1
|
Akinola OT, Dahunsi SO, Okoh A. Draft genome sequence of multi-drug resistant Klebsiella quasipneumoniae subsp. similipneumoniae isolated from a teaching hospital wastewater in South West, Nigeria. Microbiol Resour Announc 2024; 13:e0072723. [PMID: 38270434 PMCID: PMC10868183 DOI: 10.1128/mra.00727-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
This broadcast is about the whole genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae (ST 1422) isolated from a teaching hospital wastewater in South West, Nigeria, in May 2022. This data set compiles information on the DNA size (5,332,183 bp) and GC content (57.91%) in its genome.
Collapse
Affiliation(s)
- Omowumi T. Akinola
- Microbiology Programme, College of Agriculture, Engineering, and Science, Bowen University Iwo, Iwo, Osun, Nigeria
| | - Samuel O. Dahunsi
- Microbiology Programme, College of Agriculture, Engineering, and Science, Bowen University Iwo, Iwo, Osun, Nigeria
- The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts, USA
| | - Anthony Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
2
|
El-Mohsnawy E, El-Shaer A, El-Gharabawy F, El-Hawary EE, El-Shanshoury AERR. Assignment of the antibacterial potential of Ag 2O/ZnO nanocomposite against MDR bacteria Proteus mirabilis and Salmonella typhi isolated from bone marrow transplant patients. Braz J Microbiol 2023; 54:2807-2815. [PMID: 37801221 PMCID: PMC10689719 DOI: 10.1007/s42770-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
The rate of infectious diseases started to be one of the major mortality agents in the healthcare sector. Exposed to increased bacterial infection by antibiotic-resistant bacteria became one of the complications that occurred for bone marrow transplant patients. Nanotechnology may provide clinicians and patients with the key to overcoming multidrug-resistant bacteria. Therefore, this study was conducted to clarify the prevalence of MDR bacteria in bone marrow transplant recipients and the use of Ag2O/ZnO nanocomposites to treat participants of diarrhea brought on by MDR bacteria following bone marrow transplantation (BMT). Present results show that pathogenic bacteria were present in 100 of 195 stool samples from individuals who had diarrhea. Phenotypic, biochemical, and molecular analysis clarify that Proteus mirabilis and Salmonella typhi were detected in 21 and 25 samples, respectively. Successful synthesis of Ag2O/ZnO nanocomposites with a particle enables to inhibition of both pathogens. The maximum inhibitory impact was seen on Salmonella typhi. At low doses (10-5 g/l), it prevented the growth by 53.4%, while at higher concentrations (10-1 g/l), Salmonella typhi was inhibited by 95.5%. Regarding Proteus mirabilis, at (10-5 g/l) Ag2O/ZnO, it was inhabited by 78.7%, but at higher concentrations (10-1 g/l), it was inhibited the growth by 94.6%. Ag2O/ZnO nanocomposite was therefore found to be the most effective therapy for MDR-isolated bacteria and offered promise for the treatment of MDR bacterial infections that cause diarrhea.
Collapse
Affiliation(s)
- Eithar El-Mohsnawy
- Microbial Biotechnology Unit, Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Abdelhamid El-Shaer
- Nanotechnology Unit, Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Fadia El-Gharabawy
- Microbial Biotechnology Unit, Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eslam E El-Hawary
- Pediatric Hematology and Oncology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | | |
Collapse
|
3
|
Yang M, Zhou X, Bao Y, Zhang Y, Liu B, Gan L, Tao W, Tuo J, Gong H. Comprehensive Genomic Analysis Reveals Extensive Diversity of Type I and Type IV Secretion Systems in Klebsiella pneumoniae. Curr Microbiol 2023; 80:270. [PMID: 37402963 DOI: 10.1007/s00284-023-03362-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
The diversity and distribution of secretion systems in Klebsiella pneumoniae are unclear. In this study, the six common secretion systems (T1SS-T6SS) were comprehensively investigated in the genomes of 952 K. pneumoniae strains. T1SS, T2SS, type T subtype of T4SS, T5SS, and subtype T6SSi of T6SS were found. The findings indicated fewer types of secretion systems in K. pneumoniae than reported in Enterobacteriaceae, such as Escherichia coli. One conserved T2SS, one conserved T5SS, and two conserved T6SS were detected in more than 90% of the strains. In contrast, the strains displayed extensive diversity of T1SS and T4SS. Notably, T1SS and T4SS were enriched in the hypervirulent and classical multidrug resistance pathotypes of K. pneumoniae, respectively. The results expand the epidemiological knowledge of the virulence and transmissibility of pathogenic K. pneumoniae and contribute to identify the potential strains for safe applications.
Collapse
Affiliation(s)
- Menglei Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiaoqin Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yangyang Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Boya Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Luxi Gan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Weihua Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jinyou Tuo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
4
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
5
|
Elsharkawy MM, Alotibi FO, Al-Askar AA, Adnan M, Kamran M, Abdelkhalek A, Behiry SI, Saleem MH, Ahmad AA, Khedr AA. Systemic Resistance Induction of Potato and Tobacco Plants against Potato Virus Y by Klebsiella oxytoca. Life (Basel) 2022; 12:life12101521. [PMID: 36294956 PMCID: PMC9605255 DOI: 10.3390/life12101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Klebsiella oxytoca, as a type of plant growth-promoting rhizobacteria (PGPR), was studied with regards to promoting plant growth and inducing plant systemic resistance against Potato Virus Y (PVY). The results of greenhouse experiments with tobacco and potato plants demonstrated that treatments with the Klebsiella oxytoca and biochar significantly enhanced the growth, while clearly lowering the disease severity and concentration of PVY. An RT-PCR analysis of the defense genes in the tobacco and potato treated with the Klebsiella oxytoca and biochar revealed an association with enhancing the systemic resistance of tobacco and potato to PVY. Klebsiella oxytoca and biochar may be considered valuable options to control PVY in potato and other Solanaceae crops. Abstract Potato Virus Y (PVY) is a serious potato disease that may significantly decrease potato production. To suppress potato virus infection, several measures have been undertaken. The utilization of plant growth-promoting rhizobacteria is one of these methods. Biochar soil treatment is believed to provide plants with a number of advantages, including increased plant growth and the development of systemic resistance to a variety of plant diseases. The goal of this research was to see whether adding biochar and Klebsiella oxytoca to the soil might cause PVY resistance and enhance the involved mechanisms in PVY resistance. Potato and tobacco seedlings treated with Klebsiella oxytoca and biochar exhibited the same impact of significant symptom reduction, with complete negative ELISA findings, supporting the antiviral activity of K. oxytoca and biochar. Furthermore, owing to the connection between the ISR implicated substrates, significant amounts of polyphenol oxidase, catalase, and superoxide dismutase were observed in treated plants, with the same behavior as defense genes expression levels. It may be a step forward in the development of biochar and K. oxytoca as potential environmentally friendly disease control strategies against PVY.
Collapse
Affiliation(s)
- Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: ; Tel.: +20-01065772170
| | - Fatimah O. Alotibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Adnan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, Alexandria 21934, Egypt
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdelmonim Ali Ahmad
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| | - Amr Ahmed Khedr
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
6
|
Kim B, Park AR, Song CW, Song H, Kim JC. Biological Control Efficacy and Action Mechanism of Klebsiella pneumoniae JCK-2201 Producing Meso-2,3-Butanediol Against Tomato Bacterial Wilt. Front Microbiol 2022; 13:914589. [PMID: 35910601 PMCID: PMC9333516 DOI: 10.3389/fmicb.2022.914589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a fatal disease that affects the production of tomatoes and many other crops worldwide. As an effective strategy to manage bacterial wilt, biological control agents using plant growth-promoting rhizobacteria (PGPR) are being developed. In this study, we screened 2,3-butanediol (BDO)-producing PGPR to control tomato bacterial wilt and investigated the action mechanism of the disease control agent. Of the 943 strains isolated from soil, Klebsiella pneumoniae strain JCK-2201 produced the highest concentration of 2,3-BDO. The culture broth of K. pneumoniae JCK-2201 did not show any direct activity on R. solanacearum in vitro, but a 100-fold dilution effectively controlled tomato bacterial wilt with a control value of 77% in vivo. Fermentation utilizing K. pneumoniae JCK-2201 was optimized to produce 48 g/L of meso-2,3-BDO, which is 50% of the sucrose conversion efficiency. In addition, the control efficacy and mechanism of meso-2,3-BDO produced by JCK-2201 in tomato bacterial wilt were determined by comparative analysis with Bacillus licheniformis DSM13 producing meso-2,3-BDO and B. licheniformis DSM13 ΔalsS that did not produce 2,3-BDO, as the step of converting pyruvate to α-acetolactate was omitted. Tomato seedlings treated with the K. pneumoniae JCK-2201 (500-fold dilution) and B. licheniformis DSM13 (100-fold dilution) culture broth produced meso-2,3-BDO that significantly reduced R. solanacearum-induced disease severity with control values of 55% and 63%, respectively. The formulated meso-2,3-BDO 9% soluble concentrate (SL; 1,000-fold dilution) showed 87% control against tomato bacterial wilt in the field condition. Klebsiella pneumoniae JCK-2201 and B. licheniformis DSM13 treatment induced the expression of plant defense marker genes, such as LePR1, LePR2, LePR5, LePR3, and PI-II, in the salicylic acid and jasmonic acid signaling pathways at 4 days after inoculation. These results show that 2,3-BDO-producing bacteria and 2,3-BDO are potential biological control agents that act through induction of resistance for controlling tomato bacterial wilt.
Collapse
Affiliation(s)
- Bora Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Chan Woo Song
- Research and Department Center, GS Caltex Corporation, Daejeon, South Korea
| | - Hyohak Song
- Research and Department Center, GS Caltex Corporation, Daejeon, South Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
- *Correspondence: Jin-Cheol Kim,
| |
Collapse
|
7
|
Nonogaki R, Iijima A, Kawamura K, Kayama S, Sugai M, Yagi T, Arakawa Y, Doi Y, Suzuki M. PCR-based ORF typing of Klebsiella pneumoniae for rapid identification of global clones and transmission events. J Appl Microbiol 2022; 133:2050-2062. [PMID: 35797348 DOI: 10.1111/jam.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
AIMS Klebsiella pneumoniae is a major cause of healthcare-associated infections. In this study, we aimed to develop a rapid and simple genotyping method that can characterize strains causing nosocomial infections. METHODS AND RESULTS The PCR-based open reading frame (ORF) typing (POT) method consists of two multiplex PCR reactions which were designed to detect 25 ORFs specific to bacterial genetic lineages, species, antimicrobial resistant genes (blaCTX-M group-1 , blaCTX-M group-9 , blaIMP and blaKPC ), a capsular K1-specific gene, and a virulence factor gene (rmpA/A2). The electrophoresis results are then digitized. A total of 192 strains (136 clinical and 8 reference strains of K. pneumoniae, 33 clinical and 1 reference strains of K. variicola, and 14 clinical strains of K. quasipneumoniae) were classified into 95, 26, and 11 POT values, respectively. The distribution patterns of ORFs among K. pneumoniae correlated well with multilocus sequence typing (MLST). Furthermore, closely related species could be distinguished and key antimicrobial resistance and hypervirulence genes were identified as part of POT. CONCLUSIONS The POT method was developed and validated for K. pneumoniae. In comparison to MLST, the POT method is a rapid and easy genotyping method for monitoring transmission events by K. pneumoniae in clinical microbiology laboratories. SIGNIFICANCE AND IMPACT OF THE STUDY The POT method supplies clear and informative molecular typing results for K. pneumoniae. The method would facilitate molecular epidemiological analysis in infection control and hospital epidemiology investigations.
Collapse
Affiliation(s)
- Rina Nonogaki
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Anna Iijima
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kumiko Kawamura
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan.,Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
8
|
Khumairah FH, Setiawati MR, Fitriatin BN, Simarmata T, Alfaraj S, Ansari MJ, Enshasy HAE, Sayyed RZ, Najafi S. Halotolerant Plant Growth-Promoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Front Microbiol 2022; 13:905210. [PMID: 35770168 PMCID: PMC9236307 DOI: 10.3389/fmicb.2022.905210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
Salinity is one of the most damaging abiotic stresses due to climate change impacts that affect the growth and yield of crops, especially in lowland rice fields and coastal areas. This research aimed to isolate potential halotolerant plant growth-promoting rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants to improve rice growth under salinity stress conditions. Bioassay using rice seedlings was performed in a randomized block design consisting of 16 treatments (control and 15 bacterial isolates) with three replications. Results revealed that isolates S3, S5, and S6 gave higher shoot height, root length, and plant dry weight compared with control (without isolates). Based on molecular characteristics, isolates S3 and S5 were identified as Pseudomonas stutzeri and Klebsiella pneumonia. These isolates were able to promote rice growth under salinity stress conditions as halotolerant plant growth-promoting rhizobacteria. These three potent isolates were found to produce indole-3-acetic acid and nitrogenase.
Collapse
Affiliation(s)
- Fiqriah Hanum Khumairah
- Department of Soil Science, University of Padjadjaran, Jatinangor, Indonesia
- Department of Forestry Management, State Agricultural Polytechnic of Samarinda, Samarinda, Indonesia
| | | | | | - Tualar Simarmata
- Department of Soil Science, University of Padjadjaran, Jatinangor, Indonesia
| | - Saleh Alfaraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly, India
| | - Hesham A. El Enshasy
- Universiti Teknologi Malaysia (UTM), Institute of Bioproduct Development (IBD), Skudai, Malaysia
- Universiti Teknologi Malaysia (UTM), School of Chemical and Energy Engineering, Faculty of Engineering, Skudai, Malaysia
- City of Scientific Research and Technology Applications (SRTA), Alexandria, Egypt
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science, and STKVS Commerce College, Shahada, India
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States
| | - Solmaz Najafi
- Department of Field Crops, Faculty of Agriculture, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
9
|
Zhou X, Chu Q, Li S, Yang M, Bao Y, Zhang Y, Fu S, Gong H. A new and effective genes-based method for phylogenetic analysis of Klebsiella pneumoniae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105275. [PMID: 35339697 DOI: 10.1016/j.meegid.2022.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The exponential increase in the number of genomes deposited in public databases can help us gain a more holistic understanding of the phylogeny and epidemiology of Klebsiella pneumoniae. However, inferring the evolutionary relationships of K. pneumoniae based on big genomic data is challenging for existing methods. In this study, core genes of K. pneumoniae were determined and analysed in terms of differences in GC content, mutation rate, size, and potential functions. We then developed a stable genes-based method for big data analysis and compared it with existing methods. Our new method achieved a higher resolution phylogenetic analysis of K. pneumoniae. Using this genes-based method, we explored global phylogenetic relationships based on a public database of nearly 953 genomes. The results provide useful information to facilitate the phylogenetic and epidemiological analysis of K. pneumoniae, and the findings are relevant for security applications.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiyu Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Shengming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Menglei Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yangyang Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Giannattasio-Ferraz S, Ene A, Johnson G, Maskeri L, Oliveira AP, Banerjee S, Barbosa-Stancioli EF, Putonti C. Multidrug-Resistant Klebsiella variicola Isolated in the Urine of Healthy Bovine Heifers, a Potential Risk as an Emerging Human Pathogen. Appl Environ Microbiol 2022; 88:e0004422. [PMID: 35416681 PMCID: PMC9088279 DOI: 10.1128/aem.00044-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
Klebsiella variicola, a member of Klebsiella pneumoniae complex, is found to infect plants, insects, and animals and is considered an emerging pathogen in humans. While antibiotic resistance is often prevalent among K. variicola isolates from humans, this has not been thoroughly investigated in isolates from nonhuman sources. Prior evidence suggests that K. variicola can be transmitted between agricultural products as well as between animals, and the use of antibiotics in agriculture has increased antibiotic resistance in other emerging pathogens. Furthermore, in animals that contain K. variicola as a normal member of the rumen microbiota, the same bacteria can also cause infections, such as clinical mastitis in dairy cows. Here, we describe K. variicola UFMG-H9 and UFMG-H10, both isolated from the urine of healthy Gyr heifers. These two genomes represent the first isolates from the urine of cattle and exhibit greater similarity with strains from the human urinary tract than isolates from bovine fecal or milk samples. Unique to the UFMG-H9 genome is the presence of flagellar genes, the first such observation for K. variicola. Neither of the sampled animals had symptoms associated with K. variicola infection, even though genes associated with virulence and antibiotic resistance were identified in both strains. Both strains were resistant to amoxicillin, erythromycin, and vancomycin, and UFMG-H10 is resistant to fosfomycin. The observed resistances emphasize the concern regarding the emergence of this species as a human pathogen given its circulation in healthy livestock animals. IMPORTANCE Klebsiella variicola is an opportunistic pathogen in humans. It also has been associated with bovine mastitis, which can have significant economic effects. While numerous isolates have been sequenced from human infections, only 12 have been sequenced from cattle (fecal and milk samples) to date. Recently, we discovered the presence of K. variicola in the urine of two healthy heifers, the first identification of K. variicola in the bovine urinary tract and the first confirmed K. variicola isolate encoding for flagella-mediated motility. Here, we present the genome sequences and analysis of these isolates. The bovine urinary genomes are more similar to isolates from the human urinary tract than they are to other isolates from cattle, suggesting niche specialization. The presence of antibiotic resistance genes is concerning, as prior studies have found transmission between animals. These findings are important to understand the circulation of K. variicola in healthy livestock animals.
Collapse
Affiliation(s)
- Silvia Giannattasio-Ferraz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - André Penido Oliveira
- Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, Uberaba, Minas Gerais, Brazil
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Edel F. Barbosa-Stancioli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
11
|
Bioprospection of l-asparaginase producing microorganisms and cloning of the l-asparaginase type II gene from a Pseudomonas putida species group isolate. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Luo L, Huang Y, Liu J. Genome Sequence Resources of Klebsiella michiganensis AKKL-001, Which Causes Bacterial Blight of Mulberry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:349-351. [PMID: 35285669 DOI: 10.1094/mpmi-09-21-0222-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Longhui Luo
- College of Animal Science, Regional Sericulture Training Center for Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yuxin Huang
- College of Animal Science, Regional Sericulture Training Center for Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiping Liu
- College of Animal Science, Regional Sericulture Training Center for Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, Guangdong 510642, China
| |
Collapse
|
13
|
Wen A, Havens KL, Bloch SE, Shah N, Higgins DA, Davis-Richardson AG, Sharon J, Rezaei F, Mohiti-Asli M, Johnson A, Abud G, Ane JM, Maeda J, Infante V, Gottlieb SS, Lorigan JG, Williams L, Horton A, McKellar M, Soriano D, Caron Z, Elzinga H, Graham A, Clark R, Mak SM, Stupin L, Robinson A, Hubbard N, Broglie R, Tamsir A, Temme K. Enabling Biological Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS Synth Biol 2021; 10:3264-3277. [PMID: 34851109 DOI: 10.1021/acssynbio.1c00049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.
Collapse
Affiliation(s)
- Amy Wen
- Pivot Bio, Berkeley, California 94710, United States
| | | | - Sarah E. Bloch
- Morrison & Foerster LLP, San Francisco, California 94105, United States
| | - Neal Shah
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | - Judee Sharon
- University of Minnesota─Twin Cities, Minneapolis, Minnesota 55401, United States
| | | | | | | | - Gabriel Abud
- Tempo Automation, San Francisco, California 94103, United States
| | - Jean-Michel Ane
- University of Minnesota─Twin Cities, Minneapolis, Minnesota 55401, United States
| | - Junko Maeda
- University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Valentina Infante
- University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | | | | | - Alana Horton
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | - Zoe Caron
- Pivot Bio, Berkeley, California 94710, United States
| | | | - Ashley Graham
- Olema Oncology, San Francisco, California 94107, United States
| | | | - San-Ming Mak
- Pivot Bio, Berkeley, California 94710, United States
| | - Laura Stupin
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | | | - Alvin Tamsir
- Pivot Bio, Berkeley, California 94710, United States
| | - Karsten Temme
- Pivot Bio, Berkeley, California 94710, United States
| |
Collapse
|
14
|
Duran-Bedolla J, Garza-Ramos U, Rodríguez-Medina N, Aguilar Vera A, Barrios-Camacho H. Exploring the environmental traits and applications of Klebsiella variicola. Braz J Microbiol 2021; 52:2233-2245. [PMID: 34626346 DOI: 10.1007/s42770-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Klebsiella variicola has been found in various natural niches, alone or in association with other bacteria, and causes diseases in animals and plants with important economic and environmental impacts. K. variicola has the capacity to fix nitrogen in the rhizosphere and soil; produces indole acetic acid, acetoin, and ammonia; and dissolves phosphorus and potassium, which play an important role in plant growth promotion and nutrition. Some members of K. variicola have properties such as halotolerance and alkalotolerance, conferring an evolutionary advantage. In the environmental protection, K. variicola can be used in the wastewater treatment, biodegradation, and bioremediation of polluted soil, either alone or in association with other organisms. In addition, it has the potential to carry out industrial processes in the food and pharmaceutical industries, like the production of maltose and glucose by the catalysis of debranching unmodified oligosaccharides by the pullulanase enzyme. Finally, this bacterium has the ability to transform chemical energy into electrical energy, such as a biocatalyst, which could be useful in the near future. These properties show that K. variicola should be considered an eco-friendly bacterium with hopeful technological promise. In this review, we explore the most significant aspects of K. variicola and highlight its potential applications in environmental and biotechnological processes.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar Vera
- Centro de Ciencias Genómicas, Programa de Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Kefalogianni I, Skiada V, Tsagou V, Efthymiou A, Xexakis K, Chatzipavlidis I. Co-composting of cotton residues with olive mill wastewater: process monitoring and evaluation of the diversity of culturable microbial populations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:641. [PMID: 34508322 DOI: 10.1007/s10661-021-09422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
With the aim to recommend an integrated alternative for the combined treatment of olive mill wastewater (OMW) and cotton residues (CR), and the production of high value and environmentally friendly products, two compost piles were set up. The first pile (control, pile 1) consisted of ginned CR, whereas the second (pile 2) was made of CR with the addition of OMW. A series of physicochemical parameters and the culturable microbial diversity in both piles were assessed. Co-composting (pile 2) displayed higher temperatures during the whole process, a prolonged second thermophilic phase and temperature values higher than 40 °C even after the thermophilic stage. Comparing the physicochemical parameters of the pile 2 with those of the pile 1, it was deduced that pH in the former was more acidic during the onset of the process; the EC values were higher throughout the process, while the levels of ammonium and nitrate nitrogen, as well as the NH4+/NO3- ratios, were lower at most of the sampling dates. By evaluating the abovementioned results, it was estimated that the co-composting process headed sooner toward stability and maturity, Isolated microorganisms from both piles were identified as members of the genera Brevibacillus, Serratia, Klebsiella, and Aspergillus, whereas active thermotolerant diazotrophs were detected in both piles at the 2nd thermophilic phase emerging a promising prospect upon further evaluation for enhancing the end-product quality. Our findings indicate that co-composting is an interesting approach for the exploitation of large quantities of agro-industrial residues with a final product suitable for improving soil fertility and health.
Collapse
Affiliation(s)
- Io Kefalogianni
- Department of Crop Science, Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Vasiliki Skiada
- Department of Natural Resources Management and Agricultural Engineering, Division of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Vasiliki Tsagou
- Department of Crop Science, Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Aikaterini Efthymiou
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Denmark
| | - Konstantinos Xexakis
- Department of Crop Science, Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
| | - Iordanis Chatzipavlidis
- Department of Crop Science, Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece.
| |
Collapse
|
16
|
Genetic factors related to the widespread dissemination of ST11 extensively drug-resistant carbapenemase-producing Klebsiella pneumoniae strains within hospital. Chin Med J (Engl) 2021; 133:2573-2585. [PMID: 32969865 PMCID: PMC7722564 DOI: 10.1097/cm9.0000000000001101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae (CP-Kp) poses distinct clinical challenges due to extensively drug resistant (XDR) phenotype, and sequence type (ST) 11 is the most dominant blaKPC-2-bearing CP-Kp clone in China. The purpose of this current retrospective study was to explore the genetic factors associated with the success of XDR CP-Kp ST11 strains circulated in the intensive care unit (ICU) of a Chinese tertiary hospital. Methods Six ST11 XDR CP-Kp strains were identified between May and December 2014 and validated by minimum inhibitory concentration examination, polymerase chain reaction, and pyrosequencing. The six ST11 XDR CP-Kp, as well as three multi-drug resistant (MDR) and four susceptible strains, were sequenced using single-molecule real-time method. Comprehensively structural and functional analysis based on comparative genomics was performed to identify genomic characteristics of the XDR ST11 CP-Kp strains. Results We found that ST11 XDR blaKPC-2-bearing CP-Kp strains isolated from inpatients spread in the ICU of the hospital. Functionally, genes associated with information storage and processing of the ST11 XDR CP-Kp strains were more abundant than those of MDR and susceptible strains, especially genes correlative with mobile genetic elements (MGEs) such as transposons and prophages. Structurally, eleven large-scale genetic regions taken for the unique genome in these ST11 XDR CP-Kp strains were identified as MGEs including transposons, integrons, prophages, genomic islands, and integrative and conjugative elements. Three of them were located on plasmids and eight on chromosomes; five of them were with antimicrobial resistance genes and eight with adaptation associated genes. Notably, a new blaKPC-2-bearing ΔΔTn1721-blaKPC-2 transposon, probably transposed and truncated from ΔTn1721-blaKPC-2 by IS903D and ISKpn8, was identified in all six ST11 XDR CP-Kp strains. Conclusion Our findings suggested that together with clonal spread, MGEs identified uniquely in the ST11 XDR CP-Kp strains might contribute to their formidable adaptability, which facilitated their widespread dissemination in hospital.
Collapse
|
17
|
Saxenborn P, Baxter J, Tilevik A, Fagerlind M, Dyrkell F, Pernestig AK, Enroth H, Tilevik D. Genotypic Characterization of Clinical Klebsiella spp. Isolates Collected From Patients With Suspected Community-Onset Sepsis, Sweden. Front Microbiol 2021; 12:640408. [PMID: 33995300 PMCID: PMC8120268 DOI: 10.3389/fmicb.2021.640408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Klebsiella is a genus of Gram-negative bacteria known to be opportunistic pathogens that may cause a variety of infections in humans. Highly drug-resistant Klebsiella species, especially K. pneumoniae, have emerged rapidly and are becoming a major concern in clinical management. Although K. pneumoniae is considered the most important pathogen within the genus, the true clinical significance of the other species is likely underrecognized due to the inability of conventional microbiological methods to distinguish between the species leading to high rates of misidentification. Bacterial whole-genome sequencing (WGS) enables precise species identification and characterization that other technologies do not allow. Herein, we have characterized the diversity and traits of Klebsiella spp. in community-onset infections by WGS of clinical isolates (n = 105) collected during a prospective sepsis study in Sweden. The sequencing revealed that 32 of the 82 isolates (39.0%) initially identified as K. pneumoniae with routine microbiological methods based on cultures followed by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) had been misidentified. Of these, 23 were identified as Klebsiella variicola and nine as other members of the K. pneumoniae complex. Comparisons of the number of resistance genes showed that significantly fewer resistance genes were detected in Klebsiella oxytoca compared to K. pneumoniae and K. variicola (both values of p < 0.001). Moreover, a high proportion of the isolates within the K. pneumoniae complex were predicted to be genotypically multidrug-resistant (MDR; 79/84, 94.0%) in contrast to K. oxytoca (3/16, 18.8%) and Klebsiella michiganensis (0/4, 0.0%). All isolates predicted as genotypically MDR were found to harbor the combination of β-lactam, fosfomycin, and quinolone resistance markers. Multi-locus sequence typing (MLST) revealed a high diversity of sequence types among the Klebsiella spp. with ST14 (10.0%) and ST5429 (10.0%) as the most prevalent ones for K. pneumoniae, ST146 for K. variicola (12.0%), and ST176 for K. oxytoca (25.0%). In conclusion, the results from this study highlight the importance of using high-resolution genotypic methods for identification and characterization of clinical Klebsiella spp. isolates. Our findings indicate that infections caused by other members of the K. pneumoniae complex than K. pneumoniae are a more common clinical problem than previously described, mainly due to high rates of misidentifications.
Collapse
Affiliation(s)
- Patricia Saxenborn
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - John Baxter
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Andreas Tilevik
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Magnus Fagerlind
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | | | - Anna-Karin Pernestig
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Helena Enroth
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden.,Molecular Microbiology, Laboratory Medicine, Unilabs AB, Skövde, Sweden
| | - Diana Tilevik
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| |
Collapse
|
18
|
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:660620. [PMID: 33859664 PMCID: PMC8042378 DOI: 10.3389/fpls.2021.660620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 06/07/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.
Collapse
Affiliation(s)
- Maria Chiara Guerrieri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
19
|
Draft Genome Sequences of Plant-Pathogenic Klebsiella variicola Strains Isolated from Plantain in Haiti. Microbiol Resour Announc 2020; 9:9/29/e00336-20. [PMID: 32675179 PMCID: PMC7365790 DOI: 10.1128/mra.00336-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Klebsiella includes pathogenic and nonpathogenic species. We report the 5.57-Mb genome sequences of two Klebsiella variicola strains, G18-1365 and G18-1376, isolated from symptomatic plantain plants in Haiti. These strains are genetically closely related (average nucleotide identity [ANI] > 99%) to the previously described type strain of K. variicola, DSM 15968. The genus Klebsiella includes pathogenic and nonpathogenic species. We report the 5.57-Mb genome sequences of two Klebsiella variicola strains, G18-1365 and G18-1376, isolated from symptomatic plantain plants in Haiti. These strains are genetically closely related (average nucleotide identity [ANI] > 99%) to the previously described type strain of K. variicola, DSM 15968.
Collapse
|
20
|
Mahadevan P, Middlebrooks ML. Bacterial diversity in the clarki ecotype of the photosynthetic sacoglossan, Elysia crispata. Microbiologyopen 2020; 9:e1098. [PMID: 32602643 PMCID: PMC7520991 DOI: 10.1002/mbo3.1098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 01/04/2023] Open
Abstract
Few studies have examined the bacterial communities associated with photosynthetic sacoglossan sea slugs. In this study, we determined the bacterial diversity in the clarki ecotype, Elysia crispata using 16S rRNA sequencing. Computational analysis using QIIME2 revealed variability between individual samples, with the Spirochaetes and Bacteroidetes phyla dominating most samples. Tenericutes and Proteobacteria were also found, among other phyla. Computational metabolic profiling of the bacteria revealed a variety of metabolic pathways involving carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and amino acid metabolism. Although associated bacteria may be involved in mutually beneficial metabolic pathways, there was a high degree of variation in the bacterial community of individual slugs. This suggests that many of these relationships are likely opportunistic rather than obligate and that many of these bacteria may live commensally providing no major benefit to the slugs.
Collapse
|
21
|
Barrios-Camacho H, Aguilar-Vera A, Beltran-Rojel M, Aguilar-Vera E, Duran-Bedolla J, Rodriguez-Medina N, Lozano-Aguirre L, Perez-Carrascal OM, Rojas J, Garza-Ramos U. Molecular epidemiology of Klebsiella variicola obtained from different sources. Sci Rep 2019; 9:10610. [PMID: 31337792 PMCID: PMC6650414 DOI: 10.1038/s41598-019-46998-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022] Open
Abstract
Klebsiella variicola is considered an emerging pathogen in humans and has been described in different environments. K. variicola belongs to Klebsiella pneumoniae complex, which has expanded the taxonomic classification and hindered epidemiological and evolutionary studies. The present work describes the molecular epidemiology of K. variicola based on MultiLocus Sequence Typing (MLST) developed for this purpose. In total, 226 genomes obtained from public data bases and 28 isolates were evaluated, which were mainly obtained from humans, followed by plants, various animals, the environment and insects. A total 166 distinct sequence types (STs) were identified, with 39 STs comprising at least two isolates. The molecular epidemiology of K. variicola showed a global distribution for some STs was observed, and in some cases, isolates obtained from different sources belong to the same ST. Several examples of isolates corresponding to kingdom-crossing bacteria from plants to humans were identified, establishing this as a possible route of transmission. goeBURST analysis identified Clonal Complex 1 (CC1) as the clone with the greatest distribution. Whole-genome sequencing of K. variicola isolates revealed extended-spectrum β-lactamase- and carbapenemase-producing strains with an increase in pathogenicity. MLST of K. variicola is a strong molecular epidemiological tool that allows following the evolution of this bacterial species obtained from different environments.
Collapse
Affiliation(s)
- Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar-Vera
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Programa de Genómica Funcional de Procariotes, Cuernavaca, Morelos, Mexico
| | - Marilu Beltran-Rojel
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Edgar Aguilar-Vera
- Instituto Nacional de Salud Pública (INSP), Centro de Información para Decisiones en Salud Pública (CENIDSP), Cuernavaca, Morelos, Mexico
| | - Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Nadia Rodriguez-Medina
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Luis Lozano-Aguirre
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Cuernavaca, Morelos, Mexico
| | - Olga Maria Perez-Carrascal
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Cuernavaca, Morelos, Mexico
| | - Jesús Rojas
- Instituto Nacional de Salud Pública (INSP), Centro de Información para Decisiones en Salud Pública (CENIDSP), Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
22
|
Lin B, Song Z, Jia Y, Zhang Y, Wang L, Fan J, Lin Z. Biological characteristics and genome-wide sequence analysis of endophytic nitrogen-fixing bacteria Klebsiella variicola GN02. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1555010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Biaosheng Lin
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Department of Biotechnology, College of Life Science, Longyan University, Longyan, Fujian, PR China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan University, Longyan, Fujian, PR China
| | - Zhaozhao Song
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yulei Jia
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yulong Zhang
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lifang Wang
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Department of Biotechnology, College of Life Science, Longyan University, Longyan, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jinling Fan
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Zhanxi Lin
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
23
|
Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect 2019; 8:973-988. [PMID: 31259664 PMCID: PMC6609320 DOI: 10.1080/22221751.2019.1634981] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
Abstract
The Klebsiella pneumoniae complex comprises seven K. pneumoniae-related species, including K. variicola. K. variicola is a versatile bacterium capable of colonizing different hosts such as plants, humans, insects and animals. Currently, K. variicola is gaining recognition as a cause of several human infections; nevertheless, its virulence profile is not fully characterized. The clinical significance of K. variicola infection is hidden by imprecise detection methods that underestimate its real prevalence; however, several methods have been developed to correctly identify this species. Recent studies of carbapenemase-producing and colistin-resistant strains demonstrate a potential reservoir of multidrug-resistant genes. This finding presents an imminent scenario for spreading antimicrobial resistant genes among close relatives and, more concerningly, in clinical and environmental settings. Since K. variicola was identified as a novel bacterial species, different research groups have contributed findings elucidating this pathogen; however, important details about its epidemiology, pathogenesis and ecology are still missing. This review highlights the most significant aspects of K. variicola, discussing its different phenotypes, mechanisms of resistance, and virulence traits, as well as the types of infections associated with this pathogen.
Collapse
Affiliation(s)
- Nadia Rodríguez-Medina
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| | - Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| |
Collapse
|
24
|
Martínez-Romero E, Rodríguez-Medina N, Beltrán-Rojel M, Silva-Sánchez J, Barrios-Camacho H, Pérez-Rueda E, Garza-Ramos U. Genome misclassification of Klebsiella variicola and Klebsiella quasipneumoniae isolated from plants, animals and humans. SALUD PUBLICA DE MEXICO 2018; 60:56-62. [PMID: 29689657 DOI: 10.21149/8149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Due to the fact that K. variicola, K. quasipneumoniae and K. pneumoniae are closely related bacterial species, misclassification can occur due to mistakes either in normal biochemical tests or during submission to public databases. The objective of this work was to identify K. variicola and K. quasipneumoniae genomes misclassified in GenBank database. MATERIALS AND METHODS Both rpoB phylogenies and average nucleotide identity (ANI) were used to identify a significant number of misclassified Klebsiella spp. genomes. RESULTS Here we report an update of K. variicola and K. Quasipneumoniae genomes correctly classified and a list of isolated genomes obtained from humans, plants, animals and insects, described originally as K. pneumoniae or K. variicola, but known now to be misclassified. CONCLUSIONS This work contributes to recognize the extensive presence of K. variicola and K. quasipneumoniae isolates in diverse sites and samples.
Collapse
Affiliation(s)
| | - Nadia Rodríguez-Medina
- Grupo de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Marilu Beltrán-Rojel
- Grupo de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Jesús Silva-Sánchez
- Grupo de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Grupo de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. México.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México. Mérida, Yucatán, México
| | - Ulises Garza-Ramos
- Grupo de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
25
|
Shankar C, Karunasree S, Manesh A, Veeraraghavan B. First Report of Whole-Genome Sequence of Colistin-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Producing KPC-9 in India. Microb Drug Resist 2018; 25:489-493. [PMID: 30427763 DOI: 10.1089/mdr.2018.0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Klebsiella pneumoniae carbapenemase (KPC) is a class A carbapenemase endemic in the United States, China, South America, and Europe but is rarely reported from India. A single report of KPC-9 from K. pneumoniae in Israel has been published. K. pneumoniae has been classified into three phylogenetic groups: group 1 consists of K. pneumoniae and its subspecies, group 2 consists of Klebsiella quasipneumoniae and its subspecies, and group 3 consists of Klebsiella variicola. This is the first report of whole-genome sequencing of colistin-resistant K. quasipneumoniae subsp. similipneumoniae harboring blaKPC-9 gene. Results: The isolate was obtained from the culture of a respiratory catheter tip from a 41-year-old woman with traumatic brain injury. Whole-genome sequencing showed the presence of blaOKP-B-3 gene and hence it was identified as K. quasipneumoniae subsp. similipneumoniae. The isolate was resistant to all antimicrobials except tigecycline. Colistin resistance was chromosomally mediated; mcr-1 to mcr-5 genes and their variants were not identified. The isolate belonged to the novel clonal type ST2957. Conclusion: The isolation of KPC-9 from India, a nonendemic region, and in an isolate of K. quasipneumoniae highlights the importance of accurate identification of Klebsiella species and determination of mechanism of resistance. The novel sequence type obtained indicates evolution of the organism and acquisition of plasmid-mediated resistance. The occurrence of KPC in India is a potential public health threat.
Collapse
Affiliation(s)
- Chaitra Shankar
- 1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Susmitha Karunasree
- 1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Abi Manesh
- 2 Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Balaji Veeraraghavan
- 1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
26
|
Feng Y, Feng J, Shu Q. Isolation and characterization of heterotrophic nitrifying and aerobic denitrifying
Klebsiella pneumoniae
and
Klebsiella variicola
strains from various environments. J Appl Microbiol 2018; 124:1195-1211. [DOI: 10.1111/jam.13703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/23/2017] [Accepted: 01/15/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Feng
- Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi China
| | - J. Feng
- Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi China
| | - Q.L. Shu
- Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi China
| |
Collapse
|
27
|
Garza-Ramos U, Barrios-Camacho H, Moreno-Domínguez S, Toribio-Jiménez J, Jardón-Pineda D, Cuevas-Peña J, Sánchez-Pérez A, Duran-Bedolla J, Olguín-Rodriguez J, Román-Román A. Phenotypic and molecular characterization of Klebsiella spp. isolates causing community-acquired infections. New Microbes New Infect 2018; 23:17-27. [PMID: 29692906 PMCID: PMC5913063 DOI: 10.1016/j.nmni.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022] Open
Abstract
Klebsiella spp. isolates from community-acquired infections were characterized. A total of 39 Klebsiella spp. isolates were obtained from outpatients at four rural hospitals in Mexico (2013–2014). The biochemical tests identified all as being K. pneumoniae. The molecular multiplex-PCR test identified 36 (92.4%) K. pneumoniae isolates and one (2.5%) K. variicola isolate, and phylogenetic analysis of the rpoB gene identified two isolates (5.1%) belonging to K. quasipneumoniae subsp. quasipneumoniae and K. quasivariicola. The last one was confirmed by phylogenetic analysis of six-loci concatenated genes. Mostly the isolates were multidrug resistant; however, a minority were extended-spectrum β-lactamase producing (10.2%). The extended-spectrum β-lactamase CTX-M-15 gene was identified in these isolates. Analysis of biofilm production and the hypermucoviscosity phenotype showed a total of 35 (92.3%) and seven (17.9%) of the isolates were positive for these phenotypes respectively. The K2 (4/39, 10.2%), K5 (2/39, 5.1%) and K54 (1/39, 2.5%) serotypes were identified in seven (17.9%) of the isolates, and only 28.5% (2/7) hypermucoviscous isolates were positive for the K2 and K5 serotypes. In general, the sequence type (ST) analysis and phylogenetic analysis of seven multilocus sequence typing loci were heterogeneous; however, ST29 was the most prevalent ST in the analysed isolates, accounting for 19% (4/21) of the total isolates. Two of the four ST29 isolates had the hypermucoviscosity phenotype. The virulence factors for fimbriae were the most prevalent, followed by siderophores. Community-acquired infections are caused by various species from Klebsiella genus, with different profiles of antibiotic resistance and heterogeneous virulence factors.
Collapse
Affiliation(s)
- U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - H Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - S Moreno-Domínguez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - J Toribio-Jiménez
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - D Jardón-Pineda
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - J Cuevas-Peña
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - A Sánchez-Pérez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - J Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - J Olguín-Rodriguez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - A Román-Román
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
28
|
Atypical Klebsiella Species in a Third Level Hospital as Cause of Neonatal Infection. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.62393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Fonseca EL, Ramos NDV, Andrade BGN, Morais LLCS, Marin MFA, Vicente ACP. A one-step multiplex PCR to identify Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae in the clinical routine. Diagn Microbiol Infect Dis 2017; 87:315-317. [PMID: 28139276 DOI: 10.1016/j.diagmicrobio.2017.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/12/2022]
Abstract
Klebsiella pneumoniae, Klebsiella variicola and Klebsiella quasipneumoniae are difficult to differentiate phenotypically, leading to misinterpretation of their infection prevalence. We propose a multiplex PCR for blaSHV, blaLEN and blaOKP and their flanking gene (deoR). Since this scheme focuses only on chromosomal genes, it will be feasible for Klebsiella identification in the clinical routine.
Collapse
Affiliation(s)
- Erica Lourenço Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz/FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Nilceia da Veiga Ramos
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz/FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Bruno G Nascimento Andrade
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz/FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Lena L C S Morais
- Laboratório de Microbiologia Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil.
| | - Michel F Abanto Marin
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz/FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Ana Carolina P Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz/FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|