unknown. Here, using CBD3, we tested the utility of this approach. Employing the APP/PS1 mouse model of AD which demonstrates robust pathophysiology including Aβ1-42 deposition, altered tau levels, and diminished cognitive functions, we asked if overexpression of CBD3 could rescue these events. CBD3 was engineered into an adeno-associated vector and nasally delivered into APP/PS1 mice and then biochemical (immunohistochemistry, immunoblotting), cellular (TUNEL apoptosis assays), and behavioral (Morris water maze test) assessments were performed. APP/PS1 mice administered adeno-associated virus (AAV, serotype 2) harboring CBD3 demonstrated: (i) reduced levels of Aβ1-42 and phosphorylated-tau (a marker of AD progression), (ii) reduced apoptosis in the hippocampus, and (iii) reduced cognitive decline compared with APP/PS1 mice or APP/PS1 administered a control virus. These results provide an instructive example of utilizing a peptide-based approach to unravel protein-protein interactions that are necessary for AD pathology and demonstrate the therapeutic potential of CRMP2 as a novel protein player in AD.
Collapse
Affiliation(s)
- Baochang Qi
- Department of Orthopedic Traumatology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yu Yang
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Yingying Cheng
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xu Wang
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85718, USA.
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Weina Ju
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
9
|
Ikezu S, Ingraham Dixie KL, Koro L, Watanabe T, Kaibuchi K, Ikezu T. Tau-tubulin kinase 1 and amyloid-β peptide induce phosphorylation of collapsin response mediator protein-2 and enhance neurite degeneration in Alzheimer disease mouse models. Acta Neuropathol Commun 2020; 8:12. [PMID: 32019603 PMCID: PMC7001309 DOI: 10.1186/s40478-020-0890-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
The accumulation of phosphorylated tau protein (pTau) in the entorhinal cortex (EC) is the earliest tau pathology in Alzheimer’s disease (AD). Tau tubulin kinase-1 (TTBK1) is a neuron-specific tau kinase and expressed in the EC and hippocampal regions in both human and mouse brains. Here we report that collapsin response mediator protein-2 (CRMP2), a critical mediator of growth cone collapse, is a new downstream target of TTBK1 and is accumulated in the EC region of early stage AD brains. TTBK1 transgenic mice show severe axonal degeneration in the perforant path, which is exacerbated by crossing with Tg2576 mice expressing Swedish familial AD mutant of amyloid precursor protein (APP). TTBK1 mice show accumulation of phosphorylated CRMP2 (pCRMP2), in the EC at 10 months of age, whereas age-matched APP/TTBK1 bigenic mice show pCRMP2 accumulation in both the EC and hippocampal regions. Amyloid-β peptide (Aβ) and TTBK1 suppress the kinetics of microtubule polymerization and TTBK1 reduces the neurite length of primary cultured neurons in Rho kinase-dependent manner in vitro. Silencing of TTBK1 or expression of dominant-negative Rho kinase demonstrates that Aβ induces CRMP2 phosphorylation at threonine 514 in a TTBK1-dependent manner, and TTBK1 enhances Aβ-induced CRMP2 phosphorylation in Rho kinase-dependent manner in vitro. Furthermore, TTBK1 expression induces pCRMP2 complex formation with pTau in vitro, which is enhanced upon Aβ stimulation in vitro. Finally, pCRMP2 forms a complex with pTau in the EC tissue of TTBK1 mice in vivo, which is exacerbated in both the EC and hippocampal tissues in APP/TTBK1 mice. These results suggest that TTBK1 and Aβ induce phosphorylation of CRMP2, which may be causative for the neurite degeneration and somal accumulation of pTau in the EC neurons, indicating critical involvement of TTBK1 and pCRMP2 in the early AD pathology.
Collapse
|
10
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
11
|
Kelly ÁM. Exercise-Induced Modulation of Neuroinflammation in Models of Alzheimer's Disease. Brain Plast 2018; 4:81-94. [PMID: 30564548 PMCID: PMC6296260 DOI: 10.3233/bpl-180074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), a progressive, neurodegenerative condition characterised by accumulation of toxic βeta-amyloid (Aβ) plaques, is one of the leading causes of dementia globally. The cognitive impairment that is a hallmark of AD may be caused by inflammation in the brain triggered and maintained by the presence of Aβ protein, ultimately leading to neuronal dysfunction and loss. Since there is a significant inflammatory component to AD, it is postulated that anti-inflammatory strategies may be of prophylactic or therapeutic benefit in AD. One such strategy is that of regular physical activity, which has been shown in epidemiological studies to be protective against various forms of dementia including AD. Exercise induces an anti-inflammatory environment in peripheral organs and also increases expression of anti-inflammatory molecules within the brain. Here we review the evidence, mainly from animal models of AD, supporting the hypothesis that exercise can reduce or slow the cellular and cognitive impairments associated with AD by modulating neuroinflammation.
Collapse
Affiliation(s)
- Áine M. Kelly
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer's disease and epigenetic. Crit Rev Food Sci Nutr 2017; 59:102-113. [PMID: 28799782 DOI: 10.1080/10408398.2017.1359488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and is a chronic neurodegenerative disease that is becoming widespread. For this reason, in recent years factors affecting the development, progression and cognitive function of the AD have been emphasized. Nutrients and other bioactive nutrients are among the factors that are effective in AD. In particular, vitamins A, C and E, vitamins B1, B6 and B12, folate, magnesium, choline, inositol, anthocyanins, isoflavones etc. nutrients and bioactive nutrients are known to be effective in the development of AD. Nutrients and nutrient components may also have an epigenetic effect on AD. At the same time, nutrients and bioactive food components slow down the progression of the disease. For this reason, the effect of nutrients and food components on AD was examined in this review.
Collapse
Affiliation(s)
- Elif Celik
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| | - Nevin Sanlier
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| |
Collapse
|
13
|
Novel approach for accurate tissue-based protein colocalization and proximity microscopy. Sci Rep 2017; 7:2668. [PMID: 28572629 PMCID: PMC5454019 DOI: 10.1038/s41598-017-02735-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Fluorescence colocalization microscopy is frequently used to assess potential links between distinct molecules; however, this method can lead to striking false-positive results and erroneous conclusions. Here we developed a novel approach with more sophisticated mathematical colocalization analyses together with visualization of physical proximity using fluorescence resonance energy transfer (FRET). To verify our results we used the proximity ligation assay (PLA). With these methods we could demonstrate that distinct neurodegeneration-related proteins either not or only rarely interact in human brain tissue.
Collapse
|
14
|
Retinol (Vitamin A) Increases α-Synuclein, β-Amyloid Peptide, Tau Phosphorylation and RAGE Content in Human SH-SY5Y Neuronal Cell Line. Neurochem Res 2017; 42:2788-2797. [DOI: 10.1007/s11064-017-2292-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/06/2017] [Accepted: 05/06/2017] [Indexed: 01/08/2023]
|
15
|
Hensley K, Kursula P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J Alzheimers Dis 2017; 53:1-14. [PMID: 27079722 PMCID: PMC4942723 DOI: 10.3233/jad-160076] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
The Impact of Vitamin E and Other Fat-Soluble Vitamins on Alzheimer´s Disease. Int J Mol Sci 2016; 17:ijms17111785. [PMID: 27792188 PMCID: PMC5133786 DOI: 10.3390/ijms17111785] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population, currently affecting 46 million people worldwide. Histopathologically, the disease is characterized by the occurrence of extracellular amyloid plaques composed of aggregated amyloid-β (Aβ) peptides and intracellular neurofibrillary tangles containing the microtubule-associated protein tau. Aβ peptides are derived from the sequential processing of the amyloid precursor protein (APP) by enzymes called secretases, which are strongly influenced by the lipid environment. Several vitamins have been reported to be reduced in the plasma/serum of AD-affected individuals indicating they have an impact on AD pathogenesis. In this review we focus on vitamin E and the other lipophilic vitamins A, D, and K, and summarize the current knowledge about their status in AD patients, their impact on cognitive functions and AD risk, as well as their influence on the molecular mechanisms of AD. The vitamins might affect the generation and clearance of Aβ both by direct effects and indirectly by altering the cellular lipid homeostasis. Additionally, vitamins A, D, E, and K are reported to influence further mechanisms discussed to be involved in AD pathogenesis, e.g., Aβ-aggregation, Aβ-induced neurotoxicity, oxidative stress, and inflammatory processes, as summarized in this article.
Collapse
|
17
|
Takamura R, Watamura N, Nikkuni M, Ohshima T. All-trans retinoic acid improved impaired proliferation of neural stem cells and suppressed microglial activation in the hippocampus in an Alzheimer's mouse model. J Neurosci Res 2016; 95:897-906. [PMID: 27448243 DOI: 10.1002/jnr.23843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive impairment with neuronal loss. The number of patients suffering from AD has increased, but none of the present therapies stops the progressive symptoms in patients with AD. It has been reported that the activation of microglial cells induces harmful chronic inflammation, leading to neuronal death. Furthermore, the impairment of adult neurogenesis in the hippocampus has been observed earlier than amyloid plaque formation. Inflammatory response may lead to impaired adult neurogenesis in patients with AD. This study examines the relationship between adult neurogenesis and neuroinflammation using APPswe/PS1M146V/tauP301L (3 × Tg) mice. We observed a decline in the proliferation of neural stem cells and the occurrence of severe inflammation in the hippocampus of 3 × Tg mouse brains at 12 months of age. Previously, our research had shown an anti-inflammatory effect of all-trans retinoic acid (ATRA) in the 3 × Tg mouse brain. We found that ATRA has effects on the recovery of proliferative cells along with suppression of activated microglia in the hippocampus. These results suggest that the inhibition of microglial activation by ATRA leads to recovery of adult neurogenesis in the hippocampus in an AD mouse model. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Risa Takamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Naoto Watamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miyu Nikkuni
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|