1
|
Locquet MA, Brahmi M, Blay JY, Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer 2023; 23:742. [PMID: 37563551 PMCID: PMC10416357 DOI: 10.1186/s12885-023-11232-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiotherapy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing surrounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and drawbacks of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent and radiotherapy and their applicability in bone sarcoma will be presented.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France.
| |
Collapse
|
2
|
Freund SS, Bendtsen MM, Safwat A, Joergensen PH. Multidrug resistance protein 1 silencing in osteosarcoma and chondrosarcoma cell lines. J Cancer Res Ther 2023; 19:S278-S284. [PMID: 37148005 DOI: 10.4103/jcrt.jcrt_565_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Background The poor response of metastatic osteo- and chondrosarcomas to chemotherapy could be the result of multidrug resistance (MDR), which may be overcome through the use of small interfering RNA (siRNA). However, several methodologic questions remain unresolved. Aims To test the toxicity of three commonly used siRNA transfection reagents and apply the least toxic reagent to investigate the siRNA-induced MDR1 mRNA knockdown. Methods The toxicity of TransIT-TKO, Lipofectamine 2000, and X-tremeGENE siRNA transfection reagents was investigated on osteosarcoma (MG-63) and chondrosarcoma (SW1353) cell lines. The toxicity was measured at 4 and 24 hours using a MTT toxicity assay. The least toxic transfection reagent was applied to investigate the siRNA-induced MDR1 mRNA knockdown effect using qRT-PCR. Furthermore, five housekeeping genes were assessed in the BestKeeper software to obtain mRNA expression normalization. Results Lipofectamine 2000 was the least toxic transfection reagent, reducing the cell viability only in chondrosarcoma 24 hours following exposure to the highest dose. In contrast, TransIT-TKO and X-tremeGENE transfection reagents displayed a significant reduction in cell viability in both chondrosarcoma after 4 hours and in osteosarcoma after 24 hours. Significant MDR1 mRNA silencing of over 80% was achieved in osteo- and chondrosarcoma using Lipofectamine at a final siRNA concentration of 25 nM. No significant dose response was observed in knockdown efficiency in either Lipofectamine or siRNA concentration. Conclusion Lipofectamine 2000 was the least toxic transfection reagent in osteo- and chondrosarcoma. Successful siRNA-induced MDR1 mRNA silencing of over 80% was achieved.
Collapse
Affiliation(s)
- Sarah S Freund
- Department of Orthopedics, Aarhus University Hospital, Denmark
| | | | - Akmal Safwat
- Department of Oncology, Aarhus University Hospital, Denmark
| | | |
Collapse
|
3
|
Masimov R, Büyükköroğlu G. HDL-Chitosan Nanoparticles for siRNA Delivery as an SR-B1 Receptor Targeted System. Comb Chem High Throughput Screen 2023; 26:2541-2553. [PMID: 37038689 PMCID: PMC10556401 DOI: 10.2174/1386207326666230406124524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
AIMS High-Density Lipoprotein (HDL) is a complex structure unique to the human body. ApoA-1 protein is a significant structural/functional protein of HDL and provides a natural interaction with the SR-B1 receptors on the cell membrane. The overexpression of the SR-B1 receptor in the membrane of malignant cells suggests that targeting cancer cells can be possible using HDL. The objective of this study was to prepare HDL-conjugated chitosan nanoparticles containing a genetic material that can be used for liver cancer. METHODS HDL used in the preparation of the formulations have been obtained by isolating from blood samples taken from healthy volunteers. Bcl-2 siRNA inhibiting BCL-2 oncogene was selected as the genetic material. Chitosan nanoparticles were prepared using the ionic gelation method utilizing low molecular weight chitosan. Physicochemical properties of formulations, transfection efficacy, and cytotoxicity of them on 3T3 and HepG2 cell lines were examined. RESULTS The average diameters of the selected formulations were below 250 nm with a positive zeta potential value between +36 ± 0.1 and +34 ± 0.5 mV. All formulations protected Bcl-2 siRNA from enzymatic degradation in the presence of serum. Cellular uptake ratios of particles by HepG2 cells were found to be between 76% and 98%. HDL/chitosan nanoparticles/Bcl-2 siRNA complex was found to be more toxic when compared to chitosan nanoparticles/Bcl-2 siRNA complex and naked Bcl-2 siRNA. CONCLUSION According to attained results, the HDL-conjugated chitosan nanoparticles can bring advantages for targeted siRNA delivery to malignant cells that overexpress SR-B1 receptors, such as HepG2.
Collapse
Affiliation(s)
- Rasim Masimov
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | - Gülay Büyükköroğlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkiye
| |
Collapse
|
4
|
Elmajee M, Osman K, Dermanis A, Duffaydar H, Soon WC, czyz M. A literature Review: The genomic landscape of spinal chondrosarcoma and potential diagnostic, prognostic & therapeutic implications. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Waniczek D, Nowak M, Lorenc-Góra J, Muc-Wierzgoń M, Mazurek U, Bichalska-Lach M, Lorenc Z. The transcriptional activity profile of inhibitor apoptosis protein encoding genes in colon cancer patients: A STROBE-compliant study. Medicine (Baltimore) 2021; 100:e27882. [PMID: 34797333 PMCID: PMC8601263 DOI: 10.1097/md.0000000000027882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
The inhibitor of apoptosis family proteins (IAPs) plays a crucial role in the process of carcinogenesis by regulating apoptosis and maintaining the tissue balance.In this study, a transcriptomic analysis of IAP-encoding genes in colon cancer was performed using oligonucleotide microarrays.Adenocarcinoma and healthy colon tissue samples were collected from 32 patients (16 females and 16 males) who underwent surgery due to colon cancer. The mRNA was extracted from tissue samples and tested using oligonucleotide microarrays (Affymetrix). The results were validated using the qRT-PCR technique. Hierarchical grouping was used to allocate 37 samples of normalized mRNA concentrations into 4 groups, with statistically significant differences in gene expression between these groups. The group of genes associated with colon cancer, including IAP-encoding gene - BIRC5 (Survivin), was selected for further testing.Our study confirmed an increased expression of BIRC5 in colon cancer tissue when compared to the control group. Increased levels of Neuronal Apoptosis Inhibitory Proteins were detected only in low-stage colon cancer, while the expression of Human X Chromosome-Encoded inhibitor of apoptosis family proteins decreased in colon cancer.The transcriptional activity of IAP-encoding genes varied, depending on the severity of colon cancer. The concentration of mRNA, encoding BIRC5 was elevated in samples obtained from more advanced colon cancer. Hence BIRC5 could be used as a complementary parameter for the diagnosis and prognosis of colon cancer.
Collapse
Affiliation(s)
- Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Marcin Nowak
- Department of General, Colorectal and Polytrauma Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Justyna Lorenc-Góra
- Department of Surgical Nursing and Propaedeutics of Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Medicine, Faculty of Health Sciences in Bytom, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, Katowice, Poland
| | - Magda Bichalska-Lach
- Department of Surgical Nursing and Propaedeutics of Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zbigniew Lorenc
- Department of General, Colorectal and Polytrauma Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Veys C, Benmoussa A, Contentin R, Duchemin A, Brotin E, Lafont JE, Saintigny Y, Poulain L, Denoyelle C, Demoor M, Legendre F, Galéra P. Tumor Suppressive Role of miR-342-5p in Human Chondrosarcoma Cells and 3D Organoids. Int J Mol Sci 2021; 22:ijms22115590. [PMID: 34070455 PMCID: PMC8197525 DOI: 10.3390/ijms22115590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.
Collapse
Affiliation(s)
- Clément Veys
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Abderrahim Benmoussa
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
- Research Center of the UHC Sainte-Justine and Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C54, Canada
| | - Romain Contentin
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Amandine Duchemin
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Emilie Brotin
- Normandie Univ, UNICAEN, ImpedanCELL Platform, Federative Structure 4206 ICORE, 14000 Caen, France; (E.B.); (C.D.)
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Jérôme E. Lafont
- CNRS UMR 5305, Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon 1, Univ Lyon, 69367 Lyon, France;
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France;
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, UMR6252 CIMAP, 14000 Caen, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Christophe Denoyelle
- Normandie Univ, UNICAEN, ImpedanCELL Platform, Federative Structure 4206 ICORE, 14000 Caen, France; (E.B.); (C.D.)
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Magali Demoor
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Florence Legendre
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Philippe Galéra
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
- Correspondence:
| |
Collapse
|
7
|
Wang K, Michelakos T, Wang B, Shang Z, DeLeo AB, Duan Z, Hornicek FJ, Schwab JH, Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett 2021; 505:37-48. [PMID: 33582212 PMCID: PMC8969896 DOI: 10.1016/j.canlet.2021.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Overcoming the radiosensitivity of chondrosarcoma (CS), the second most common primary bone tumor, is needed. Radioresistance is attributed to cancer stem cells (CSCs) in many malignancies. Disulfiram (DSF), an FDA-approved anti-alcoholism drug, complexed with Cu (DSF/Cu) can radiosensitize epithelial CSCs. This prompted us to investigate the radiosensitizing effect of DSF/Cu on CS CSCs (CCSCs). The radiosensitizing effects of DSF/Cu on CCSCs were investigated in vitro using cell lines SW1353 and CS-1. Stemness was identified independently by flow cytometry for CCSCs (ALDH+CD133+), sphere-forming ability, and Western blot analysis of stemness gene protein expression. The radiosensitizing effect of DSF/Cu was studied in an orthotopic CS xenograft mouse model by analyzing xenograft growth and residual xenografts for stemness. CCSCs were found to be resistant to single-dose (IR) and fractionated irradiation (FIR). IR and FIR increased CS stemness. Combined with DSF/Cu in vitro and in vivo, IR and FIR eliminated CS stemness. RT + DSF/Cu was safer and more effective than either RT ± DSF in inhibiting growth of orthotopic CS xenografts. In conclusion, DSF/Cu radiosensitizes CCSCs. These results can be translated into clinical trials for CS patients requiring RT for improved outcomes.
Collapse
Affiliation(s)
- Kun Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Theodoros Michelakos
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zikun Shang
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Albert B DeLeo
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhenfeng Duan
- The Sarcoma and Chordoma Molecular Biology Laboratory, Orthopaedic Surgery, The University of California, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- The Sarcoma and Chordoma Molecular Biology Laboratory, Orthopaedic Surgery, The University of California, Los Angeles, CA, 90095, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Zhang HT, Gui T, Liu RX, Tong KL, Wu CJ, Li Z, Huang X, Xu QT, Yang J, Tang W, Sang Y, Liu W, Liu N, Ross RD, He QY, Zha ZG. Sequential targeting of YAP1 and p21 enhances the elimination of senescent cells induced by the BET inhibitor JQ1. Cell Death Dis 2021; 12:121. [PMID: 33495462 PMCID: PMC7835383 DOI: 10.1038/s41419-021-03416-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Chondrosarcoma (CHS) is the second most common bone malignancy with limited therapeutic approaches. Our previous study has found that Yes associated protein 1 (YAP1) is downregulated in CHS cells treated with bromodomain and extraterminal domain (BET) inhibitor JQ1. However, the precise role of YAP1 in CHS is largely unknown. Herein, we found that YAP1 expression was upregulated in CHS tissues, and positively correlated with its grading score. Loss of YAP1 inhibited CHS proliferation and induced cellular senescence, while expression of YAP1 mutants revealed YAP1/TEA domain family member (TEAD)-dependent negative regulation of p21 and subsequent cellular senescence. These results were validated by in vivo experiments using stable shYAP1 cell lines. Mechanistically, negative regulation of p21 by YAP1 occurred post-transcriptionally via Dicer-regulated miRNA networks, specifically, the miR-17 family. Furthermore, we demonstrated that sequential targeting of YAP1 and p21 enhanced the elimination of JQ1-induced senescent cells in a Bcl-2-like 1 (Bcl-XL)/Caspase-3 dependent manner. Altogether, we unveil a novel role of YAP1 signaling in mediating CHS cell senescence and propose a one-two punch approach that sequentially targets the YAP1/p21 axis to eliminate senescent cells.
Collapse
Affiliation(s)
- Huan-Tian Zhang
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China.
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China.
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Tao Gui
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ri-Xu Liu
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kui-Leung Tong
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chong-Jie Wu
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhenyan Li
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xun Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qiu-Tong Xu
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jie Yang
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wang Tang
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuan Sang
- Department of Joint Replacement and Trauma Surgery, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanting Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ning Liu
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ryan D Ross
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases, Jinan University, Guangzhou, China.
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Li F, Xu J, Zhu Y, Sun L, Zhou R. Analysis of Cells Proliferation and MicroRNAs Expression Profile in Human Chondrosarcoma SW1353 Cells Exposed to Iodine-125 Seeds Irradiation. Dose Response 2020; 18:1559325820920525. [PMID: 32362797 PMCID: PMC7180315 DOI: 10.1177/1559325820920525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Chondrosarcoma is the second most common bone malignancy in adults, and it is often resistant to traditional chemotherapy and radiation therapy. Permanent implantation of iodine-125 (125I) seeds has been explored for the treatment of many types of cancer. In this study, the aim was to investigate the proliferative and microRNA (miRNA) effects of 125I seeds irradiation on human chondrosarcoma SW1353 cells. First, a new in vitro 125I seed irradiation model was established, and cell viability and miRNA microarray assays were performed before and after exposure to the 125I seeds. Cell proliferation was inhibited, and miRNA expression was substantially altered by irradiation exposure. The inhibition of cell proliferation was positively correlated with increased radiation doses, with cells showing the highest total radiation dose 7 days after irradiation. A total of 2549 miRNAs were detected in the SW1353 cells after exposure to 6 Gy of radiation, which included 189 differentially expressed miRNAs (98 upregulated and 91 downregulated). Four miRNAs were found to play important roles in the inhibition of cell proliferation after irradiation exposure, including miR-1224-5p, miR-492, miR-135b-5p, and miR-6839-5p. The target genes of the associated miRNAs mentioned were vascular endothelial growth factor A (VEGFA), C-X-C motif chemokine 12 (CXCL12), mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3), and apoptosis facilitator Bcl-2-like protein 14 (BCL2L14). Hence, the mitogen-activated protein kinase signaling pathway may be involved in how chondrosarcoma cells respond to 125I seed irradiation.
Collapse
Affiliation(s)
- Fusheng Li
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.,Department of Orthopaedic Oncology, The People's Hospital of Liaoning Province, China Medical University People's Hospital, Shenyang, People's Republic of China
| | - Jia Xu
- Clinical Teaching Experimental Center, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Renyi Zhou
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Maingi S, Padiyar B, Sharma N. Chondrosarcoma of the Nasal Septum: A Case Report. DUBAI MEDICAL JOURNAL 2019. [DOI: 10.1159/000501450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
de Jong Y, Ingola M, Briaire-de Bruijn IH, Kruisselbrink AB, Venneker S, Palubeckaite I, Heijs BPAM, Cleton-Jansen AM, Haas RLM, Bovée JVMG. Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin Sarcoma Res 2019; 9:9. [PMID: 31160965 PMCID: PMC6540537 DOI: 10.1186/s13569-019-0119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Conventional chondrosarcomas are malignant cartilage tumors considered radioresistant. Nevertheless, retrospective series show a small but significant survival benefit for patients with locally advanced disease treated with radiotherapy. And, in daily practice when considered inoperable their irradiation is an accepted indication for proton beam radiotherapy. Therefore, we investigated the sensitivity of chondrosarcoma cell lines and -tissue samples towards radiotherapy and screened for biomarkers to identify predictors of radiosensitivity. Methods Proliferation and clonogenic assays were performed in chondrosarcoma cell lines after γ-radiation in combination with mutant IDH1 inhibitor AGI-5198. In addition, glutathione levels were measured using mass spectrometry. Chondrosarcoma tumor explants were irradiated after which γ-H2AX foci were counted. Mutation analysis was performed using the Ion AmpliSeq™ Cancer Hotspot Panel and immunohistochemical staining’s were performed for P-S6, LC-3B, P53, Bcl-2, Bcl-xl and Survivin. Results were correlated with the number of γ-H2AX foci. Results Chondrosarcoma cell lines were variably γ-radiation resistant. No difference in radiosensitivity, nor glutathione levels was observed after treatment with AGI-5198. Irradiated chondrosarcoma patient tissue presented a variable increase in γ-H2AX foci compared to non-radiated tissue. Samples were divided into two groups, high and low radioresistant, based on the amount of γ-H2AX foci. All four highly resistant tumors exhibited mutations in the pRb pathway, while none of the less radioresistant tumors showed mutations in these genes. Conclusions Chondrosarcoma cell lines as well as primary tumors are variably radioresistant, particularly in case of a defective Rb pathway. Whether selection for radiotherapy can be based upon an intact Rb pathway should be further investigated. Electronic supplementary material The online version of this article (10.1186/s13569-019-0119-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvonne de Jong
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martha Ingola
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge H Briaire-de Bruijn
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alwine B Kruisselbrink
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sanne Venneker
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ieva Palubeckaite
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bram P A M Heijs
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rick L M Haas
- 3Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.,4Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judith V M G Bovée
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
12
|
Cash H, Dean D. The effects of low-dose radiation on articular cartilage: a review. J Biol Eng 2019; 13:1. [PMID: 30627214 PMCID: PMC6322226 DOI: 10.1186/s13036-018-0125-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a specialized connective tissue, predominately composed of water, collagen, and proteoglycans, that provides a smooth, lubricated surface for articulation in joints. It has long been considered radioinsensitive and therefore unaffected by exposure to radiation in medical settings. Due to the increased amount of yearly radiation exposure through radiotherapy and ionizing radiation diagnostic procedures, there has been a renewed interest in how radioinsensitive articular cartilage actually is. Despite this renewed interest, the majority of these studies do not focus on articular cartilage as their primary goal, but rather, have observed the effects of total body irradiation. Since many of these studies do not report the type of irradiation used, the rate of exposure, or use consistent models, there are inconsistencies in these studies, which make comparing and translating the results difficult. Previous literature reviews have found less than 60 studies discussing the effects of radiation on articular cartilage and its components both in vitro and in vivo. However, despite the inconsistencies, these reviews and studies have drawn the same overall conclusion that this research needs to be continued and broadened in order to make a consistent conclusion on the radioinsensitivity of articular cartilage. Therefore, the goal of this review is to categorize and summarize current findings in literature discussing the effects of radiation on articular cartilage.
Collapse
Affiliation(s)
- Hannah Cash
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634 USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634 USA
| |
Collapse
|
13
|
Nazeri E, Gouran Savadkoohi M, Majidzadeh-A K, Esmaeili R. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets. Crit Rev Oncol Hematol 2018; 131:102-109. [PMID: 30293700 DOI: 10.1016/j.critrevonc.2018.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcomas are known as a heterogeneous class of cancers arisen in the connective tissues and demonstrated various histological subtypes including both soft tissue and bone origin. Chondrosarcoma is one of the main types of bone sarcoma that shows a considerable deficiency in response to chemotherapy and radiotherapy. While conventional treatment based on surgery, chemo-and radiotherapy are used in this tumor, high rate of death especially among children and adolescents are reported. Due to high resistance to current conventional therapies in chondrosarcoma, there is an urgent requirement to recognize factors causing resistance and discover new strategies for optimal treatment. In the past decade, dysregulation of genes associated with tumor development and therapy resistance has been studied to find potential therapeutic targets to overcome resistance. In this review, clinical aspects of chondrosarcoma are summarized. Moreover, it gives a summary of gene dysregulation, mutation, histone modifications and non-coding RNAs associated with tumor development and therapeutic response modulation. Finally, the probable role of tumor microenvironment in chondrosarcoma drug resistance and targeted therapies as a promising molecular therapeutic approach are summarized.
Collapse
Affiliation(s)
- Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Chondrosarcoma of the Osseous Spine Treated by Surgery With or Without Radiotherapy: A Propensity Score Matched and Grade/Stage-stratified Study. Clin Spine Surg 2018; 31:E310-E316. [PMID: 29864077 DOI: 10.1097/bsd.0000000000000666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
STUDY DESIGN This was a longitudinal cohort study. OBJECTIVE The main objective of this study was to investigate the outcomes of surgery with or without radiotherapy during treatment of patients with chondrosarcoma of the osseous spine. SUMMARY OF BACKGROUND DATA Chondrosarcoma is a primary spinal malignant tumor; chemotherapy and radiotherapy (RT) are generally unsuccessful, and thus, the main treatment of choice is complete en bloc resection. However, even with complete resection, these patients still have a significant rate of recurrence, morbidity, and mortality. Although there have been reports that the addition of RT to surgery may lead to increased survival and better cancer control, the evidence of the efficacy of RT remains controversial. MATERIALS AND METHODS Patients diagnosed with chondrosarcoma who are then treated by surgery alone or surgery+RT were identified and extracted from the SEER (Surveillance, Epidemiology, and End Results) database (1973-2013). Propensity score matched (PSM) analysis was performed to balance patient characteristics between surgery alone and surgery+RT groups. Patients with a different grade and stage were stratified and analyzed. RESULTS A total of 778 patients with chondrosarcoma of the osseous spine treated by surgery alone or surgery+RT were extracted from the SEER database. Before PSM, the unadjusted Kaplan-Meier curve and bivariable Cox proportional hazard regression models showed that the surgery alone group had higher chondrosarcoma cancer-specific survival and overall survival than the surgery+RT group (both P<0.001), while the difference was attenuated after PSM. Stratified analysis found that RT was worse for low-grade chondrosarcoma patients and had a better trend for high-grade chondrosarcoma patients. CONCLUSIONS The results of our present study suggest that low-grade chondrosarcoma of the osseous spine is resistant to RT, while high-grade chondrosarcoma patients had a better trend with RT. LEVEL OF EVIDENCE Level III.
Collapse
|
15
|
Mery B, Espenel S, Guy JB, Rancoule C, Vallard A, Aloy MT, Rodriguez-Lafrasse C, Magné N. Biological aspects of chondrosarcoma: Leaps and hurdles. Crit Rev Oncol Hematol 2018; 126:32-36. [DOI: 10.1016/j.critrevonc.2018.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023] Open
|
16
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
17
|
Schültke E, Balosso J, Breslin T, Cavaletti G, Djonov V, Esteve F, Grotzer M, Hildebrandt G, Valdman A, Laissue J. Microbeam radiation therapy - grid therapy and beyond: a clinical perspective. Br J Radiol 2017; 90:20170073. [PMID: 28749174 PMCID: PMC5853350 DOI: 10.1259/bjr.20170073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demonstrating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptually similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Elisabeth Schültke
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Jacques Balosso
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Thomas Breslin
- 3 Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden.,4 Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Guido Cavaletti
- 5 Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentin Djonov
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Francois Esteve
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Michael Grotzer
- 7 Department of Oncology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Guido Hildebrandt
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Alexander Valdman
- 8 Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean Laissue
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact. BMC Cancer 2015; 15:579. [PMID: 26253487 PMCID: PMC4529727 DOI: 10.1186/s12885-015-1590-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
Background The benefit of better ballistic and higher efficiency of carbon ions for cancer treatment (hadron-therapy) is asserted since decades, especially for unresectable or resistant tumors like sarcomas. However, hadron-therapy with carbon ions stays underused and raises some concerns about potential side effects for patients. Chondrosarcoma is a cartilaginous tumor, chemo- and radiation-resistant, that lacks reference models for basic and pre-clinical studies in radiation-biology. Most studies about cellular effects of ionizing radiation, including hadrons, were performed under growth conditions dramatically different from human homeostasis. Tridimensional in vitro models are a fair alternative to animal models to approach tissue and tumors microenvironment. Methods By using a collagen matrix, standardized culture conditions, physiological oxygen tension and a well defined chondrosarcoma cell line, we developed a pertinent in vitro 3D model for hadron-biology studies. Low- and high-Linear Energy Transfer (LET) ionizing radiations from GANIL facilities of ~1 keV/μm and 103 ± 4 keV/μm were used respectively, at 2 Gy single dose. The impact of radiation quality on chondrosarcoma cells cultivated in 3D was analyzed on cell death, cell proliferation and DNA repair. Results A fair distribution of chondrosarcoma cells was observed in the whole 3D scaffold. Moreover, LET distribution in depth, for ions, was calculated and found acceptable for radiation-biology studies using this kind of scaffold. No difference in cell toxicity was observed between low- and high-LET radiations but a higher rate of proliferation was displayed following high-LET irradiation. Furthermore, 3D models presented a higher and longer induction of H2AX phosphorylation after 2 Gy of high-LET compared to low-LET radiations. Conclusions The presented results show the feasibility and usefulness of our 3D chondrosarcoma model in the study of the impact of radiation quality on cell fate. The observed changes in our tissue-like model after ionizing radiation exposure may explain some discrepancies between radiation-biology studies and clinical data. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1590-5) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Fulda S. Targeting IAP proteins in combination with radiotherapy. Radiat Oncol 2015; 10:105. [PMID: 25927408 PMCID: PMC4436972 DOI: 10.1186/s13014-015-0399-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/01/2015] [Indexed: 01/30/2023] Open
Abstract
The efficacy of radiotherapy critically depends on the activation of intrinsic cell death programs in cancer cells. This implies that evasion of cell death, a hallmark of human cancers, can contribute to radioresistance. Therefore, novel strategies to reactivate cell death programs in cancer cells are required in order to overcome resistance to radiotherapy. Since Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in multiple cancers and block cell death induction at a central point, therapeutic targeting of IAP proteins represents a promising approach to potentiate the efficacy of radiotherapy. The current review discusses the concept of targeting IAP proteins in combination with radiotherapy.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
Saintigny Y, Cruet-Hennequart S, Hamdi DH, Chevalier F, Lefaix JL. Impact of Therapeutic Irradiation on Healthy Articular Cartilage. Radiat Res 2015; 183:135-46. [DOI: 10.1667/rr13928.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells. Cell Death Dis 2014; 5:e1571. [PMID: 25501832 PMCID: PMC4649848 DOI: 10.1038/cddis.2014.540] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional proteins, and their receptors (BMPRs) have crucial roles in the process of signaling. However, their function in cancer is somewhat inconsistent. It has been demonstrated that more prevalent expression of bone morphogenetic protein receptor 2 (BMPR2) has been detected in dedifferentiated chondrosarcomas than conventional chondrosarcomas. Here, we find that BMPR2 inhibition induces apoptosis and autophagy of chondrosarcoma. We found that BMPR2 expression was correlated with the clinicopathological features of chondrosarcomas, and could predict the treatment outcome. Knockdown of BMPR2 by small interfering RNA results in growth inhibition in chondrosarcoma cells. Silencing BMPR2 promoted G2/M cell cycle arrest, induced chondrosarcoma cell apoptosis through caspase-3-dependent pathway via repression of X-linked inhibitor of apoptosis protein (XIAP) and induced autophagy of chondrosarcoma cells via XIAP-Mdm2-p53 pathway. Inhibition of autophagy induced by BMPR2 small interfering RNA (siBMPR2) sensitized chondrosarcoma cells to siBMPR2-induced apoptotic cell death, suggesting that autophagy has a protective role for chondrosarcoma cells in context of siBMPR2-induced apoptotic cell death. In vivo tumorigenicity assay in mice indicated that inhibition of BMPR2 reduced tumor growth. Taken together, our results suggest that BMPR2 has a significant role in the tumorigenesis of chondrosarcoma, and could be an important prognostic marker for chondrosarcoma. BMPR2 inhibition could eventually provide a promising therapy for chondrosarcoma treatment.
Collapse
|
22
|
An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing. Virchows Arch 2014; 466:101-9. [PMID: 25331842 DOI: 10.1007/s00428-014-1670-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Chondrosarcoma is a malignant cartilaginous tumor of the bone. Recently, mutations in isocitrate dehydrogenase-1 (IDH1) and isocitrate dehydrogenase-2 (IDH2) were identified in central chondrosarcomas. As chondrosarcomas are notoriously resistant to conventional treatment modalities, the need for model systems to screen new treatment options is high. We used two chondrosarcoma cell lines (CH2879 and SW1353) to generate a bioluminescent orthotopic chondrosarcoma mouse model. Cell lines were stably transduced with a lentiviral luciferase expression vector, and after clonal selection, luciferase-expressing clones were subcutaneously and orthotopically implanted in nude mice. Mice injected with CH2879 cells were treated with doxorubicin over a period of 6 weeks. Both cell lines resulted in tumor growth. CH2879 tumors were consistently larger than SW1353 tumors. No difference in size could be observed between subcutaneous and orthotopic tumors. Tumor growth could be monitored over time through assessment of luciferase activity, without harming the mice. Using this model, we show that doxorubicin does not have a significant effect on in vivo tumor growth. We describe an orthotopic chondrosarcoma mouse model that can be used to test new treatment strategies evolving from in vitro research.
Collapse
|
23
|
Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation. Br J Cancer 2014; 111:1139-49. [PMID: 25025965 PMCID: PMC4453840 DOI: 10.1038/bjc.2014.385] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite its promise as a highly useful therapy for pancreatic cancer (PC), the addition of external beam radiation therapy to PC treatment has shown varying success in clinical trials. Understanding PC radioresistance and discovery of methods to sensitise PC to radiation will increase patient survival and improve quality of life. In this study, we identified PC radioresistance-associated pathways using global, unbiased techniques. METHODS Radioresistant cells were generated by sequential irradiation and recovery, and global genome cDNA microarray analysis was performed to identify differentially expressed genes in radiosensitive and radioresistant cells. Ingenuity pathway analysis was performed to discover cellular pathways and functions associated with differential radioresponse and identify potential small-molecule inhibitors for radiosensitisation. The expression of FDPS, one of the most differentially expressed genes, was determined in human PC tissues by IHC and the impact of its pharmacological inhibition with zoledronic acid (ZOL, Zometa) on radiosensitivity was determined by colony-forming assays. The radiosensitising effect of Zol in vivo was determined using allograft transplantation mouse model. RESULTS Microarray analysis indicated that 11 genes (FDPS, ACAT2, AG2, CLDN7, DHCR7, ELFN2, FASN, SC4MOL, SIX6, SLC12A2, and SQLE) were consistently associated with radioresistance in the cell lines, a majority of which are involved in cholesterol biosynthesis. We demonstrated that knockdown of farnesyl diphosphate synthase (FDPS), a branchpoint enzyme of the cholesterol synthesis pathway, radiosensitised PC cells. FDPS was significantly overexpressed in human PC tumour tissues compared with healthy pancreas samples. Also, pharmacologic inhibition of FDPS by ZOL radiosensitised PC cell lines, with a radiation enhancement ratio between 1.26 and 1.5. Further, ZOL treatment resulted in radiosensitisation of PC tumours in an allograft mouse model. CONCLUSIONS Unbiased pathway analysis of radioresistance allowed for the discovery of novel pathways associated with resistance to ionising radiation in PC. Specifically, our analysis indicates the importance of the cholesterol synthesis pathway in PC radioresistance. Further, a novel radiosensitiser, ZOL, showed promising results and warrants further study into the universality of these findings in PC, as well as the true potential of this drug as a clinical radiosensitiser.
Collapse
|
24
|
Noh KH, Kim SH, Kim JH, Song KH, Lee YH, Kang TH, Han HD, Sood AK, Ng J, Kim K, Sonn CH, Kumar V, Yee C, Lee KM, Kim TW. API5 confers tumoral immune escape through FGF2-dependent cell survival pathway. Cancer Res 2014; 74:3556-66. [PMID: 24769442 DOI: 10.1158/0008-5472.can-13-3225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identifying immune escape mechanisms used by tumors may define strategies to sensitize them to immunotherapies to which they are otherwise resistant. In this study, we show that the antiapoptotic gene API5 acts as an immune escape gene in tumors by rendering them resistant to apoptosis triggered by tumor antigen-specific T cells. Its RNAi-mediated silencing in tumor cells expressing high levels of API5 restored antigen-specific immune sensitivity. Conversely, introducing API5 into API5(low) cells conferred immune resistance. Mechanistic investigations revealed that API5 mediated resistance by upregulating FGF2 signaling through a FGFR1/PKCδ/ERK effector pathway that triggered degradation of the proapoptotic molecule BIM. Blockade of FGF2, PKCδ, or ERK phenocopied the effect of API5 silencing in tumor cells expressing high levels of API5 to either murine or human antigen-specific T cells. Our results identify a novel mechanism of immune escape that can be inhibited to potentiate the efficacy of targeted active immunotherapies.
Collapse
Affiliation(s)
- Kyung Hee Noh
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Seok-Ho Kim
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University; Immunotherapy Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jin Hee Kim
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Kwon-Ho Song
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Young-Ho Lee
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Tae Heung Kang
- Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea
| | - Hee Dong Han
- Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea; Center for RNA Interference and Non-coding RNA
| | - Anil K Sood
- Department of Gynecologic Oncology and Center for RNA Interference and Non-coding RNA
| | - Joanne Ng
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul
| | - Kwanghee Kim
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul; Department of Melanoma Medical Oncology and Immunology, U.T. MD Anderson Cancer Center, Houston Texas; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chung Hee Sonn
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul
| | - Vinay Kumar
- Department of Pathology, University of Chicago, Chicago, Illinois; and
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, U.T. MD Anderson Cancer Center, Houston Texas; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kyung-Mi Lee
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul;
| | - Tae Woo Kim
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University; Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul;
| |
Collapse
|
25
|
Zhou S, Ye W, Shao Q, Qi Y, Zhang M, Liang J. Prognostic significance of XIAP and NF-κB expression in esophageal carcinoma with postoperative radiotherapy. World J Surg Oncol 2013; 11:288. [PMID: 24188482 PMCID: PMC3819256 DOI: 10.1186/1477-7819-11-288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 10/25/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND X-chromosome-linked IAP (XIAP) and nuclear factor-κB (NF-κB) are frequently overexpressed and correlate closely with chemoradiotherapy resistance and poor prognosis in many cancers. However, the significance of XIAP and NF-κB expression in radiotherapy sensitivity and its effect on the prognosis of esophageal squamous cell carcinoma (ESCC) are still unknown. The aim of this study was to examine XIAP and NF-κB status in ESCC patients undergoing postoperative radiotherapy after radical surgery, and to evaluate their clinical significance. METHODS A total of 78 ESCC patients treated with postoperative radiotherapy after radical surgery were enrolled in this study. We immunohistochemically investigated the expression of XIAP and NF-κB in tissues from enrolled patients with specific antibodies. Then, the correlations among XIAP, NF-κB expression, clinicopathological features and its prognostic relevance in ESCC were analyzed. RESULTS The increased expression of XIAP and NF-κB in ESCC tissues were clearly correlated with the tumor differentiation and p-TNM stage. Significant positive correlations were found between the expression status of XIAP and NF-κB (r = 0.779, P = 0.000). Overexpression of XIAP and NF-κB and metastasis were significantly associated with shorter overall survival times in univariate analysis (P < 0.05). Multivariate analysis also confirmed that XIAP expression was an independent prognostic factor (P = 0.005). CONCLUSIONS XIAP and NF-κB are intensively expressed in ESCC. The level of XIAP is positively correlated to progression and prognosis of ESCC.
Collapse
Affiliation(s)
| | | | | | | | - Mingxin Zhang
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an, Shaanxi, China.
| | | |
Collapse
|
26
|
Update on Targets and Novel Treatment Options for High-Grade Osteosarcoma and Chondrosarcoma. Hematol Oncol Clin North Am 2013; 27:1021-48. [DOI: 10.1016/j.hoc.2013.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Liu HT, Lu CL. Effect of silencing Bcl-2 expression by small interfering RNA on radiosensitivity of gastric cancer BGC823 cells. ASIAN PAC J TROP MED 2013; 6:49-52. [PMID: 23317885 DOI: 10.1016/s1995-7645(12)60199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the influence of silencing Bcl-2 expression by small interfering RNA (siRNA) on Bcl-2 protein expression, cell apoptosis rate and radiosensitivity of gastric cancer BGC823 cells. METHODS siRNA segment for Bcl-2 gene was designed and synthesized, then was induced into gastric cancer BGC 823 cells by liposome transfection. Bcl-2 protein expression was detected by Western Blotting. After X radiation, flow cytometry and clone forming assay were used to determine the effects of RNA interference on BGC823 cell apoptosis rate and radiosensitivity. RESULT After the transfection of Bcl-2 siRNA, the positive expression rate of Bcl-2 protein in BGC823 cells was (35.45±2.35)%. Compared with the control group and negative siRNA transfection group, the rate was significantly decreased (P<0.01). The apoptosis rate of BGC823-RNAi cell was (10.81±0.91)%, which was significantly higher than the control group and negative siRNA transfection group (P<0.01). After 48h X radiation, the apoptosis rate of BGC823-RNAi was (28.91±1.40)%, which was significantly higher than the control group and the group without radiation (P<0.01). During clone forming assay D(0), D(q) and SF(2) values in Bcl-2 siRNA1 transfection group were all lower than those in the control group. The radiosensitivity ratio was 1.28 (the ratio of D(0)) and 1.60 (the ratio of D(q)). CONCLUSIONS Specific siRNA of Bcl-2 gene can effectively inhibit the expression of Bcl-2 gene, enhance the radiosensitivity and apoptosis of gastric cancer BGC823 cells, having good clinical application perspective.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of General Surgery, Zhengzhou People's Hospital, Zhengzhou 450001, China
| | | |
Collapse
|
28
|
Kunze D, Erdmann K, Froehner M, Wirth MP, Fuessel S. Enhanced inhibition of bladder cancer cell growth by simultaneous knockdown of antiapoptotic Bcl-xL and survivin in combination with chemotherapy. Int J Mol Sci 2013; 14:12297-312. [PMID: 23749114 PMCID: PMC3709786 DOI: 10.3390/ijms140612297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023] Open
Abstract
The overexpression of antiapoptotic genes, such as Bcl-xL and survivin, contributes to the increased survival of tumor cells and to the development of treatment resistances. In the bladder cancer cell lines EJ28 and J82, the siRNA-mediated knockdown of survivin reduces cell proliferation and the inhibition of Bcl-xL sensitizes these cells towards subsequent chemotherapy with mitomycin C and cisplatin. Therefore, the aim of this study was to analyze if the simultaneous knockdown of Bcl-xL and survivin might represent a more powerful treatment option for bladder cancer than the single inhibition of one of these target genes. At 96 h after transfection, reduction in cell viability was stronger after simultaneous inhibition of Bcl-xL and survivin (decrease of 40%-48%) in comparison to the single target treatments (decrease of 29% at best). Furthermore, simultaneous knockdown of Bcl-xL and survivin considerably increased the efficacy of subsequent chemotherapy. For example, cellular viability of EJ28 cells decreased to 6% in consequence of Bcl-xL and survivin inhibition plus cisplatin treatment whereas single target siRNA plus chemotherapy treatments mediated reductions down to 15%-36% only. In conclusion, the combination of simultaneous siRNA-mediated knockdown of antiapoptotic Bcl-xL and survivin-a multitarget molecular-based therapy-and conventional chemotherapy shows great potential for improving bladder cancer treatment.
Collapse
Affiliation(s)
- Doreen Kunze
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Kati Erdmann
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Michael Froehner
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Manfred P. Wirth
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| |
Collapse
|
29
|
Power PF, Mak IWY, Singh S, Popovic S, Gladdy R, Ghert M. ETV5 as a regulator of matrix metalloproteinase 2 in human chondrosarcoma. J Orthop Res 2013; 31:493-501. [PMID: 22968857 DOI: 10.1002/jor.22227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma is a unique type of bone cancer in that it does not respond to chemotherapy or radiation therapy, and therefore many affected patients die from metastatic disease. Metastasis has been correlated with the upregulation of the matrix metalloproteinase (MMP) family of proteases, which can degrade extracellular components. ETV5 is a transcription factor which has shown to be overexpressed in various types of invasive tumors. We hypothesized that ETV5 regulates MMP2 in human chondrosarcoma with the protease acting as a downstream effector. Gene knock-down of ETV5 in human chondrosarcoma cells reduces MMP2 mRNA expression as well as decreased protein production and significantly decreased MMP2 activity. With plasmid transfected ETV5 upregulation, MMP2 expression is similarly upregulated at the gene expression and protein levels. Data from our bone resorption studies revealed that when a matrix metalloproteinase-2 inhibitor is added to the growth media of chondrosarcoma cells, collagen released from bone chips incubated with the cells decreased by 27%. This data suggests that ETV5 has a significant role in regulating MMP2 expression and therefore matrix resorption in human chondrosarcoma, and thus may be a targetable upstream effector of the metastatic cascade in this cancer.
Collapse
Affiliation(s)
- Patricia F Power
- Department of Health Science Graduate Studies, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Kumari R, Li H, Haudenschild DR, Fierro F, Carlson CS, Overn P, Gupta L, Gupta K, Nolta J, Yik JHN, Di Cesare PE. The oncogene LRF is a survival factor in chondrosarcoma and contributes to tumor malignancy and drug resistance. Carcinogenesis 2012; 33:2076-83. [PMID: 22847180 DOI: 10.1093/carcin/bgs254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chondrosarcoma is a form of malignant skeletal tumor of cartilaginous origin. The non-malignant form of the disease is termed chondroma. Correctly distinguishing between the two forms is essential for making therapeutic decisions. However, due to their similar histological appearances and the lack of a reliable diagnostic marker, it is often difficult to distinguish benign tumors from low-grade chondrosarcoma. Therefore, it is necessary to search for a potential marker that has diagnostic and prognostic values in chondrosarcoma. In this study, we demonstrated by immunohistochemistry that elevated leukemia/lymphoma-related factor (LRF) expression was associated with increased malignancy in human chondrosarcoma tissue microarrays. Moreover, siRNA depletion of LRF drastically reduced proliferation of chondrosarcoma cell lines and effectively induced senescence in these cells. This could be attributed to the observation that LRF-depleted cells were arrested at the G(1) phase, and had increased p53 and p21 expression. Moreover, LRF depletion not only drastically reduces the cellular migration and invasion potentials of chondrosarcoma cells but also sensitized these cells to the apoptosis-inducing chemotherapeutic agent doxorubicin. We conclude that LRF is a survival factor in chondrosarcomas and its expression correlates with tumor malignancy and chemoresistance. Our data implicate the potential role of LRF as both a diagnostic marker and therapeutic target for chondrosarcomas.
Collapse
Affiliation(s)
- Ratna Kumari
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
32
|
rAAV Vectors as Safe and Efficient Tools for the Stable Delivery of Genes to Primary Human Chondrosarcoma Cells In Vitro and In Situ. Sarcoma 2012; 2012:347417. [PMID: 22645415 PMCID: PMC3356986 DOI: 10.1155/2012/347417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 12/11/2022] Open
Abstract
Treatment of chondrosarcoma remains a major challenge in orthopaedic oncology. Gene transfer strategies based on recombinant adenoassociated viral (rAAV) vectors may provide powerful tools to develop new, efficient therapeutic options against these tumors. In the present study, we tested the hypothesis that rAAV is adapted for a stable and safe delivery of foreign sequences in human chondrosarcoma tissue by transducing primary human chondrosarcoma cells in vitro and in situ with different reporter genes (E. coli lacZ, firefly luc, Discosoma sp. RFP). The effects of rAAV administration upon cell survival and metabolic activities were also evaluated to monitor possibly detrimental effects of the gene transfer method. Remarkably, we provide evidence that efficient and prolonged expression of transgene sequences via rAAV can be safely achieved in all the systems investigated, demonstrating the potential of the approach of direct application of therapeutic gene vectors as a means to treat chondrosarcoma.
Collapse
|
33
|
Mavrogenis AF, Gambarotti M, Angelini A, Palmerini E, Staals EL, Ruggieri P, Papagelopoulos PJ. Chondrosarcomas revisited. Orthopedics 2012; 35:e379-90. [PMID: 22385450 DOI: 10.3928/01477447-20120222-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chondrosarcomas are malignant bone tumors with pure hyaline cartilage differentiation; myxoid changes, calcification, or ossification may be present. Several subtypes of chondrosarcomas exist. Behavior patterns vary, ranging from slow-growing nonmetastasizing lesions to aggressive metastasizing sarcomas. Symptoms are usually mild, with duration ranging from several months to years, and usually consist of persistent, dull, aching pain or palpable masses. Radiographic findings include bone expansion with cortical thickening, radiolucent areas with variably distributed punctate or ring-like matrix calcifications, cortical erosion or destruction, endosteal scalloping, and scant or absent periosteal reaction; extension into the soft tissue may be present. Histological differential diagnosis from benign cartilaginous lesions can be achieved by increased cellularity, enlarged plump nuclei, binucleated cells, hyperchromatic nuclear pleomorphism, and permeation of cortical or medullary bone. Atypia is usually mild to moderate; necrosis and mitoses can be seen, particularly in high-grade lesions. Adequate surgery is the mainstay of treatment. High-grade and pelvic chondrosarcomas are best managed with wide resection. Because of the low metastatic potential and low local recurrence rate noted with intralesional surgery, low-grade chondrosarcomas can be treated with curettage (with or without treatment of the defect cavity) with a local adjuvant, such as phenol or cryotherapy. Adjuvant chemotherapy may be considered for mesenchymal and dedifferentiated chondrosarcomas. Radiation therapy can be considered after incomplete resection or if resection is not feasible or would cause unacceptable morbidity.
Collapse
Affiliation(s)
- Andreas F Mavrogenis
- First Department of Orthopaedics, ATTIKON University Hospital, Athens University Medical School, 41 Ventouri St, 15562 Holargos, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
34
|
Inhibitor of Apoptosis (IAP) proteins as therapeutic targets for radiosensitization of human cancers. Cancer Treat Rev 2012; 38:760-6. [PMID: 22342104 DOI: 10.1016/j.ctrv.2012.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 01/22/2023]
Abstract
Radiotherapy initiates a variety of signaling events in cancer cells that eventually lead to cell death in case the DNA damage cannot be repaired. However, the signal transduction pathways that mediate cell death in response to radiation-inflicted DNA damage are frequently disturbed in human cancers, contributing to radioresistance. For example, aberrant activation of antiapoptotic programs such as high expression of Inhibitor of Apoptosis (IAP) proteins has been shown to interfere with the efficacy of radiotherapy. Since IAP proteins have been linked to radioresistance in several malignancies, therapeutic targeting of IAP proteins may open new perspectives to overcome radioresistance. Therefore, molecular targeting of IAP proteins may provide novel opportunities to reactivate cell death pathways that mediate radiation-induced cytotoxicity. A number of strategies have been developed in recent years to antagonize IAP proteins for the treatment of cancers. Some of these approaches have already been translated into a clinical application. While IAP protein-targeting agents are currently being evaluated in early clinical trials alone or in combination with conventional chemotherapy, they have not yet been tested in combination with radiation therapy. Therefore, it is a timely subject to discuss the opportunities of antagonizing IAP proteins for radiosensitization. Preclinical studies demonstrating the potential of this concept in relevant in vitro and in vivo models underscore that this combination approach warrants further clinical investigation. Thus, combination protocols using IAP antagonists together with radiotherapy may pave the avenue to more effective radiation-based treatment options for cancer patients.
Collapse
|
35
|
van Oosterwijk JG, Herpers B, Meijer D, Briaire-de Bruijn IH, Cleton-Jansen AM, Gelderblom H, van de Water B, Bovée JVMG. Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance. Ann Oncol 2011; 23:1617-26. [PMID: 22112972 DOI: 10.1093/annonc/mdr512] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chondrosarcomas are malignant cartilage-forming tumors notorious for their resistance to conventional chemo- and radiotherapy. Postulated explanations describe the inaccessibility due to abundant hyaline cartilaginous matrix, presence of multidrug resistance (MDR) pumps, and expression of anti-apoptotic BCL-2 family members. MATERIALS AND METHODS We studied the sensitivity of chondrosarcoma cell lines (SW1353, CH2879, JJ012, OUMS27) and two primary cultures for doxorubicin and cisplatin. We examined the role of extracellular matrix using three-dimensional (3D) pellet models and MDR pump activity using fluorescence-activated cell sorter analysis. The role of BCL-2 family members was investigated using the BH3 mimetic ABT-737. RESULTS Chondrosarcoma cells showed highest resistance to cisplatin. 3D cell pellets, morphologically strongly resembling chondrosarcoma in vivo, confirmed nuclear incorporation of doxorubicin. MDR pump activity was heterogeneous among cultures. Chondrosarcoma cells responded to ABT-737 and combination with doxorubicin led to complete loss of cell viability and apoptosis with cytochrome C release. CONCLUSIONS Despite MDR pump activity and abundance of hyaline cartilaginous matrix, doxorubicin is able to accumulate in the cell nuclei. By repairing the apoptotic machinery, we were able to sensitize chondrosarcoma cells to doxorubicin and cisplatin, indicating an important role for BCL-2 family members in chemoresistance and a promising new treatment strategy for inoperable chondrosarcoma.
Collapse
Affiliation(s)
- J G van Oosterwijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Surmounting chemotherapy and radioresistance in chondrosarcoma: molecular mechanisms and therapeutic targets. Sarcoma 2010; 2011:381564. [PMID: 21234363 PMCID: PMC3018623 DOI: 10.1155/2011/381564] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
Chondrosarcoma, a primary malignancy of bone, has eluded successful treatment with modern chemotherapeutic and radiation regimens. To date, surgical resection of these tumors remains the only curative treatment offered to patients with this diagnosis. Understanding and exploring the nature of chemotherapy and radiation resistance in chondrosarcoma could lead to new molecular targets and more directed therapy for these notoriously difficult-to-treat tumors. Here we review the most current hypotheses regarding the molecular mechanisms mediating chemotherapy and radiation resistance and the future direction of chondrosarcoma therapy research.
Collapse
|
37
|
Abstract
Chondrosarcomas are malignant cartilage tumours. They are poorly responsive to chemotherapy and radiotherapy. Treatment is usually limited to surgical resection; however, survival of patients with high-grade chondrosarcoma is poor, even with wide surgical resection. Induction of apoptosis in chondrosarcoma cells, either directly or by enhancement of the response to chemotherapeutic drugs and radiation, may be a route by which outcome can be improved. In this article, we review potential molecular targets that regulate chondrocyte apoptosis and discuss the experimental evidence for their utility.
Collapse
Affiliation(s)
- Nuor Jamil
- Osteoarticular Research Group, Centre for Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
38
|
Shi Q, Zhang XL, Dai KR, Benderdour M, Fernandes JC. siRNA therapy for cancer and non-lethal diseases such as arthritis and osteoporosis. Expert Opin Biol Ther 2010; 11:5-16. [DOI: 10.1517/14712598.2010.532483] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Böhm B, Hess S, Krause K, Schirner A, Ewald W, Aigner T, Burkhardt H. ADAM15 exerts an antiapoptotic effect on osteoarthritic chondrocytes via up-regulation of the X-linked inhibitor of apoptosis. ACTA ACUST UNITED AC 2010; 62:1372-82. [PMID: 20213810 DOI: 10.1002/art.27387] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the capacity of ADAM15, a disintegrin metalloproteinase that is up-regulated in osteoarthritic (OA) cartilage, to protect chondrocytes against apoptosis induced by growth factor deprivation and genotoxic stress. METHODS Caspase 3/7 activity was determined in primary OA and ADAM15-transfected T/C28a4 chondrocytes upon exposure to the DNA-damaging agent camptothecin or serum withdrawal. Camptothecin-induced cytotoxicity was determined by measuring cellular ATP content. (Anti-)apoptotic proteins were analyzed by immunoblotting, and levels of messenger RNA (mRNA) for X-linked inhibitor of apoptosis (XIAP) were determined using real-time polymerase chain reaction. RNA interference was applied for down-regulation of ADAM15 and XIAP expression. Immunohistochemistry analysis of normal and OA cartilage samples was performed using XIAP- and ADAM15-specific antibodies. RESULTS ADAM15-transfected chondrocytes cultured on a collagen matrix displayed significantly reduced caspase 3/7 activity upon serum or intermittent matrix withdrawal, compared with vector-transfected control cells. Apoptosis induction by camptothecin exposure also led to significantly elevated caspase 3/7 activity and reduced cell viability of the vector-transfected compared with ADAM15-transfected chondrocytes. Increased levels of activated caspase 3 and cleaved poly(ADP-ribose) polymerase were detected in the vector controls. XIAP, an inhibitor of activated caspase 3, was significantly up-regulated ( approximately 3-fold) at the protein and mRNA levels in ADAM15-transfected chondrocytes upon camptothecin treatment. Specific down-regulation of either ADAM15 or XIAP in OA chondrocytes led to significant sensitization to camptothecin-induced caspase 3/7 activity. Immunohistochemical analysis revealed low to moderate XIAP expression in normal specimens and markedly increased XIAP staining, colocalizing with ADAM15, in OA cartilage. CONCLUSION ADAM15 conveys antiapoptotic properties to OA chondrocytes that might sustain their potential to better resist the influence of death-inducing stimuli under pathophysiologic conditions.
Collapse
Affiliation(s)
- Beate Böhm
- Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Clark JCM, Dass CR, Choong PFM. Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg 2009; 79:327-36. [PMID: 19566512 DOI: 10.1111/j.1445-2197.2009.04884.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chondrosarcoma is a primary cancer of bone causing significant morbidity due to local recurrence and limited treatment options. Relatively few chondrosarcoma animal models have been developed, and the only orthotopic model is technically demanding and has limited clinical relevance. The aim of this review is to assess the features of current animal chondrosarcoma models for the purpose of developing new models in which to test adjuvant chondrosarcoma therapy. The available literature on this topic was identified using the PubMed database, and then analysed for relevance to the human chondrosarcoma disease and feasibility in testing new therapeutic agents. Animal-derived chondrosarcoma models comprise predominantly allograft tumour transplanted into the rat (Swarm rat chondrosarcoma) or the hamster. These types of models are less relevant to the human disease and have been more useful for evaluation of chondrosarcoma growth and histology than in developing novel therapeutic agents. The athymic nude mouse has enabled reliable human xenograft transplantation. A number of human chondrosarcoma cell lines have been successfully used to generate tumours in this species, including OUMS-27 and HCS-2/A. Although effective in demonstrating anti-tumour effects of a number of agents, the lack of a representative orthotopic model diminishes overall clinical relevance. More clinically relevant models of human chondrosarcoma progression are required either through transgenic mice or orthotopic human xenograft models.
Collapse
Affiliation(s)
- J C M Clark
- Department of Orthopaedics, University of Melbourne Department of Surgery, St Vincent's Health, Melbourne, Australia
| | | | | |
Collapse
|
41
|
Daugaard S, Christensen LH, Høgdall E. Markers aiding the diagnosis of chondroid tumors: an immunohistochemical study including osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit), and YKL-40. APMIS 2009; 117:518-25. [PMID: 19594492 PMCID: PMC2774148 DOI: 10.1111/j.1600-0463.2009.02461.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 02/23/2008] [Indexed: 12/26/2022]
Abstract
Chondroid tumors comprise a heterogenous group of benign to overt malignant neoplasms, which may be difficult to differentiate from one another by histological examination. A group of 43 such tumors was stained with nine relevant antibodies in an attempt to find consistent marker profile(s) for the different subgroups. Archival material from three extraskeletal myxoid chondrosarcomas, five chordomas, five chondromyxoid fibromas, five chondroblastomas and 25 chondrosarcomas was stained with antibodies against osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit) and YKL-40. All 25 chondrosarcomas showed a positive staining reaction for D2-40, none for actin and CD117, and a partial reactivity for bcl-2 (36%). Chondroblastomas (5/5) and chondromyxoid fibromas (2/5) were the only tumors with a positive reaction for actin, and all chondroblastomas (n=5) and extraskeletal myxoid chondrosarcomas (n=3) were positive for bcl-2. In contrast to all other tumors, two of three extraskeletal myxoid chondrosarcomas were also positive for CD17 and negative for osteonectin, cox-2, mdm-2 and actin. All five chordomas were negative for D2-40 and positive for mdm-2 and YKL-40. The diagnosis of chondrosarcoma may be aided by its positivity for D2-40 and YKL-40 and its lack of reactivity for actin and CD117. This should be seen in the light of no reaction for D2-40 in chordomas and a corresponding lack of reaction for osteonectin, cox-2, mdm-2 and actin in extraskeletal myxoid chondrosarcomas. A convincing immunoreactivity for calponin and/or actin in chondromyxoid fibromas and chondroblastomas may also be helpful in differentiating these tumors from chondrosarcomas.
Collapse
Affiliation(s)
- Søren Daugaard
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark.
| | | | | |
Collapse
|
42
|
Shi D, Shi G, Huang G, Zhang J, Lartigau E. Chemosensitivity of radioresistant cells in the multicellular spheroids of A549 lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:72. [PMID: 19490637 PMCID: PMC2695815 DOI: 10.1186/1756-9966-28-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/02/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The relapse of cancer after radiotherapy is a clinical knotty problem. Previous studies have demonstrated that the elevation of several factors is likely in some way to lead to the development of treatment tolerance, so it is necessary to further explore the problem of re-proliferated radioresistant cells to chemotherapeutic agents. In the present study, we aimed to investigate the chemosensitivity of radioresistant cells originated from the multicellular spheroids of A549 lung adenocarcinoma. METHODS After irradiated with 25 Gy of 6 MV X-ray to A549 multicellular spheroids, whose 10th re-proliferated generations were employed as radioresistant cells, and the control groups were A549 parental cells and MCF7/VCR resistant cells. The chemo-sensitivity test was made by six kinds of chemotherapeutic drugs which were DDP, VDS, 5-Fu, HCP, MMC and ADM respectively, while verapamil (VPL) was used as the reversal agent. Then the treatment effect was evaluated by MTT assay, and the multidrug resistant gene expressions of mdr1 and MRP were measured by RT-PCR. RESULTS Both A549 parental cells and A549 derived radioresistant cells were resistant to DDP, but sensitive to VDS, 5-Fu, HCP, MMC and ADM. The inhibitory rates of VPL to these two types of cell were 98% and 25% respectively (P < 0.001). In addition, without drugs added, the absorbance value (A value) of A549 parental cells was 2-folds higher than that of their radioresistant cells (P < 0.001). As to the MCF7/VCR cells, they were resistant to DDP and VDS, but slight sensitive to MMC, ADM, 5-Fu, and HCP with 80% of inhibitory rate to VPL. The subsequent RT-PCR demonstrated that the Mdr1/beta2-MG and MRP/beta2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCF7/VCR cells were 35 and 4.36. CONCLUSION The chemosensitivity of A549 radioresistant cells had not changed markedly, and the decreased sensitivity to VPL could not be explained by the gene expression of mdr1 and MRP. It is possible that the changes in the cell membrane and decreased proliferate ability might be attributed to the resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to radioresistant cells. Therefore, the new biological strategy needs to be developed to treat recurring radioresistant tumor in combination with chemotherapy.
Collapse
Affiliation(s)
- Degang Shi
- Cancer Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.
| | | | | | | | | |
Collapse
|
43
|
Kim DW, Kim KO, Shin MJ, Ha JH, Seo SW, Yang J, Lee FY. siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells. Mol Cancer 2009; 8:28. [PMID: 19445670 PMCID: PMC2689171 DOI: 10.1186/1476-4598-8-28] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High expression of P-glycoprotein is one of the well-known mechanisms of chemoresistance in chondrosarcomas. However, the role of antiapoptotic proteins, a common mechanism responsible for chemoresistance in other tumors, has not been well studied in chondrosarcomas. We examined the importance of P-glycoprotein and antiapoptotic proteins in the chemoresistance to doxorubicin of two Grade II chondrosarcoma cell lines, JJ012 and SW1353. RESULTS We confirmed that both chondrosarcoma cell types expressed P-glycoprotein and antiapoptotic proteins (Bcl-2, Bcl-xL and XIAP). siRNA knockdown as well as pharmacologic inhibitors of cell survival proteins (Bcl-2, Bcl-xL and XIAP) enhanced apoptosis of chemoresistant chondrosarcoma cells by up to 5.5 fold at 0.1 micromol and 5.5 fold at 1 micromol doxorubicin. These chemosensitizing effects were comparable to those of P-glycoprotein inhibition by siRNA or pharmacologic inhibitor. CONCLUSION These findings suggest that antiapoptotic proteins play a significant role in the chemoresistance of chondrosarcoma cells independent of P-glycoprotein. Based on the results, a new siRNA-based therapeutic strategy targeting antiapoptotic genes can be designed to overcome the chemoresistance of chondrosarcomas which is often conferred by P-glycoprotein.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Orthopaedic Surgery, The Center for Orthopaedic Research, Columbia University, New York, NY 10032,
| | | | | | | | | | | | | |
Collapse
|
44
|
Evans CH, Ghivizzani SC, Robbins PD. Orthopedic gene therapy in 2008. Mol Ther 2009; 17:231-44. [PMID: 19066598 PMCID: PMC2835052 DOI: 10.1038/mt.2008.265] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/26/2008] [Indexed: 02/07/2023] Open
Abstract
Orthopedic disorders, although rarely fatal, are the leading cause of morbidity and impose a huge socioeconomic burden. Their prevalence will increase dramatically as populations age and gain weight. Many orthopedic conditions are difficult to treat by conventional means; however, they are good candidates for gene therapy. Clinical trials have already been initiated for arthritis and the aseptic loosening of prosthetic joints, and the development of bone-healing applications is at an advanced, preclinical stage. Other potential uses include the treatment of Mendelian diseases and orthopedic tumors, as well as the repair and regeneration of cartilage, ligaments, and tendons. Many of these goals should be achievable with existing technologies. The main barriers to clinical application are funding and regulatory issues, which in turn reflect major safety concerns and the opinion, in some quarters, that gene therapy should not be applied to nonlethal, nongenetic diseases. For some indications, advances in nongenetic treatments have also diminished enthusiasm. Nevertheless, the preclinical and early clinical data are impressive and provide considerable optimism that gene therapy will provide straightforward, effective solutions to the clinical management of several common debilitating disorders that are otherwise difficult and expensive to treat.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
45
|
McLoughlin GS, Sciubba DM, Wolinsky JP. Chondroma/Chondrosarcoma of the Spine. Neurosurg Clin N Am 2008; 19:57-63. [DOI: 10.1016/j.nec.2007.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Harrington K, Jankowska P, Hingorani M. Molecular Biology for the Radiation Oncologist: the 5Rs of Radiobiology meet the Hallmarks of Cancer. Clin Oncol (R Coll Radiol) 2007; 19:561-71. [PMID: 17591437 DOI: 10.1016/j.clon.2007.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/20/2007] [Indexed: 12/25/2022]
Abstract
Recent advances in our understanding of the biology of cancer have provided enormous opportunities for the development of novel therapies against specific molecular targets. It is likely that most of these targeted therapies will have only modest single agent activities but may have the potential to accentuate the therapeutic effects of ionising radiation. In this introductory review, the 5Rs of classical radiobiology are interpreted in terms of their relationship to the hallmarks of cancer. Future articles will focus on the specific hallmarks of cancer and will highlight the opportunities that exist for designing new combination treatment regimens.
Collapse
Affiliation(s)
- K Harrington
- The Institute of Cancer Research, Targeted Therapy Laboratory, Cancer Research UK, Centre for Cell and Molecular Biology, London, UK.
| | | | | |
Collapse
|