1
|
Clark SJ, Curcio C, Dick AD, Doyle S, Edwards M, Flores-Bellver M, Hass D, Lennon R, Toomey CB, Rohrer B. Breaking Bruch's: How changes in Bruch's membrane influence retinal homeostasis. Exp Eye Res 2025; 255:110343. [PMID: 40107443 DOI: 10.1016/j.exer.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Simon J Clark
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Christine Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, USA
| | - Andrew D Dick
- University of Bristol and UCL-Institute of Ophthalmology and NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, UK
| | - Sarah Doyle
- Department of Clinical Medicine, School of Medicine and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Malia Edwards
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Hass
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Christopher B Toomey
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston SC, USA.
| |
Collapse
|
2
|
Ong J, Selvam A, Driban M, Zarnegar A, Morgado Mendes Antunes Da Silva SI, Joy J, Rossi EA, Vande Geest JP, Sahel JA, Chhablani J. Characterizing Bruch's membrane: State-of-the-art imaging, computational segmentation, and biologic models in retinal disease and health. Prog Retin Eye Res 2025; 106:101358. [PMID: 40254245 DOI: 10.1016/j.preteyeres.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
The Bruch's membrane (BM) is an acellular, extracellular matrix that lies between the choroid and retinal pigment epithelium (RPE). The BM plays a critical role in retinal health, performing various functions including biomolecule diffusion and RPE support. The BM is also involved in many retinal diseases, and insights into BM dysfunction allow for further understanding of the pathophysiology of various chorioretinal pathologies. Thus, characterization of the BM serves as an important area of research to further understand its involvement in retinal disease. In this article, we provide a review of various advancements in characterizing and visualizing the BM. We provide an overview of the BM in retinal health, as well as changes observed in aging and disease. We then describe current state-of-the-art imaging modalities and advances to further visualize the BM including various types of optical coherence tomography imaging, near-infrared reflectance (NIR), and autofluorescence imaging and tissue matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Following advances in imaging of the BM, we describe animal, cellular, and synthetic models that have been developed to further visualize the BM. Following this section, we provide an overview of deep learning in retinal imaging and describe advances in computational and artificial intelligence (AI) techniques to provide automated segmentation of the BM and BM opening. We conclude this section considering the clinical implications of these segmentation techniques. Ultimately, the diverse advances aimed to further characterize the BM may allow for deeper insights into the involvement of this critical structure in retinal health and disease.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Amrish Selvam
- Illinois Eye and Ear Infirmary, University of Illinois College of Medicine, Chicago, IL, United States
| | - Matthew Driban
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Jincy Joy
- Karunya Eye Hospital, Kottarakara, Kerala, India
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Dalvi S, Roll M, Chatterjee A, Kumar LK, Bhogavalli A, Foley N, Arduino C, Spencer W, Reuben-Thomas C, Ortolan D, Pébay A, Bharti K, Anand-Apte B, Singh R. Human iPSC-based disease modeling studies identify a common mechanistic defect and potential therapies for AMD and related macular dystrophies. Dev Cell 2024; 59:3290-3305.e9. [PMID: 39362220 PMCID: PMC11652237 DOI: 10.1016/j.devcel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Age-related macular degeneration (AMD) and related macular dystrophies (MDs) primarily affect the retinal pigment epithelium (RPE) in the eye. A hallmark of AMD/MDs that drives later-stage pathologies is drusen. Drusen are sub-RPE lipid-protein-rich extracellular deposits, but how drusen forms and accumulates is not known. We utilized human induced pluripotent stem cell (iPSC)-derived RPE from patients with AMD and three distinct MDs to demonstrate that reduced activity of RPE-secreted matrix metalloproteinase 2 (MMP2) contributes to drusen in multiple maculopathies in a genotype-agnostic manner by instigating sterile inflammation and impaired lipid homeostasis via damage-associated molecular pattern molecule (DAMP)-mediated activation of receptor for advanced glycation end-products (RAGE) and increased secretory phospholipase 2-IIA (sPLA2-IIA) levels. Therapeutically, RPE-specific MMP2 supplementation, RAGE-antagonistic peptide, and a small molecule inhibitor of sPLA2-IIA ameliorated drusen accumulation in AMD/MD iPSC-RPE. Ultimately, this study defines a causal role of the MMP2-DAMP-RAGE-sPLA2-IIA axis in AMD/MDs.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Michael Roll
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Lal Krishan Kumar
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Akshita Bhogavalli
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Nathaniel Foley
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Cesar Arduino
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Whitney Spencer
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Davide Ortolan
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA.
| |
Collapse
|
4
|
Carlà MM, Giannuzzi F, Boselli F, Crincoli E, Rizzo S. Extensive macular atrophy with pseudodrusen-like appearance: comprehensive review of the literature. Graefes Arch Clin Exp Ophthalmol 2024; 262:3085-3097. [PMID: 39133226 PMCID: PMC11458735 DOI: 10.1007/s00417-024-06600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE This review focuses on extensive macular atrophy with pseudodrusen-like appearance (EMAP), a recently described maculopathy presenting with pseudodrusen-like lesions and chorioretinal atrophy more pronounced in the vertical axis. METHODS Narrative review of the literature published until May 2024. RESULTS The early onset age of EMAP (50-55 years) and its distinctive natural history, which includes night blindness followed by severe vision loss, differentiate it from atrophic age-related macular degeneration (AMD). A clear pathogenesis has not been determined, but risk factors include female gender and complement system abnormalities (altered levels of C3 and CH50). Moreover, lifelong exposure to pesticides has been suggested as risk factor for direct neuronal degeneration involving rods and cones. In the early phase of the disease, reticular pseudodrusen-like lesions appear in the superior perifovea and tend to coalescence horizontally into a flat, continuous, reflective material localized between the retinal pigmented epithelium and Bruch's membrane. Over time, EMAP causes profound RPE and outer retinal atrophy in the macular area, with a recent classification reporting a 3-stages evolution pattern. Blue autofluorescence showed rapidly evolving atrophy with either hyperautofluorescent or isoautofluorescent borders. Significant similarities between the diffuse-trickling phenotype of geographic atrophy and EMAP have been reported. Macular neovascularization is a possible complication. CONCLUSION EMAP is specific form of early-onset atrophic macular degeneration with rapid evolution and no treatment. Further studies are needed to assess the best management.
Collapse
Affiliation(s)
- Matteo Mario Carlà
- Ophthalmology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
- Catholic University "Sacro Cuore", Rome, Italy.
| | - Federico Giannuzzi
- Ophthalmology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Francesco Boselli
- Ophthalmology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Emanuele Crincoli
- Ophthalmology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Stanislao Rizzo
- Ophthalmology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| |
Collapse
|
5
|
Hass DT, Pandey K, Engel A, Horton N, Haydinger CD, Robbings BM, Lim RR, Sadilek M, Zhang Q, Gulette GA, Li A, Xu L, Miller JML, Chao JR, Hurley JB. Acetyl-CoA carboxylase inhibition increases retinal pigment epithelial cell fatty acid flux and restricts apolipoprotein efflux. J Biol Chem 2024; 300:107772. [PMID: 39276938 PMCID: PMC11490839 DOI: 10.1016/j.jbc.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Lipid-rich deposits called drusen accumulate under the retinal pigment epithelium (RPE) in the eyes of patients with age-related macular degeneration and Sorsby's fundus dystrophy (SFD). Drusen may contribute to photoreceptor degeneration in these blinding diseases. Stimulating β-oxidation of fatty acids could decrease the availability of lipid with which RPE cells generate drusen. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate β-oxidation and diminish lipid accumulation in fatty liver disease. In this report, we test the hypothesis that an ACC inhibitor, Firsocostat, can diminish lipid deposition by RPE cells. We probed metabolism and cellular function in mouse RPE-choroid tissue and human RPE cells. We used 13C6-glucose, 13C16-palmitate, and gas chromatography-linked mass spectrometry to monitor effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. We quantified lipid abundance, apolipoprotein E levels, and vascular endothelial growth factor release using liquid chromatography-mass spectrometry, ELISAs, and immunostaining. RPE barrier function was assessed by trans-epithelial electrical resistance (TEER). Firsocostat-mediated ACC inhibition increases β-oxidation, decreases intracellular lipid levels, diminishes lipoprotein release, and increases TEER. When human serum or outer segments are used to stimulate lipoprotein release, fewer lipoproteins are released in the presence of Firsocostat. In a culture model of SFD, Firsocostat stimulates fatty acid oxidation, increases TEER, and decreases apolipoprotein E release. We conclude that Firsocostat remodels RPE metabolism and can limit lipid deposition. This suggests that ACC inhibition could be an effective strategy for diminishing pathologic drusen in the eyes of patients with age-related macular degeneration or SFD.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| | - Kriti Pandey
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Abbi Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Hospital, Seattle, Washington, USA
| | - Noah Horton
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron D Haydinger
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian M Robbings
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Gillian A Gulette
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
6
|
Rizwan S, Toothman B, Li B, Engel AJ, Lim RR, Niernberger S, Lu J, Ratliff C, Xiang Y, Eminhizer M, Chao JR, Du J. Metabolic phenotyping of healthy and diseased human RPE cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582405. [PMID: 38464098 PMCID: PMC10925320 DOI: 10.1101/2024.02.28.582405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Purpose Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells. Methods We profiled nutrient utilization of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell derived-RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays. Results Differentiated fRPE cells and healthy iPSC RPE cells can utilize 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient utilization becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can utilize 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to utilize lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased utilization of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot utilize lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation towards an epithelial phenotype, restoring the ability to use these nutrients. Conclusions Epithelial phenotype confers metabolic flexibility to healthy RPE for utilizing various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and utilization in RPE differentiation and diseases.
Collapse
|
7
|
Csaky KG, Miller JML, Martin DF, Johnson MW. Drug Approval for the Treatment of Geographic Atrophy: How We Got Here and Where We Need to Go. Am J Ophthalmol 2024; 263:231-239. [PMID: 38387826 PMCID: PMC11162935 DOI: 10.1016/j.ajo.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE To discuss the clinical trial results leading to the US Food and Drug Administration (FDA) approval of anti-complement therapies for geographic atrophy (GA), perspectives on functional data from the GA clinical trials, and how lessons from the FDA approval may guide future directions for basic and clinical research in AMD. DESIGN Selected literature review with analysis and perspective METHODS: We performed a targeted review of publicly available data from the clinical trials of pegcetacoplan and avacincaptad for the treatment of GA, as well as scientific literature on the natural history of GA and the genetics and basic science of complement in AMD. RESULTS The approval of pegcetacoplan and avacincaptad was based on an anatomic endpoint of a reduction in the rate of GA expansion over time. However, functional data from 2 phase 3 clinical trials for each drug demonstrated no visual benefit to patients in the treatment groups. Review of the genetics of AMD and the basic science of the role for complement in AMD provides only modest support for targeting complement as treatment for GA expansion, and alternative molecular targets for GA treatment are therefore discussed. Reasons for the disconnect between anatomic and functional outcomes in the clinical trials of anti-complement therapies are discussed, providing insight to guide the configuration of future clinical studies for GA. CONCLUSION Although avacincaptad and pegcetacoplan are our first FDA-approved treatments for GA, results from the clinical trials failed to show any functional improvement after 1 and 2 years, respectively, calling into question whether the drugs represent a "clinically relevant outcome." To improve the chances of more impactful therapies in the future, we provide basic-science rationale for pursuing non-complement targets; emphasize the importance of ongoing clinical research that more closely pins anatomic features of GA to functional outcomes; and provide suggestions for clinical endpoints for future clinical trials on GA.
Collapse
Affiliation(s)
- Karl G Csaky
- From the Retina Foundation of the Southwest (K.G.C.), Dallas, Texas, USA.
| | - Jason M L Miller
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program (J.M.L.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Martin
- Cole Eye Institute (D.F.M.), Cleveland Clinic, Cleveland Ohio, USA
| | - Mark W Johnson
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Gómez-Benlloch A, Garrell-Salat X, Cobos E, López E, Esteve-Garcia A, Ruiz S, Vázquez M, Sararols L, Biarnés M. Optical Coherence Tomography in Inherited Macular Dystrophies: A Review. Diagnostics (Basel) 2024; 14:878. [PMID: 38732293 PMCID: PMC11083341 DOI: 10.3390/diagnostics14090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD.
Collapse
Affiliation(s)
- Alba Gómez-Benlloch
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Xavier Garrell-Salat
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Estefanía Cobos
- Hospital Universitari de Bellvitge, c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Elena López
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Anna Esteve-Garcia
- Clinical Genetics Unit, Laboratori Clinic Territorial Metropolitada Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Sergi Ruiz
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Meritxell Vázquez
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Laura Sararols
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Marc Biarnés
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| |
Collapse
|
9
|
Hung JH, Tsai PH, Aala WJF, Chen CC, Chiou SH, Wong TW, Tsai KJ, Hsu SM, Wu LW. TIMP3/Wnt axis regulates gliosis of Müller glia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167087. [PMID: 38369214 DOI: 10.1016/j.bbadis.2024.167087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown. METHODS A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis. RESULTS TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for β-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR. CONCLUSIONS TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/β-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3. FUNDING National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).
Collapse
Affiliation(s)
- Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wilson Jr F Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chung Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Vergaro A, Pankievic M, Jedlickova J, Dudakova L, Vajter M, Michaelides M, Meliska M, Nemec P, Babincova D, Kousal B, Liskova P. Disease-Causing TIMP3 Variants and Deep Phenotyping of Two Czech Families with Sorsby Fundus Dystrophy Associated with Novel p.(Tyr152Cys) Mutation. Int J Mol Sci 2024; 25:3744. [PMID: 38612555 PMCID: PMC11011298 DOI: 10.3390/ijms25073744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We aim to report the ocular phenotype and molecular genetic findings in two Czech families with Sorsby fundus dystrophy and to review all the reported TIMP3 pathogenic variants. Two probands with Sorsby fundus dystrophy and three first-degree relatives underwent ocular examination and retinal imaging, including optical coherence tomography angiography. The DNA of the first proband was screened using a targeted ocular gene panel, while, in the second proband, direct sequencing of the TIMP3 coding region was performed. Sanger sequencing was also used for segregation analysis within the families. All the previously reported TIMP3 variants were reviewed using the American College of Medical Genetics and the Association for Molecular Pathology interpretation framework. A novel heterozygous variant, c.455A>G p.(Tyr152Cys), in TIMP3 was identified in both families and potentially de novo in one. Optical coherence tomography angiography documented in one patient the development of a choroidal neovascular membrane at 54 years. Including this study, 23 heterozygous variants in TIMP3 have been reported as disease-causing. Application of gene-specific criteria denoted eleven variants as pathogenic, eleven as likely pathogenic, and one as a variant of unknown significance. Our study expands the spectrum of TIMP3 pathogenic variants and highlights the importance of optical coherence tomography angiography for early detection of choroidal neovascular membranes.
Collapse
Affiliation(s)
- Andrea Vergaro
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Monika Pankievic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
| | - Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
| | - Marie Vajter
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London and Moorfields Eye Hospital, London EC1V 9EL, UK;
| | - Martin Meliska
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Pavel Nemec
- Department of Ophthalmology, First Faculty of Medicine and Military University Hospital Prague, 162 00 Prague, Czech Republic;
| | - Daniela Babincova
- Laboratory of Molecular Biology, AGEL, 741 01 Nový Jíčín, Czech Republic;
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| |
Collapse
|
11
|
Chen T, Xiong Y, Deng C, Hu C, Li M, Quan R, Yu X. NDRG2 alleviates photoreceptor apoptosis by regulating the STAT3/TIMP3/MMP pathway in mice with retinal degenerative disease. FEBS J 2024; 291:986-1007. [PMID: 38037211 DOI: 10.1111/febs.17021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Photoreceptor apoptosis is the main pathological feature of retinal degenerative diseases; however, the underlying molecular mechanism has not been elucidated. Recent studies have shown that N-myc downstream regulated gene 2 (NDRG2) exerts a neuroprotective effect on the brain and spinal cord. In addition, our previous studies have confirmed that NDRG2 is expressed in mouse retinal photoreceptors and counteracts N-methyl-N-nitrosourea (MNU)-induced apoptosis. However, the underlying molecular mechanism remains unclear. In this study, we observed that the expression of NDRG2 was not only significantly inhibited in photoreceptors after MNU treatment but also after hydrogen peroxide treatment, and photoreceptor apoptosis was alleviated or aggravated after overexpression or knockdown of NDRG2 in the 661W photoreceptor cell line, respectively. The apoptosis inhibitor Z-VAD-FMK rescued photoreceptor apoptosis induced by MNU after NDRG2 knockdown. Next, we screened and identified tissue inhibitor of metalloproteinases 3 (TIMP3) as the downstream molecule of NDRG2 in 661W cells by using quantitative real-time polymerase chain reaction. TIMP3 exerts a neuroprotective effect by inhibiting the expression of matrix metalloproteinases (MMPs). Subsequently, we found that signal transducer and activator of transcription 3 (STAT3) mediated the NDRG2-associated regulation of TIMP3. Finally, we overexpressed NDRG2 in mouse retinal tissues by intravitreally injecting an adeno-associated virus with mouse NDRG2 in vivo. Results showed that NDRG2 upregulated the expression of phospho-STAT3 (p-STAT3) and TIMP3, while suppressing MNU-induced photoreceptor apoptosis and MMP expression. Our findings revealed how NDRG2 regulates the STAT3/TIMP3/MMP pathway and uncovered the molecular mechanism underlying its neuroprotective effect on mouse retinal photoreceptors.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Yecheng Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chunlei Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chengbiao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Mengxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Rui Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Xiaorui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, China
| |
Collapse
|
12
|
Hass DT, Pandey K, Engel A, Horton N, Robbings BM, Lim R, Sadilek M, Zhang Q, Autterson GA, Miller JML, Chao JR, Hurley JB. Acetyl-CoA carboxylase Inhibition increases RPE cell fatty acid oxidation and limits apolipoprotein efflux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566117. [PMID: 37986876 PMCID: PMC10659357 DOI: 10.1101/2023.11.07.566117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Purpose In age-related macular degeneration (AMD) and Sorsby's fundus dystrophy (SFD), lipid-rich deposits known as drusen accumulate under the retinal pigment epithelium (RPE). Drusen may contribute to photoreceptor and RPE degeneration in AMD and SFD. We hypothesize that stimulating β-oxidation in RPE will reduce drusen accumulation. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate β-oxidation and diminish lipid accumulation in fatty liver disease. In this report we test the hypothesis that an ACC inhibitor, Firsocostat, limits the accumulation of lipid deposits in cultured RPE cells. Methods We probed metabolism and cellular function in mouse RPE-choroid, human fetal- derived RPE cells, and induced pluripotent stem cell-derived RPE cells. We used 13 C6-glucose and 13 C16-palmitate to determine the effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. 13 C labeling of metabolites in these pathways were analyzed using gas chromatography-linked mass spectrometry. We quantified ApoE and VEGF release using enzyme-linked immunosorbent assays. Immunostaining of sectioned RPE was used to visualize ApoE deposits. RPE function was assessed by measuring the trans-epithelial electrical resistance (TEER). Results ACC inhibition with Firsocostat increases fatty acid oxidation and remodels lipid composition, glycolytic metabolism, lipoprotein release, and enhances TEER. When human serum is used to induce sub-RPE lipoprotein accumulation, fewer lipoproteins accumulate with Firsocostat. In a culture model of Sorsby's fundus dystrophy, Firsocostat also stimulates fatty acid oxidation, improves morphology, and increases TEER. Conclusions Firsocostat remodels intracellular metabolism and improves RPE resilience to serum-induced lipid deposition. This effect of ACC inhibition suggests that it could be an effective strategy for diminishing drusen accumulation in the eyes of patients with AMD.
Collapse
|
13
|
Xu L, Ruddick WN, Bolch SN, Klingeborn M, Dyka FM, Kulkarni MM, Simpson CP, Beltran WA, Bowes Rickman C, Smith WC, Dinculescu A. Distinct Phenotypic Consequences of Pathogenic Mutants Associated with Late-Onset Retinal Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1706-1720. [PMID: 36328299 PMCID: PMC10726427 DOI: 10.1016/j.ajpath.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
A pathologic feature of late-onset retinal degeneration caused by the S163R mutation in C1q-tumor necrosis factor-5 (C1QTNF5) is the presence of unusually thick deposits between the retinal pigmented epithelium (RPE) and the vascular choroid, considered a hallmark of this disease. Following its specific expression in mouse RPE, the S163R mutant exhibits a reversed polarized distribution relative to the apically secreted wild-type C1QTNF5, and forms widespread, prominent deposits that gradually increase in size with aging. The current study shows that S163R deposits expand to a considerable thickness through a progressive increase in the basolateral RPE membrane, substantially raising the total RPE height, and enabling their clear imaging as a distinct hyporeflective layer by noninvasive optical coherence tomography in advanced age animals. This phenotype bears a striking resemblance to ocular pathology previously documented in patients harboring the S163R mutation. Therefore, a similar viral vector-based gene delivery approach was used to also investigate the behavior of P188T and G216C, two novel pathogenic C1QTNF5 mutants recently reported in patients for which histopathologic data are lacking. Both mutants primarily impacted the RPE/photoreceptor interface and did not generate basal laminar deposits. Distinct distribution patterns and phenotypic consequences of C1QTNF5 mutants were observed in vivo, which suggested that multiple pathobiological mechanisms contribute to RPE dysfunction and vision loss in this disorder.
Collapse
Affiliation(s)
- Lei Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - William N Ruddick
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Susan N Bolch
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Mikael Klingeborn
- McLaughlin Research Institute, Great Falls, Montana; Helen Wills Neuroscience Institute, Berkeley, California
| | - Frank M Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Manoj M Kulkarni
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chiab P Simpson
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - William A Beltran
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina
| | - Catherine Bowes Rickman
- Helen Wills Neuroscience Institute, Berkeley, California; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - W Clay Smith
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Astra Dinculescu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
14
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 PMCID: PMC11659964 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
15
|
Molecular and Cellular Regulations in the Development of the Choroidal Circulation System. Int J Mol Sci 2023; 24:ijms24065371. [PMID: 36982446 PMCID: PMC10048934 DOI: 10.3390/ijms24065371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders in the development and regulation of blood vessels are involved in various ocular disorders, such as persistent hyperplastic primary vitreous, familial exudative vitreoretinopathy, and choroidal dystrophy. Thus, the appropriate regulation of vascular development is essential for healthy ocular functions. However, regulation of the developing choroidal circulation system has not been well studied compared with vascular regulation in the vitreous and the retina. The choroid is a vascular-rich and uniquely structured tissue supplying oxygen and nutrients to the retina, and hypoplasia and the degeneration of the choroid are involved in many ocular disorders. Therefore, understanding the developing choroidal circulation system expands our knowledge of ocular development and supports our understanding of ocular disorders. In this review, we examine studies on regulating the developing choroidal circulation system at the cellular and molecular levels and discuss the relevance to human diseases.
Collapse
|
16
|
Chiang TK, Yu M. Electrophysiological Evaluation of Macular Dystrophies. J Clin Med 2023; 12:jcm12041430. [PMID: 36835965 PMCID: PMC9962076 DOI: 10.3390/jcm12041430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Macular dystrophies are a heterogeneous group of genetic disorders that often severely threatens the bilateral central vision of the affected patient. While advances in molecular genetics have been instrumental in the understanding and diagnosis of these disorders, there remains significant phenotypical variation among patients within any particular subset of macular dystrophies. Electrophysiological testing remains a vital tool not only to characterize vision loss for differential diagnosis but also to understand the pathophysiology of these disorders and to monitor the treatment effect, potentially leading to therapeutic advances. This review summarizes the application of electrophysiological testing in macular dystrophies, including Stargardt disease, bestrophinopathies, X-linked retinoschisis, Sorsby fundus dystrophy, Doyne honeycomb retina dystrophy, autosomal dominant drusen, occult macular dystrophy, North Carolina macular dystrophy, pattern dystrophy, and central areolar choroidal dystrophy.
Collapse
|
17
|
Sivaprasad S, Chandra S, Kwon J, Khalid N, Chong V. Perspectives from clinical trials: is geographic atrophy one disease? Eye (Lond) 2023; 37:402-407. [PMID: 35641821 PMCID: PMC9905504 DOI: 10.1038/s41433-022-02115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Geographic atrophy (GA) is currently an untreatable condition. Emerging evidence from recent clinical trials show that anti-complement therapy may be a successful treatment option. However, several trials in this therapy area have failed as well. This raises several questions. Firstly, does complement therapy work for all patients with GA? Secondly, is GA one disease? Can we assume that these failed clinical trials are due to ineffective interventions or are they due to flawed clinical trial designs, heterogeneity in GA progression rates or differences in study cohorts? In this article we try to answer these questions by providing an overview of the challenges of designing and interpreting outcomes of randomised controlled trials (RCTs) in GA. These include differing inclusion-exclusion criteria, heterogeneous progression rates of the disease, outcome choices and confounders.
Collapse
Affiliation(s)
- Sobha Sivaprasad
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- University College London, Institute of Ophthalmology, London, UK.
| | - Shruti Chandra
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- University College London, Institute of Ophthalmology, London, UK
| | - Jeha Kwon
- Oxford University Hospitals NHS Trust, Oxford, UK
| | | | - Victor Chong
- University College London, Institute of Ophthalmology, London, UK
| |
Collapse
|
18
|
Garland D, Harnly J, Ayyagari R. Mouse Choroid Proteome Revisited: Focus on Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:359-363. [PMID: 37440057 DOI: 10.1007/978-3-031-27681-1_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age is a major risk factor for age-related macular degeneration (AMD), and age has a role in the disease phenotypes of heritable macular dystrophies. The proteomes of C57Bl6/J mouse choroids at 2 ages were analyzed to identify biochemical processes affected by aging. Proteins of interest were identified as those contributing most to the variance in principal component analysis and those showing the largest significant differences between ages. These proteins implicated altered ECM composition, immune system function, and lipid metabolism.
Collapse
Affiliation(s)
| | - James Harnly
- Human Nutrition Center, US Department of Agriculture, Beltsville, MD, USA
| | - Radha Ayyagari
- Departments of Ophthalmology and Pathology, Shiley Eye Institute, University of California, San Diego, CA, USA
| |
Collapse
|
19
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
20
|
Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy. Int J Mol Sci 2022; 23:ijms232214231. [PMID: 36430707 PMCID: PMC9696176 DOI: 10.3390/ijms232214231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type TIMP3 is an endogenous angiogenesis inhibitor that inhibits Vascular Endothelial Growth Factor (VEGF)-mediated signaling in endothelial cells. In contrast, SFD-related S179C-TIMP3 when expressed in endothelial cells, does not have angiogenesis-inhibitory properties. To evaluate if this is a common feature of TIMP3 mutants associated with SFD, we examined and compared endothelial cells expressing S179C, Y191C and S204C TIMP3 mutants for their angiogenesis-inhibitory function. Western blot analysis, zymography and reverse zymography and migration assays were utilized to evaluate TIMP3 protein, Matrix Metalloproteinase (MMP) and MMP inhibitory activity, VEGF signaling and in vitro migration in endothelial cells expressing (VEGF receptor-2 (VEGFR-2) and wild-type TIMP3 or mutant-TIMP3. We demonstrate that mutant S179C, Y191C- and S204C-TIMP3 all show increased glycosylation and multimerization/aggregation of the TIMP3 protein. In addition, endothelial cells expressing TIMP3 mutations show increased angiogenic activities and elevated VEGFR-2. Removal of N-glycosylation by mutation of Asn184, the only potential N-glycosylation site in mutant TIMP3, resulted in increased aggregation of TIMP3, further upregulation of VEGFR-2, VEGF-induced phosphorylation of VEGFR2 and VEGF-mediated migration concomitant with reduced MMP inhibitory activity. These results suggest that even though mutant TIMP3 proteins are more glycosylated, post-translational deglycosylation may play a critical role in the aggregation of mutant TIMP3 and contribute to the pathogenesis of SFD. The identification of factors that might contribute to changes in the glycome of patients with SFD will be useful. Future studies will evaluate whether variations in the glycosylation of mutant TIMP3 proteins are contributing to the severity of the disease.
Collapse
|
21
|
Elsayed MEAA, Kaukonen M, Kiraly P, Kapetanovic JC, MacLaren RE. Potential CRISPR Base Editing Therapeutic Options in a Sorsby Fundus Dystrophy Patient. Genes (Basel) 2022; 13:2103. [PMID: 36421778 PMCID: PMC9690532 DOI: 10.3390/genes13112103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
TIMP3 mutations are associated with early-onset macular choroidal neovascularisation for which no treatment currently exists. CRISPR base editing, with its ability to irreversibly correct point mutations by chemical modification of nucleobases at DNA level, may be a therapeutic option. We report a bioinformatic analysis of potential therapeutic options in a patient presenting with Sorsby fundus dystrophy. Genetic testing in a 35-year-old gentleman with bilateral macular choroidal neovascularisation revealed the patient to be heterozygous for a TIMP3 variant c.610A>T, p.(Ser204Cys). Using a glycosylase base editor (GBE), another DNA-edit could be introduced that would revert the variant back to wild-type on amino acid level. Alternatively, the mutated residue could be changed to another amino acid that would be better tolerated, and for that, an available 'NG'-PAM site was found to be available for the SpCas9-based adenine base editor (ABE) that would introduce p.(Ser204Arg). In silico analyses predicted this variant to be non-pathogenic; however, a bystander edit, p.Ile205Thr, would be introduced. This case report highlights the importance of considering genetic testing in young patients with choroidal neovascularisation, particularly within the context of a strong family history of presumed wet age-related macular degeneration, and describes potential therapeutic options.
Collapse
Affiliation(s)
| | - Maria Kaukonen
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Peter Kiraly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
22
|
de Breuk A, Lechanteur YTE, Astuti G, Galbany JC, Klaver CCW, Hoyng CB, den Hollander AI. Common and rare variants in patients with early onset drusen maculopathy. Clin Genet 2022; 102:414-423. [PMID: 36053979 PMCID: PMC9825904 DOI: 10.1111/cge.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023]
Abstract
Early onset drusen maculopathy (EODM) can lead to advanced macular degeneration at a young age, affecting quality of life. However, the genetic causes of EODM are not well studied. We performed whole genome sequencing in 49 EODM patients. Common genetic variants were analysed by calculating genetic risk scores based on 52 age-related macular generation (AMD)-associated variants, and we analysed rare variants in candidate genes to identify potential deleterious variants that might contribute to EODM development. We demonstrate that the 52 AMD-associated variants contributed to EODM, especially variants located in the complement pathway. Furthermore, we identified 26 rare genetic variants predicted to be pathogenic based on in silico prediction tools or based on reported pathogenicity in literature. These variants are located predominantly in the complement and lipid metabolism pathways. Last, evaluation of 18 genes causing inherited retinal dystrophies that can mimic AMD characteristics, revealed 11 potential deleterious variants in eight EODM patients. However, phenotypic characteristics did not point towards a retinal dystrophy in these patients. In conclusion, this study reports new insights into rare variants that are potentially involved in EODM development, and which are relevant for future studies unravelling the aetiology of EODM.
Collapse
Affiliation(s)
- Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Yara T. E. Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Galuh Astuti
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands,Division of Human Genetics, Center for Biomedical Research, Faculty of MedicineDiponegoro UniversitySemarangIndonesia
| | | | - Caroline C. W. Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Department of Ophthalmology, Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands,Institute of Molecular and Clinical OphthalmologyBaselSwitzerland
| | - Carel B. Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Present address:
AbbVie, Genomics Research CenterCambridgeMassachusettsUSA
| |
Collapse
|
23
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
24
|
CLEC3B is a novel causative gene for macular-retinal dystrophy. Genet Med 2022; 24:1249-1260. [PMID: 35331648 DOI: 10.1016/j.gim.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Macular degeneration is the leading cause of blindness worldwide. In this study, we aimed to define a new subtype of macular-retinal dystrophy and its genetic predisposition in 5 families. METHODS Exome sequencing was performed to determine the putative disease-causing genes in patients with inherited macular disorders confirmed through comprehensive ophthalmic examinations. To validate its functional consequence, adeno-associated virus-mediated mutant gene was delivered into the murine retina, and both structural and functional tests were performed to investigate its pathological effects in vivo. RESULTS In total, 5 multigenerational families diagnosed with autosomal dominant maculoretinopathy were found to carry a pathogenic variant in a new gene, CLEC3B, which encodes tetranectin, a plasminogen kringle-4 binding protein. Consistent with the disease phenotypes of patients, mice that received subretinal injections with the CLEC3B variant displayed multiple subretinal hyperreflective deposits, reduced retinal thickness, and decreased electroretinographic responses. Moreover, the optokinetic tracking response indicated that spatial frequency was significantly lower (P < .05), implying impaired visual function in these mice. CONCLUSION We have presented a new subtype of macular-retinal dystrophy in 5 families as well as a new pathogenic gene, CLEC3B, providing new insights into maculoretinopathy etiology.
Collapse
|
25
|
Vilela MAP, Battaglia Parodi M. Extensive macular atrophy with pseudodrusen-like: Case series and review. Eur J Ophthalmol 2022:11206721221102269. [PMID: 35607265 DOI: 10.1177/11206721221102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To describe the clinical characteristics of two patients affected by extensive macular atrophy with pseudodrusen-like (EMAP). METHODS Two patients affected by EMAP underwent multimodal imaging, including fundus autofluorescence and optical coherence tomography. RESULTS The patients showed the typical clinical appearance with macular atrophy with larger vertical axis surrounded by pseudodrusen-like deposits involving the midperiphery, associated with paving stone lesions in the retinal periphery. CONCLUSION EMAP is a complex condition sharing clinical characteristics of age-related macular degeneration. Further studies are warranted to identify the early biomarker of the disease.
Collapse
|
26
|
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding. MEMBRANES 2022; 12:membranes12020211. [PMID: 35207132 PMCID: PMC8878240 DOI: 10.3390/membranes12020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor.
Collapse
|
27
|
Engel AL, Wang Y, Khuu TH, Worrall E, Manson MA, Lim RR, Knight K, Yanagida A, Qi JH, Ramakrishnan A, Weleber RG, Klein ML, Wilson DJ, Anand-Apte B, Hurley JB, Du J, Chao JR. Extracellular matrix dysfunction in Sorsby patient-derived retinal pigment epithelium. Exp Eye Res 2022; 215:108899. [PMID: 34929159 PMCID: PMC8923943 DOI: 10.1016/j.exer.2021.108899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (∼6-90 μm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a ∼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.
Collapse
Affiliation(s)
- Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - YeKai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Thomas H. Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Emily Worrall
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Megan A. Manson
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Kaitlen Knight
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Aya Yanagida
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jian Hua Qi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Aravind Ramakrishnan
- Center for Blood Cancers and Oncology, St. David’s South Austin Medical Center, Austin, TX 78704
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Michael L. Klein
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - David J. Wilson
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| |
Collapse
|
28
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Baston A, Gerhardt C, Zandi S, Garweg JG. Visual Outcome after Intravitreal Anti-VEGF Therapy for Macular Neovascularisation Secondary to Sorsby's Fundus Dystrophy: A Systematic Review. J Clin Med 2021; 10:2433. [PMID: 34070857 PMCID: PMC8198854 DOI: 10.3390/jcm10112433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this paper is to summarise our own and to review published experience regarding the long-term outcome of intravitreal treatment for macular neovascularisation (MNV) secondary to Sorsby's fundus dystrophy (SFD). A systematic literature search using the MeSH terms [Sorsby] and [anti-vascular endothelial growth factor (VEGF)] was conducted in NCBI/PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), ScienceDirect, Google Scholar and ClinicalTrials.gov to identify publications reporting anti-VEGF treatment outcomes in SFD. Treatment outcomes were extracted for this meta-analysis from 14 publications and an own patient reporting a total of 31 cases with a mean follow-up (FU) of 54 months. Both eyes were affected in ten (32.3%) instances. Heterogenous reporting limited the comparability of the outcomes. All papers in common, however, reported satisfied to excellent responses to anti-VEGF therapy if patients were diagnosed and treated immediately after onset of symptoms. Of 20 eyes, for which visual acuity was reported before and after treatment, five worsened and seven improved by more than 1 line, whereas eight eyes maintained their function by end of the follow up, and 11 eyes (55%) maintained a driving vision (Snellen VA ≥ 0.5). Of six eyes with a VA < 0.5, VA improved in one to VA ≥ 0.5, whereas of 14 eyes with an initial VA ≥ 0.5, this dropped to <0.5 despite therapy. In MNV secondary to SFD, the delay between first symptoms and access to anti-VEGF treatment determines subretinal scar formation and thereby, functional prognosis. If treated early, this is generally favourable under regular controls and a consequent anti-VEGF treatment of MNV activity.
Collapse
Affiliation(s)
- Arthur Baston
- Swiss Eye Institute, Rotkreuz, and Retina Clinic, Berner Augenklinik am Lindenhofspital, 3012 Bern, Switzerland; (A.B.); (C.G.)
| | - Christin Gerhardt
- Swiss Eye Institute, Rotkreuz, and Retina Clinic, Berner Augenklinik am Lindenhofspital, 3012 Bern, Switzerland; (A.B.); (C.G.)
| | - Souska Zandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, and Retina Clinic, Berner Augenklinik am Lindenhofspital, 3012 Bern, Switzerland; (A.B.); (C.G.)
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| |
Collapse
|
30
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
31
|
Hongisto H, Dewing JM, Christensen DR, Scott J, Cree AJ, Nättinen J, Määttä J, Jylhä A, Aapola U, Uusitalo H, Kaarniranta K, Ratnayaka JA, Skottman H, Lotery AJ. In vitro stem cell modelling demonstrates a proof-of-concept for excess functional mutant TIMP3 as the cause of Sorsby fundus dystrophy. J Pathol 2020; 252:138-150. [PMID: 32666594 DOI: 10.1002/path.5506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Sorsby fundus dystrophy (SFD) is a rare autosomal dominant disease of the macula that leads to bilateral loss of central vision and is caused by mutations in the TIMP3 gene. However, the mechanisms by which TIMP3 mutations cause SFD are poorly understood. Here, we generated human induced pluripotent stem cell-derived retinal pigmented epithelial (hiPSC-RPE) cells from three SFD patients carrying TIMP3 p.(Ser204Cys) and three non-affected controls to study disease-related structural and functional differences in the RPE. SFD-hiPSC-RPE exhibited characteristic RPE structure and physiology but showed significantly reduced transepithelial electrical resistance associated with enriched expression of cytoskeletal remodelling proteins. SFD-hiPSC-RPE exhibited basolateral accumulation of TIMP3 monomers, despite no change in TIMP3 gene expression. TIMP3 dimers were observed in both SFD and control hiPSC-RPE, suggesting that mutant TIMP3 dimerisation does not drive SFD pathology. Furthermore, mutant TIMP3 retained matrix metalloproteinase activity. Proteomic profiling showed increased expression of ECM proteins, endothelial cell interactions and angiogenesis-related pathways in SFD-hiPSC-RPE. By contrast, there were no changes in VEGF secretion. However, SFD-hiPSC-RPE secreted higher levels of monocyte chemoattractant protein 1, PDGF and angiogenin. Our findings provide a proof-of-concept that SFD patient-derived hiPSC-RPE mimic mature RPE cells and support the hypothesis that excess accumulation of mutant TIMP3, rather than an absence or deficiency of functional TIMP3, drives ECM and angiogenesis-related changes in SFD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heidi Hongisto
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jennifer M Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Rg Christensen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jennifer Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela J Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janika Nättinen
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Määttä
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Jylhä
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ulla Aapola
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Uusitalo
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
32
|
DeBenedictis MJ, Gindzin Y, Glaab E, Anand-Apte B. A novel TIMP3 mutation associated with a retinitis pigmentosa-like phenotype. Ophthalmic Genet 2020; 41:480-484. [PMID: 32715858 DOI: 10.1080/13816810.2020.1795889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Sorsby Fundus Dystrophy is an inherited macular degeneration caused by pathogenic variants in the TIMP3 gene. Clinical exam findings typically drusen -like deposits beneath the RPE or reticular pseudo drusen deposits above the RPE with a majority of patients developing choroidal neovascularization. MATERIALS AND METHODS Case report of two members of a family that present with atypical clinical exam findings. Protein modeling of the novel Y137CTIMP3 variant was performed and compared with other known variants. RESULTS In this study we describe a father and son initially diagnosed with retinitis pigmentosa of unknown genetic origin. More recent genetic testing of the patients, identified a novel c.410A>G; p.Tyr137Cys variant of uncertain clinical significance in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. The atypical clinical findings led us to compare the theoretical molecular effects of this variant on the TIMP3 protein structure and interactions with other proteins using homology modeling and machine learning predictions. CONCLUSIONS It is important to consider mutations in TIMP3 in atypical cases of Retinitis Pigmentosa particularly in the absence of known variants.
Collapse
Affiliation(s)
| | - Yosef Gindzin
- Grand Rapids Ophthalmology , Grand Rapids, Michigan, USA
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg , Esch-sur-Alzette, Luxembourg
| | - Bela Anand-Apte
- Cleveland Clinic Foundation, Cole Eye Institute , Cleveland, Ohio, USA.,Department of Ophthalmology and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University , Cleveland, Ohio, USA
| |
Collapse
|
33
|
de Breuk A, Acar IE, Kersten E, Schijvenaars MMVAP, Colijn JM, Haer-Wigman L, Bakker B, de Jong S, Meester-Smoor MA, Verzijden T, Missotten TOAR, Monés J, Biarnés M, Pauleikhoff D, Hense HW, Silva R, Nunes S, Melo JB, Fauser S, Hoyng CB, Ueffing M, Coenen MJH, Klaver CCW, den Hollander AI. Development of a Genotype Assay for Age-Related Macular Degeneration: The EYE-RISK Consortium. Ophthalmology 2020; 128:1604-1617. [PMID: 32717343 DOI: 10.1016/j.ophtha.2020.07.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. DESIGN Case-control study. PARTICIPANTS Individuals (n = 4740) from 5 European cohorts. METHODS We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. MAIN OUTCOME MEASURES Genetic risk score, association of genetic variants with AMD, and genotype-phenotype correlations. RESULTS We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. CONCLUSIONS This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development.
Collapse
Affiliation(s)
- Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilhan E Acar
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mascha M V A P Schijvenaars
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johanna M Colijn
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Timo Verzijden
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Jordi Monés
- Barcelona Macula Foundation, Barcelona, Spain; Institut de la Màcula, Barcelona, Spain
| | - Marc Biarnés
- Barcelona Macula Foundation, Barcelona, Spain; Institut de la Màcula, Barcelona, Spain
| | | | - Hans W Hense
- Institute of Epidemiology and Social Medicine, Westfälische Wilhelms University, Münster, Germany
| | - Rufino Silva
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra (iCBR-FMUC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Sandrina Nunes
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; iCBR-CIMAGO, Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
34
|
Murali A, Krishnakumar S, Subramanian A, Parameswaran S. Bruch's membrane pathology: A mechanistic perspective. Eur J Ophthalmol 2020; 30:1195-1206. [PMID: 32345040 DOI: 10.1177/1120672120919337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bruch's membrane, an extracellular matrix located between the retinal pigment epithelium and the choroid, plays a vital role as structural and functional support to the retinal pigment epithelium. Dysfunction of Bruch's membrane in both age-related macular degeneration and other ocular diseases is caused mostly by extracellular matrix degeneration, deposit formation, and angiogenesis. Although these factors are dealt in greater detail with respect to the cells that are degenerated such as the retinal pigment epithelium and the endothelial cells, the pathology involving the Bruch's membrane is often underrated. Since in most of the macular degenerations early degenerative changes are also observed in the Bruch's membrane, addressing only the cellular component without the underlying membrane will not yield an ideal clinical benefit. This review aims to discuss the factors and the mechanisms affecting the integrity of the Bruch's membrane, which would aid in developing an effective therapy for these pathologies.
Collapse
Affiliation(s)
- Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| |
Collapse
|
35
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
36
|
Haffner C. Proteostasis in Cerebral Small Vessel Disease. Front Neurosci 2019; 13:1142. [PMID: 31798396 PMCID: PMC6874119 DOI: 10.3389/fnins.2019.01142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/10/2019] [Indexed: 01/02/2023] Open
Abstract
Maintaining the homeostasis of proteins (proteostasis) by controlling their synthesis, folding and degradation is a central task of cells and tissues. The gradual decline of the capacity of the various proteostasis machineries, frequently in combination with their overload through mutated, aggregation-prone proteins, is increasingly recognized as an important catalyst of age-dependent pathologies in the brain, most prominently neurodegenerative disorders. A dysfunctional proteostasis might also contribute to neurovascular disease as indicated by the occurrence of excessive protein accumulation or massive extracellular matrix expansion within vessel walls in conditions such as cerebral small vessel disease (SVD), a major cause of ischemic stroke, and cerebral amyloid angiopathy. Recent advances in brain vessel isolation techniques and mass spectrometry methodology have facilitated the analysis of cerebrovascular proteomes and fueled efforts to determine the proteomic signatures associated with neurovascular disease. In several studies in humans and mice considerable differences between healthy and diseased vessel proteomes were observed, emphasizing the critical contribution of an impaired proteostasis to disease pathogenesis. These findings highlight the important role of a balanced proteostasis for cerebrovascular health.
Collapse
Affiliation(s)
- Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
37
|
Rahman N, Georgiou M, Khan KN, Michaelides M. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol 2019; 104:451-460. [PMID: 31704701 PMCID: PMC7147237 DOI: 10.1136/bjophthalmol-2019-315086] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 11/03/2022]
Abstract
Macular dystrophies (MDs) consist of a heterogeneous group of disorders that are characterised by bilateral symmetrical central visual loss. Advances in genetic testing over the last decade have led to improved knowledge of the underlying molecular basis. The developments in high-resolution multimodal retinal imaging have also transformed our ability to make accurate and more timely diagnoses and more sensitive quantitative assessment of disease progression, and allowed the design of optimised clinical trial endpoints for novel therapeutic interventions. The aim of this review was to provide an update on MDs, including Stargardt disease, Best disease, X-linked r etinoschisis, pattern dystrophy, Sorsby fundus dystrophy and autosomal dominant drusen. It highlights the range of innovations in retinal imaging, genotype-phenotype and structure-function associations, animal models of disease and the multiple treatment strategies that are currently in clinical trial or planned in the near future, which are anticipated to lead to significant changes in the management of patients with MDs.
Collapse
Affiliation(s)
| | - Michalis Georgiou
- Moorfields Eye Hospital, London, UK.,Institute of Ophthalmology, UCL, London, UK
| | - Kamron N Khan
- Ophthalmology Department, St James's University Hospital, Leeds, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK .,Institute of Ophthalmology, UCL, London, UK
| |
Collapse
|