1
|
Gangiah TK, Alisoltani A, Potgieter M, Bell L, Ross E, Iranzadeh A, McDonald Z, Allali I, Dabee S, Barnabas S, Blackburn JM, Tabb DL, Bekker LG, Jaspan HB, Passmore JAS, Mulder N, Masson L. Exploring the female genital tract mycobiome in young South African women using metaproteomics. MICROBIOME 2025; 13:76. [PMID: 40108637 PMCID: PMC11921665 DOI: 10.1186/s40168-025-02066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Female genital tract (FGT) diseases such as bacterial vaginosis (BV) and sexually transmitted infections are prevalent in South Africa, with young women being at an increased risk. Since imbalances in the FGT microbiome are associated with FGT diseases, it is vital to investigate the factors that influence FGT health. The mycobiome plays an important role in regulating mucosal health, especially when the bacterial component is disturbed. However, we have a limited understanding of the FGT mycobiome since many studies have focused on bacterial communities and have neglected low-abundance taxonomic groups, such as fungi. To reduce this knowledge deficit, we present the first large-scale metaproteomic study to define the taxonomic composition and potential functional processes of the FGT mycobiome in South African reproductive-age women. RESULTS We examined FGT fungal communities present in 123 women by collecting lateral vaginal wall swabs for liquid chromatography-tandem mass spectrometry. From this, 39 different fungal genera were identified, with Candida dominating the mycobiome (53.2% relative abundance). We observed changes in relative abundance at the protein, genus, and functional (gene ontology biological processes) level between BV states. In women with BV, Malassezia and Conidiobolus proteins were more abundant, while Candida proteins were less abundant compared to BV-negative women. Correspondingly, Nugent scores were negatively associated with total fungal protein abundance. The clinical variables, Nugent score, pro-inflammatory cytokines, chemokines, vaginal pH, Chlamydia trachomatis, and the presence of clue cells were associated with fungal community composition. CONCLUSIONS The results of this study revealed the diversity of FGT fungal communities, setting the groundwork for understanding the FGT mycobiome. Video Abstract.
Collapse
Affiliation(s)
- Tamlyn K Gangiah
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Cape Town, 7925, South Africa
- Department of Soil and Environment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Arghavan Alisoltani
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
| | - Matthys Potgieter
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Cape Town, 7925, South Africa
- Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, University of Cape Town, Cape Town, 7925, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Elizabeth Ross
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Arash Iranzadeh
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Cape Town, 7925, South Africa
| | - Zac McDonald
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Imane Allali
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Cape Town, 7925, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology and Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat, Morocco
| | - Smritee Dabee
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Seattle Children'S Research Institute, University of Washington, Seattle, WA, 98101, USA
| | - Shaun Barnabas
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
| | - David L Tabb
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Stellenbosch, 7602, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Desmond Tutu HIV Centre, Cape Town, University of Cape Town, Cape Town, 7925, South Africa
| | - Heather B Jaspan
- Seattle Children'S Research Institute, University of Washington, Seattle, WA, 98101, USA
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
| | - Jo-Ann S Passmore
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4013, South Africa
- National Health Laboratory Service, Cape Town, 7925, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for Infectious Diseases Research (CIDRI) in Africa Wellcome Trust Centre, University of Cape Town, Cape Town, 7925, South Africa
| | - Lindi Masson
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa.
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4013, South Africa.
- Women's, Children's and Adolescents' Health and Disease Elimination Programs, Life Sciences Discipline, Burnet Institute, Melbourne, 3004, Australia.
- Central Clinical School, Monash University, Melbourne, 3004, Australia.
| |
Collapse
|
2
|
Shen T, Tian B, Liu W, Yang X, Sheng Q, Li M, Wang H, Wang X, Zhou H, Han Y, Ding C, Sai S. Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by Candida albicans in mice. Microbiol Spectr 2024; 12:e0424723. [PMID: 38415658 PMCID: PMC10986551 DOI: 10.1128/spectrum.04247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Cutaneous candidiasis, caused by Candida albicans, is a severe and frustrating condition, and finding effective treatments can be challenging. Therefore, the development of farnesol-loaded nanoparticles is an exciting breakthrough. Ethosomes are a novel transdermal drug delivery carrier that incorporates a certain concentration (10-45%) of alcohols into lipid vesicles, resulting in improved permeability and encapsulation rates compared to conventional liposomes. Farnesol is a quorum-sensing molecule involved in morphogenesis regulation in C. albicans, and these ethosomes offer a promising new approach to treating this common fungal infection. This study develops the formulation of farnesol-loaded ethosomes (farnesol-ethosomes) and assesses applications in treating cutaneous candidiasis induced by C. albicans in vitro and in vivo. Farnesol-ethosomes were successfully developed by ethanol injection method. Therapeutic properties of farnesol-ethosomes, such as particle size, zeta potential, and morphology, were well characterized. According to the results, farnesol-ethosomes demonstrated an increased inhibition effect on cells' growth and biofilm formation in C. albicans. In Animal infection models, treating farnesol-ethosomes by transdermal administration effectively relieved symptoms caused by cutaneous candidiasis and reduced fungal burdens in quantity. We also observed that ethosomes significantly enhanced drug delivery efficacy in vitro and in vivo. These results indicate that farnesol-ethosomes can provide future promising roles in curing cutaneous candidiasis. IMPORTANCE Cutaneous candidiasis attributed to Candida infection is a prevalent condition that impacts individuals of all age groups. As a type of microbial community, biofilms confer benefits to host infections and mitigate the clinical effects of antifungal treatments. In C. albicans, the yeast-to-hypha transition and biofilm formation are effectively suppressed by farnesol through its modulation of multiple signaling pathway. However, the characteristics of farnesol such as hydrophobicity, volatility, degradability, and instability in various conditions can impose limitations on its effectiveness. Nanotechnology holds the potential to enhance the efficiency and utilization of this molecule. Treatment of farnesol-ethosomes by transdermal administration demonstrated a very remarkable therapeutic effect against C. albicans in infection model of cutaneous candidiasis in mice. Many patients suffering fungal skin infection will benefit from this study.
Collapse
Affiliation(s)
- Ting Shen
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Liu
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Xuesong Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Qi Sheng
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Mengxin Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Haiyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Xiuwen Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Huihui Zhou
- Department of pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yanchun Han
- Department of Pathology, Binzhou Medical University, Yantai, Shandong, China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
3
|
Jakab Á, Csillag K, Antal K, Boczonádi I, Kovács R, Pócsi I, Emri T. Total transcriptome response for tyrosol exposure in Aspergillus nidulans. Fungal Biol 2024; 128:1664-1674. [PMID: 38575239 DOI: 10.1016/j.funbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/27/2023] [Accepted: 01/12/2024] [Indexed: 04/06/2024]
Abstract
Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary; Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly Catholic University, 3300, Eger, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary; HUN-REN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary; HUN-REN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Oiki S, Nasuno R, Urayama SI, Takagi H, Hagiwara D. Intracellular production of reactive oxygen species and a DAF-FM-related compound in Aspergillus fumigatus in response to antifungal agent exposure. Sci Rep 2022; 12:13516. [PMID: 35933435 PMCID: PMC9357077 DOI: 10.1038/s41598-022-17462-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Fungi are ubiquitously present in our living environment and are responsible for crop and infectious diseases. Developing new antifungal agents is constantly needed for their effective control. Here, we investigated fungal cellular responses to an array of antifungal compounds, including plant- and bacteria-derived antifungal compounds. The pathogenic fungus Aspergillus fumigatus generated reactive oxygen species in its hyphae after exposure to the antifungal compounds thymol, farnesol, citral, nerol, salicylic acid, phenazine-1-carbonic acid, and pyocyanin, as well as under oxidative and high-temperature stress conditions. The production of nitric oxide (NO) was determined using diaminofluorescein-FM diacetate (DAF-FM DA) and occurred in response to antifungal compounds and stress conditions. The application of reactive oxygen species or NO scavengers partly suppressed the inhibitory effects of farnesol on germination. However, NO production was not detected in the hyphae using the Greiss method. An LC/MS analysis also failed to detect DAF-FM-T, a theoretical product derived from DAF-FM DA and NO, in the hyphae after antifungal treatments. Thus, the cellular state after exposure to antifungal agents may be more complex than previously believed, and the role of NO in fungal cells needs to be investigated further.
Collapse
Affiliation(s)
- Sayoko Oiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
5
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
You N, Zhuo L, Zhou J, Song Y, Shi J. The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases. Gut Liver 2021; 14:291-296. [PMID: 31554391 PMCID: PMC7234879 DOI: 10.5009/gnl18579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Current studies have confirmed that liver diseases are closely related to intestinal microorganisms; however, those studies have mainly concentrated on bacteria. Although the proportion of intestinal microorganisms accounted for by colonizing fungi is very small, these fungi do have a significant effect on the homeostasis of the intestinal microecosystem. In this paper, the characteristics of intestinal fungi in patients with chronic liver diseases such as alcoholic liver disease, nonalcoholic fatty liver disease and cirrhosis are summarized, and the effects of intestinal fungi and their metabolites are analyzed and discussed. It is important to realize that not only bacteria but also intestinal fungi play important roles in liver diseases.
Collapse
Affiliation(s)
- Ningning You
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lili Zhuo
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jingxin Zhou
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yu Song
- Department of Liver Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Onder S, Oz Y. In Vitro Effects of Farnesol Alone and in Combination with Antifungal Drugs Against Aspergillus Clinical Isolates. Med Mycol J 2021; 62:5-10. [PMID: 33642525 DOI: 10.3314/mmj.20-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Farnesol is an extracellular quorum-sensing molecule produced by Candida albicans. Farnesol is also a sesquiterpene alcohol existing in many herbal products and has various activity against fungal cells. We aimed to investigate the efficacy of farnesol alone and the contribution of farnesol on the activity of voriconazole and amphotericin B against Aspergillus clinical isolates in vitro. A total of 45 Aspergillus clinical isolates were used in this study. The MIC values of voriconazole, amphotericin B, and farnesol were determined using reference broth microdilution method. The interactions of farnesol with voriconazole and amphotericin B were investigated by the checkerboard method and evaluated based on the fractional inhibitor concentration index (FICI). The MIC ranges of farnesol, voriconazole, and amphotericin B were 1,500-6,000 μM, 0.125-1 μg/mL, and 0.125-0.5 μg/mL against Aspergillus fumigatus isolates, 3,000-12,000 μM, 0.125-0.5 μg/mL, and 0.25-2 μg/mL against Aspergillus flavus isolates, respectively. The most common interaction in combination tests was "no interaction," and synergistic interaction was not detected. The combinations of farnesol with voriconazole and amphotericin B had antagonistic activity against 38% and 27% of all isolates, respectively.We concluded that the responses of different fungal species against farnesol are variable, and different interactions may be observed when it is combined with different antifungals. Therefore, it should be noted that farnesol may have an adverse effect on some fungi or interact negatively with antifungals used in combination.
Collapse
Affiliation(s)
- Sukran Onder
- Eskisehir Osmangazi University Medical Faculty, Department of Microbiology, Division of Mycology
| | - Yasemin Oz
- Eskisehir Osmangazi University Medical Faculty, Department of Microbiology, Division of Mycology
| |
Collapse
|
8
|
Nettles R, Ricks KD, Koide RT. The Dynamics of Interacting Bacterial and Fungal Communities of the Mouse Colon Following Antibiotics. MICROBIAL ECOLOGY 2020; 80:573-592. [PMID: 32451559 DOI: 10.1007/s00248-020-01525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 05/25/2023]
Abstract
We tested two hypotheses concerning the dynamics of intestinal microbial communities of young mice following antibiotic-induced disturbance. The first is that disturbance of the bacterial community causes disturbance of the fungal community. Our results were consistent with that hypothesis. Antibiotics significantly altered bacterial community structure. Antibiotics also altered fungal community structure, significantly increasing the relative abundance of Candida lusitaniae, a known pathogen, while simultaneously significantly decreasing the relative abundances of several other common fungal species. The result was a temporary decrease in fungal diversity. Moreover, bacterial load was negatively correlated with the relative abundances of Candida lusitaniae and Candida parapsilosis, while it was positively correlated with the relative abundances of many other fungal species. Our second hypothesis is that control mice serve as a source of probiotics capable of invading intestines of mice with disturbed microbial communities and restoring pre-antibiotic bacterial and fungal communities. However, we found that control mice did not restore disturbed microbial communities. Instead, mice with disturbed microbial communities induced disturbance in control mice, consistent with the hypothesis that antibiotic-induced disturbance represents an alternate stable state that is easier to achieve than to correct. Our results indicate the occurrence of significant interactions among intestinal bacteria and fungi and suggest that the stimulation of certain bacterial groups may potentially be useful in countering the dominance of fungal pathogens such as Candida spp. However, the stability of disturbed microbial communities could complicate recovery.
Collapse
Affiliation(s)
- Rachel Nettles
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Currently: Kintai Therapeutics, 26 Landsdowne Street, Boston, MA, 02139, USA
| | - Kevin D Ricks
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Currently: Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
9
|
In Vitro Scolicidal Activity of the Sesquiterpenes Isofuranodiene, α-Bisabolol and Farnesol on Echinococcus granulosus Protoscoleces. Molecules 2020; 25:molecules25163593. [PMID: 32784679 PMCID: PMC7464821 DOI: 10.3390/molecules25163593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/13/2023] Open
Abstract
Cystic echinococcosis (CE) remains an important challenge both in humans and animals. There is no safe and suitable remedy for CE, so the discovery of new compounds with promising scolicidal effects, particularly from herbal sources, is of great importance for therapeutic uses in the treatment and prevention of CE reappearance. Sesquiterpenes are C15 organic compounds made up of three isoprene units and mostly occurring as fragrant components of essential oils. They are of economic importance for the cosmetic and pharmaceutical industry, and recently attracted the attention of the scientific community for their remarkable parasiticidal properties. In the present study, we have focused on three known sesquiterpenes, isofuranodiene (IFD), α-bisabolol (BSB), and farnesol (FOH), as important phytoconstituents of the essential oils of wild celery (Smyrnium olusatrum), chamomile (Matricaria chamomilla), and acacia farnese (Vachellia farnesiana), respectively. Protoscoleces were recovered from fertile hydatid cysts and were exposed to different concentrations of the three tested compounds for different exposure times. The viability of protoscoleces was confirmed by 0.1% eosin staining. Results of scolicidal activity evaluations showed that IFD possessed the best effect against Echinococcus granulosus protoscoleces (LC50 and LC90 values of 8.87 and 25.48 µg/mL, respectively), followed by BSB (LC50 of 103.2 µg/mL) and FOH (LC50 of 113.68 µg/mL). The overall toxicity of IFD differed significantly from those of FOH and BSB, while there was no significant difference in toxicity between the latter compounds (p > 0.05). The present study showed that IFD seems to be a promising scolicidal agent and can be further tested to become a candidate for CE treatment.
Collapse
|
10
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
11
|
Han Y, Yang T, Xu G, Li L, Liu J. Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122256. [PMID: 32062341 DOI: 10.1016/j.jhazmat.2020.122256] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 05/13/2023]
Abstract
Bacteria and fungi are abundant and ubiquitous in bioaerosols from wastewater treatment plants (WWTPs). However, the specificity and interactions of bioaerosol microorganism, particularly of potential pathogens, from WWTPs are still poorly understood. In this study, we investigated 9 full-scale WWTPs in different areas of China for 3 years, and found microbial variations in bioaerosols to be associated with regions, seasons, and processes. Relative humidity, total suspended particulates, wind speed, temperature, total organic carbon, NH4+, Cl- and Ca2+ were the major factors influencing this variation, and meteorological factors were more strongly associated with the variation than chemical composition. In total, 95 and 22 potential bacterial and fungal pathogens were detected in bioaerosols, respectively. The linear discriminant analysis effect size method suggested that Serratia, Yersinia, Klebsiella, and Bacillus were discriminative genera in bioaerosols on the whole, and were also hub niches in the interactions within potential bacterial pathogens, based on network analysis. Strong co-occurrences such as Serratia-Bacillus and Staphylococcus-Candida, and co-exclusions such as Rhodotorula-Cladosporium and Pseudomonas-Candida, were found within and between potential bacterial and fungal pathogens in bioaerosols from WWTPs. This study furthers understanding of the biology and ecology of bioaerosols from WWTPs, and offers a theoretical basis for determining bioaerosol control.
Collapse
Affiliation(s)
- Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Tang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Guangsu Xu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| |
Collapse
|
12
|
Erkaya S, Arslan NP, Orak T, Esim N, Taskin M. Evaluation of tyrosol and farnesol as inducer in pigment production by Monascus purpureus ATCC16365. J Basic Microbiol 2020; 60:669-678. [PMID: 32449551 DOI: 10.1002/jobm.202000037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
This study focused on investigating the effect of exogenously applied two quorum sensing molecules (tyrosol and farnesol) on the synthesis of bioactive metabolites (pigments, lactic acid, ethanol, and citric acid) in Monascus purpureus ATCC16365. None of the tested concentrations (62.5, 125, 250, and 500 µl/L) of farnesol affected the synthesis of metabolites as well as cell growth. As with farnesol application, none of the tested concentrations (3.45, 6.9, 13.8, and 27.6 mg/L) of tyrosol caused a significant change in the synthesis of lactic acid and citric acid as well as cell growth. Conversely, all of the tested concentrations of tyrosol increased pigment synthesis but reduced ethanol synthesis, compared with the control. Maximum increases (3.16-, 2.68-, and 2.87-fold increase, respectively) in yellow, orange, and red pigment production were achieved, especially when 6.9-mg/L tyrosol was added to the culture on day 3. On the contrary, 6.9-mg/L tyrosol reduced the content of citrinin by approximately 51.5%. This is the first report on the effect of tyrosol and farnesol on the synthesis of Monascus metabolites. Due to potential properties, such as low price, nonhuman toxicity, promotion of pigment synthesis, and reduction in citrinin synthesis, tyrosol can be used as a novel inducer in the fermentative production of Monascus pigments.
Collapse
Affiliation(s)
- Seval Erkaya
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | | | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Mogilnicka I, Ufnal M. Gut Mycobiota and Fungal Metabolites in Human Homeostasis. Curr Drug Targets 2020; 20:232-240. [PMID: 30047327 DOI: 10.2174/1389450119666180724125020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/13/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests that microbiota play an important role in host's homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites. METHODS We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis. RESULTS Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases. CONCLUSION The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Xu M, Wu H, Shen P, Jiang X, Chen X, Lin J, Huang J, Qi F. Enhancement of NADPH availability for coproduction of coenzyme Q 10 and farnesol from Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 2020; 47:263-274. [PMID: 31993848 DOI: 10.1007/s10295-020-02261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Coenzyme Q10 (CoQ10)-an essential cofactor in the respiratory electron transport chain-has important pharmaceutical and healthcare applications. Farnesol (FOH)-an acyclic sesquiterpene alcohol-has garnered interest owing to its valuable clinical and medical benefits. Here, the coproduction of CoQ10 and FOH in Rhodobacter sphaeroides GY-2 was greatly improved through the enhancement of intracellular NADPH availability. Transcription of pgi, gdhA, and nuocd was, respectively, inhibited using RNA interference to reduce intracellular NAD(P)H consumption. Moreover, zwf, gnd, and zwf + gnd were overexpressed to enhance the pentose phosphate pathway, resulting in improved NADPH availability in most metabolically engineered R. sphaeroides strains. RSg-pgi with RNAi of pgi combined with overexpression of gnd produced 55.05 mg/L FOH that is twofold higher than the parental strain GY-2, and 185.5 mg/L CoQ10 can be coproduced at the same time. In conclusion, improved carbon flux can be redirected toward NADPH-dependent biosynthesis through the enhancement of NADPH availability.
Collapse
Affiliation(s)
- Man Xu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Hongxuan Wu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Peijie Shen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xianzhang Jiang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Xueduan Chen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jinxin Lin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and Provincial University Engineering Research Center of Industrial Biocatalysis, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
15
|
Kischkel B, Souza GK, Chiavelli LUR, Pomini AM, Svidzinski TIE, Negri M. The ability of farnesol to prevent adhesion and disrupt Fusarium keratoplasticum biofilm. Appl Microbiol Biotechnol 2019; 104:377-389. [PMID: 31768611 DOI: 10.1007/s00253-019-10233-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/26/2023]
Abstract
A biofilm is represented by a community of microorganisms capable of adhering to a surface and producing substances that envelop the cells, forming an extracellular matrix. The extracellular matrix is responsible for protecting microorganisms against environmental stress, hosts the immune system and confers resistance to antimicrobials. Fusarium keratoplasticum is a common species of FSSC (Fusarium solani species complex) associated with human infections, being the most prevalent species related to biofilm formation in hospital water systems and internal pipelines. With this in mind, this study aimed to characterise the biofilm formed by the fungus F. keratoplasticum and to evaluate the effects of farnesol, a fungal quorum sensing (QS) molecule, on the preformed biofilm and also during its formation at different times (adhesion and 24, 48 and 72 h). F. keratoplasticum is able to adhere to an abiotic surface and form a dense biofilm in 72 h, with increased total biomass and matrix modulation with the presence of extracellular DNA, RNA, polysaccharides and proteins. Farnesol exhibited important anti-biofilm activity, causing the destruction of hyphae and the extracellular matrix in preformed biofilm and preventing the adhesion of conidia, filamentation and the formation of biofilm. Few studies have characterised the formation of biofilm by filamentous fungi. Our findings suggest that farnesol acts efficiently on F. keratoplasticum biofilm since this molecule is capable of breaking the extracellular matrix, thereby disarranging the biofilm.
Collapse
Affiliation(s)
- Brenda Kischkel
- Clinical Analysis Department, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Gredson Keiff Souza
- Department of Chemistry, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Armando Mateus Pomini
- Department of Chemistry, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Melyssa Negri
- Clinical Analysis Department, State University of Maringá, Avenue Colombo, 5790, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
16
|
Chen X, Jiang X, Xu M, Zhang M, Huang R, Huang J, Qi F. Co-production of farnesol and coenzyme Q 10 from metabolically engineered Rhodobacter sphaeroides. Microb Cell Fact 2019; 18:98. [PMID: 31151455 PMCID: PMC6544981 DOI: 10.1186/s12934-019-1145-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Farnesol is an acyclic sesquiterpene alcohol present in the essential oils of various plants in nature. It has been reported to be valuable in medical applications, such as alleviation of allergic asthma, gliosis, and edema as well as anti-cancerous and anti-inflammatory effects. Coenzyme Q10 (CoQ10), an essential cofactor in the aerobic respiratory electron transport chain, has attracted growing interest owing to its clinical benefits and important applications in the pharmaceutical, food, and health industries. In this work, co-production of (E,E)-farnesol (FOH) and CoQ10 was achieved by combining 3 different exogenous terpenes or sesquiterpene synthase with the RNA interference of psy (responsible for phytoene synthesis in Rhodobacter sphaeroides GY-2). RESULTS FOH production was significantly increased by overexpressing exogenous terpene synthase (TPS), phosphatidylglycerophosphatase B (PgpB), and sesquiterpene synthase (ATPS), as well as RNAi-mediated silencing of psy coding phytoene synthase (PSY) in R. sphaeroides strains. Rs-TPS, Rs-ATPS, and Rs-PgpB respectively produced 68.2%, 43.4%, and 21.9% higher FOH titers than that of the control strain. Interestingly, the CoQ10 production of these 3 recombinant R. sphaeroides strains was exactly opposite to that of FOH. However, CoQ10 production was almost unaffected in R. sphaeroides strains modified by psy RNA interference. The highest FOH production of 40.45 mg/L, which was twice as high as that of the control, was obtained from the TPS-PSYi strain, where the exogenous TPS was combined with the weakening of the phytoene synthesis pathway via psy RNA interference. CoQ10 production in TPS-PSYi, ATPS-PSYi, and PgpB-PSYi was decreased and lower than that of the control strain. CONCLUSIONS The original flux that contributed to phytoene synthesis was effectively redirected to provide precursors toward FOH or CoQ10 synthesis via psy RNA interference, which led to weakened carotenoid synthesis. The improved flux that was originally involved in CoQ10 production and phytoene synthesis was redirected toward FOH synthesis via metabolic modification. This is the first reported instance of FOH and CoQ10 co-production in R. sphaeroides using a metabolic engineering strategy.
Collapse
Affiliation(s)
- Xueduan Chen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xianzhang Jiang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Man Xu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Mingliang Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Runye Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China. .,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
17
|
Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y. Fungal Quorum-Sensing Molecules and Inhibitors with Potential Antifungal Activity: A Review. Molecules 2019; 24:E1950. [PMID: 31117232 PMCID: PMC6571750 DOI: 10.3390/molecules24101950] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
The theory of persisting independent and isolated regarding microorganisms is no longer accepted. To survive and reproduce they have developed several communication platforms within the cells which facilitates them to adapt the surrounding environmental changes. This cell-to-cell communication is termed as quorum sensing; it relies upon the cell density and can stimulate several traits of microbes including biofilm formation, competence, and virulence factors secretion. Initially, this sophisticated mode of communication was discovered in bacteria; later, it was also confirmed in eukaryotes (fungi). As a consequence, many quorum-sensing molecules and inhibitors have been identified and characterized in various fungal species. In this review article, we will primarily focus on fungal quorum-sensing molecules and the production of inhibitors from fungal species with potential applications for combating fungal infections.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xin Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guannan Meng
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ya Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650202, China.
| |
Collapse
|
18
|
Passera A, Marcolungo L, Casati P, Brasca M, Quaglino F, Cantaloni C, Delledonne M. Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on endophytic life style and antifungal activity. PLoS One 2018; 13:e0189993. [PMID: 29351296 PMCID: PMC5774705 DOI: 10.1371/journal.pone.0189993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023] Open
Abstract
Bacteria of the Paenibacillus genus are becoming important in many fields of science, including agriculture, for their positive effects on the health of plants. However, there are little information available on this genus compared to other bacteria (such as Bacillus or Pseudomonas), especially when considering genomic information. Sequencing the genomes of plant-beneficial bacteria is a crucial step to identify the genetic elements underlying the adaptation to life inside a plant host and, in particular, which of these features determine the differences between a helpful microorganism and a pathogenic one. In this study, we have characterized the genome of Paenibacillus pasadenensis, strain R16, recently investigated for its antifungal activities and plant-associated features. An hybrid assembly approach was used integrating the very precise reads obtained by Illumina technology and long fragments acquired with Oxford Nanopore Technology (ONT) sequencing. De novo genome assembly based solely on Illumina reads generated a relatively fragmented assembly of 5.72 Mbp in 99 ungapped sequences with an N50 length of 544 Kbp; hybrid assembly, integrating Illumina and ONT reads, improved the assembly quality, generating a genome of 5.75 Mbp, organized in 6 contigs with an N50 length of 3.4 Mbp. Annotation of the latter genome identified 4987 coding sequences, of which 1610 are hypothetical proteins. Enrichment analysis identified pathways of particular interest for the endophyte biology, including the chitin-utilization pathway and the incomplete siderophore pathway which hints at siderophore parasitism. In addition the analysis led to the identification of genes for the production of terpenes, as for example farnesol, that was hypothesized as the main antifungal molecule produced by the strain. The functional analysis on the genome confirmed several plant-associated, plant-growth promotion, and biocontrol traits of strain R16, thus adding insights in the genetic bases of these complex features, and of the Paenibacillus genus in general.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Luca Marcolungo
- Department of Biotechnologies, Università degli Studi di Verona, Verona, Italy
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Chiara Cantaloni
- Department of Biotechnologies, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnologies, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
19
|
Kim SR, Yeon KM. Quorum Sensing as Language of Chemical Signals. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Witherden EA, Shoaie S, Hall RA, Moyes DL. The Human Mucosal Mycobiome and Fungal Community Interactions. J Fungi (Basel) 2017; 3:jof3040056. [PMID: 29371572 PMCID: PMC5753158 DOI: 10.3390/jof3040056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
With the advent of high-throughput sequencing techniques, the astonishing extent and complexity of the microbial communities that reside within and upon us has begun to become clear. Moreover, with advances in computing and modelling methods, we are now beginning to grasp just how dynamic our interactions with these communities are. The diversity of both these communities and their interactions—both within the community and with us—are dependent on a multitude of factors, both microbial- and host-mediated. Importantly, it is becoming clear that shifts in the makeup of these communities, or their responses, are linked to different disease states. Although much of the work to define these interactions and links has been investigating bacterial communities, recently there has been significant growth in the body of knowledge, indicating that shifts in the host fungal communities (mycobiome) are also intimately linked to disease status. In this review, we will explore these associations, along with the interactions between fungal communities and their human and microbial habitat, and discuss the future applications of systems biology in determining their role in disease status.
Collapse
Affiliation(s)
- Elizabeth A Witherden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
| |
Collapse
|
21
|
Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 2017; 44:230-243. [DOI: 10.1080/1040841x.2017.1337711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ines Leonhardt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
22
|
Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS. Fungal Biofilms and Polymicrobial Diseases. J Fungi (Basel) 2017; 3:jof3020022. [PMID: 29371540 PMCID: PMC5715925 DOI: 10.3390/jof3020022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell–cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Janaina C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba SP 13414-018, Brazil.
| | - Nayla S Pitangui
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Haroldo C de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Liliana Scorzoni
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Kaila P Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Wanessa C M A Melo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mônica Y Marcelino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Jaqueline D Braz
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| |
Collapse
|
23
|
Ząbek A, Junka A, Szymczyk P, Wojtowicz W, Klimek-Ochab M, Młynarz P. Metabolomics analysis of fungal biofilm development and of arachidonic acid-based quorum sensing mechanism. J Basic Microbiol 2017; 57:428-439. [DOI: 10.1002/jobm.201600636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Ząbek
- Department of Chemistry; Wroclaw University of Technology; 50-370 Wrocław Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology; Wroclaw Medical University; 50-556 Wrocław Poland
| | - Patrycja Szymczyk
- Centre of Advance Manufacturing Technologies; Wroclaw University of Technology; 50-370 Wrocław Poland
| | - Wojciech Wojtowicz
- Department of Chemistry; Wroclaw University of Technology; 50-370 Wrocław Poland
| | | | - Piotr Młynarz
- Department of Chemistry; Wroclaw University of Technology; 50-370 Wrocław Poland
| |
Collapse
|
24
|
Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungusAspergillus flavus. Mycologia 2017; 106:881-8. [PMID: 24895430 DOI: 10.3852/13-292] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
25
|
Cotoras M, Castro P, Vivanco H, Melo R, Mendoza L. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungusBotrytis cinerea. Mycologia 2017; 105:28-33. [DOI: 10.3852/12-012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milena Cotoras
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Paulo Castro
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Herman Vivanco
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Ricardo Melo
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Leonora Mendoza
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
26
|
Hu J, Wang F, Ma A, Zhuang G, Liu Y, Lu J, Guo C, Liu C. Farnesol stimulates laccase production in
Trametes versicolor. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jianhua Hu
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
| | - Feng Wang
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
| | - Anzhou Ma
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing P. R. China
| | - Guoqiang Zhuang
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing P. R. China
| | - Ying Liu
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
- Jiangsu Jiangu Chemical Co. Ltd Suqian Jiangsu Province P. R. China
| | - Jingsong Lu
- Jiangsu Jiangu Chemical Co. Ltd Suqian Jiangsu Province P. R. China
| | - Chen Guo
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
| | - Chunzhao Liu
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
- Jiangsu Jiangu Chemical Co. Ltd Suqian Jiangsu Province P. R. China
| |
Collapse
|
27
|
Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. J Basic Microbiol 2016; 56:440-7. [PMID: 26972663 DOI: 10.1002/jobm.201500759] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakorn Pathom, Thailand
| |
Collapse
|
28
|
Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 2015. [DOI: 10.1007/s13199-015-0350-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Xu ZF, Wang BL, Sun HK, Yan N, Zeng ZJ, Zhang KQ, Niu XM. High Trap Formation and Low Metabolite Production by Disruption of the Polyketide Synthase Gene Involved in the Biosynthesis of Arthrosporols from Nematode-Trapping Fungus Arthrobotrys oligospora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9076-9082. [PMID: 26422178 DOI: 10.1021/acs.jafc.5b04244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A group of morphology regulatory arthrosporol metabolites have been recently characterized from carnivorous fungus Arthrobotrys oligospora that can develop trapping networks to capture their prey. A combination of genetic manipulation and chemical analyses was applied to characterize the function of one polyketide synthase (PKS) gene AOL_s00215g283 in A. oligospora, which was putatively involved in the production of 6-methylsalicylic acid. High-performance liquid chromatography analysis showed that the disruption of the PKS gene not only led to the total loss of the arthrosporol A but also resulted in significant reduction in the production of secondary metabolites in the cultural broth of the mutant ΔAOL_s00215g283 strain. Interestingly, the mutant strain displayed significant increases in the trap formation and the nematicidal activity by 10 and 2 times, respectively, higher than the wild-type strain. These findings revealed a pathogenicity-related biosynthetic gene of this agriculturally important biological agent and have implications for establishment of efficient fungal biocontrol agents.
Collapse
Affiliation(s)
- Zi-Fei Xu
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| | - Bai-Le Wang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| | - Hong-Kai Sun
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| | - Ni Yan
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| | - Zhi-Jun Zeng
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| | - Xue-Mei Niu
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan 650091, People's Republic of China
| |
Collapse
|
30
|
Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans--The role of a putative dehydrin. J Proteomics 2012; 75:4038-49. [PMID: 22634043 DOI: 10.1016/j.jprot.2012.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/04/2012] [Accepted: 05/13/2012] [Indexed: 12/29/2022]
Abstract
The isoprenoid alcohol farnesol represents a quorum-sensing molecule in pathogenic yeasts, but was also shown to inhibit the growth of many filamentous fungi. In order to gain a deeper insight into the antifungal activity of farnesol, we performed 2D-differential gel electrophoretic analysis (2D-DIGE) of Aspergillus nidulans exposed to farnesol. We observed an increased abundance of antioxidative enzymes and proteins involved in protein folding and the ubiquitin-mediated protein degradation. A striking finding was the strong up-regulation of a dehydrin-like protein (DlpA). Expression analyses suggested the involvement of DlpA in the cellular response to oxidative, osmotic and cold stress. In line with these data, we demonstrated that dlpA expression was regulated by the MAP kinase SakA/HogA. The generation of both a dlpA Tet(on) antisense RNA-producing A. nidulans strain (dlpA-inv) and a ΔdlpA deletion mutant indicated a role of DlpA in conidiation and stress resistance of dormant conidia against heat and ROS. Furthermore, the production of the secondary metabolite sterigmatocystin was absent in both strains dlpA-inv and ΔdlpA. Our results demonstrate the complexity of the farnesol-mediated stress response in A. nidulans and describe a farnesol-inducible dehydrin-like protein that contributes to the high tolerance of resting conidia against oxidative and heat stress.
Collapse
|
31
|
Abstract
Quorum sensing (QS) is a mechanism of microbial communication dependent on cell density that can regulate several behaviors in bacteria such as secretion of virulence factors, biofilm formation, competence and bioluminescence. The existence of fungal QS systems was revealed ten years ago after the discovery that farnesol controls filamentation in the pathogenic polymorphic fungus Candida albicans. In the past decade, farnesol has been shown to play multiple roles in C. albicans physiology as a signaling molecule and inducing detrimental effects on host cells and other microbes. In addition to farnesol, the aromatic alcohol tyrosol was also found to be a C. albicans QS molecule (QSM) controlling growth, morphogenesis and biofilm formation. In Saccharomyces cerevisiae, two other aromatic alcohols, phenylethanol and tryptophol were found to be QSMs regulating morphogenesis during nitrogen starvation conditions. Additionally, population density-dependent behaviors that resemble QS have been described in several other fungal species. Although fungal QS research is still in its infancy, its discovery has changed our views about the fungal kingdom and could eventually lead to the development of new antifungal therapeutics.
Collapse
Affiliation(s)
- Patrícia Albuquerque
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | |
Collapse
|
32
|
Leeder AC, Palma-Guerrero J, Glass NL. The social network: deciphering fungal language. Nat Rev Microbiol 2011; 9:440-51. [PMID: 21572459 DOI: 10.1038/nrmicro2580] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been estimated that up to one quarter of the world's biomass is of fungal origin, comprising approximately 1.5 million species. In order to interact with one another and respond to environmental cues, fungi communicate with their own chemical languages using a sophisticated series of extracellular signals and cellular responses. A new appreciation for the linkage between these chemical languages and developmental processes in fungi has renewed interest in these signalling molecules, which can now be studied using post-genomic resources. In this Review, we focus on the molecules that are secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological function.
Collapse
Affiliation(s)
- Abigail C Leeder
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
33
|
|
34
|
Dichtl K, Ebel F, Dirr F, Routier FH, Heesemann J, Wagener J. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. Mol Microbiol 2010; 76:1191-204. [DOI: 10.1111/j.1365-2958.2010.07170.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Langford ML, Atkin AL, Nickerson KW. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol 2010; 4:1353-62. [PMID: 19995193 DOI: 10.2217/fmb.09.98] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Farnesol is a quorum-sensing molecule produced by Candida albicans that has many effects, including filament inhibition of this polymorphic fungus. In the past 9 years, the effect of farnesol on C. albicans has been reported in nearly 160 publications, with early work examining its influence on morphology. This article presents an update on the literature published since 2006, focusing on points that still need to be resolved as well as identifying possible artifacts that might interfere with this goal. In addition, the regulation of C. albicans farnesol production, C. albicans' resistance/sensitivity to farnesol and the influence of farnesol on other species as well as the host are discussed. It is intriguing that we still do not know precisely how farnesol works, but interference with the Ras1-cAMP pathway is part of the story.
Collapse
Affiliation(s)
- Melanie L Langford
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0666, USA.
| | | | | |
Collapse
|
36
|
Abstract
Lipid signaling in pathogenic fungi has been studied to determine the role of these pathways in fungal biology and human infections. Owing to their unique nature, they may represent targets for future antifungal treatments. Farnesol signaling was characterized as a quorum-sensing molecule, with exposure inhibiting filamentation. Research has shown involvement in both the Ras1-adenylate cyclase and MAP kinase pathways. In species of Aspergillus, farnesol exposure induces apoptosis-like changes and alterations in ergosterol synthesis. Eicosanoid production has been characterized in several pathogenic fungi, utilizing host lipids in some cases. The role in virulence is not known yet, but it may involve modulation of host lipids. Sphingolipid signaling pathways seem to center around the production of diacylglycerol in the formation of inositol phosphorylceramide. Diacylglycerol activates both melanin production through laccase and transcription of antiphagocytic protein, both of which are involved in virulence.
Collapse
Affiliation(s)
- Ryan Rhome
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
37
|
Effect of farnesol on morphogenesis in the fungal pathogenPenicillium expansum. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|