1
|
Lee D, Greer SE, Dudley AT. Development of the mechanoresponsive pericellular matrix of chondrons. SCIENCE ADVANCES 2025; 11:eado6644. [PMID: 40315311 PMCID: PMC12047428 DOI: 10.1126/sciadv.ado6644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Physical properties of cartilage are conferred by the composition and ultrastructure of the extracellular matrix. This study focuses on the development of the pericellular matrix (PCM), a domain that directly contacts the chondrocyte and is a key regulator of biomechanical and biochemical signaling. Using three-dimensional cell culture, microfluidic cell compression platforms, and genetic mouse models, we demonstrated that collagen VI is initially assembled at the cell surface and then displaced to form a shell at the PCM-territorial matrix boundary. Cell surface-bound hyaluronan is crucial for the assembly process, and hyaluronan-aggrecan complexes drive displacement. Integrin adhesion is not required early but is crucial to determine the final placement of the collagen VI shell. Dynamic compression accelerated PCM maturation except in aggrecan mutants. Together, these findings provide key insights into the development of the mechanosensitive PCM and establish an in vitro platform to support studies of matrix biology in normal and disease models.
Collapse
Affiliation(s)
| | - Sydney E. Greer
- Department of Genetics, Cell Biology and Anatomy and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology and Anatomy and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Ren N, Zhang Z, Li Y, Zheng P, Cheng H, Luo D, Zhang J, Zhang H. Effect of hip dysplasia on the development of the femoral head growth plate. Front Pediatr 2023; 11:1247455. [PMID: 37908967 PMCID: PMC10613681 DOI: 10.3389/fped.2023.1247455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose The purpose of this study was to observe whether developmental dysplasia of the hip (DDH) affects the development of the femoral head growth plate and to analyze the risk factors. Methods We selected female patients aged between 11 and 20 years with unilateral DDH and unclosed femoral head growth plate (s). The selected patients underwent anteroposterior radiography of the hip joint to compare the degree of development of the femoral head growth plate on both sides and to identify risk factors that affect the development of the growth plate in the femoral head. Results We included 48 female patients with unilateral DDH, with an average age of 14 years (range: 11.1-18.5 years) and an average BMI of 20.4 kg/m² (range: 15.5 kg/m²-27.9 kg/m²). Among them, 23 patients had earlier development of the femoral head growth plate on the affected side than on the healthy side, while the degree of development of the femoral head growth plate in 25 patients was the same as that on the contralateral side. When the Tönnis angle was greater than 29.5°C and/or the Reimers migration index was greater than 48.5%, there was a statistically significant difference in the acceleration of femoral head growth plate development. Conclusion An abnormal relative position of the acetabulum-femoral head caused by DDH can accelerate closure of the femoral head growth plate in immature female patients. The risk factors are a Tönnis angle greater than 29.5°C and/or Reimers migration index greater than 48.5%.
Collapse
Affiliation(s)
- Ningtao Ren
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Zhendong Zhang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Li
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Ping Zheng
- Department of Orthopedics, Fuzhou No.2 General Hospital (Fuzhou No.2 Hospital), Fuzhou, China
| | - Hui Cheng
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Dianzhong Luo
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Jianli Zhang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Alonso MG, Yawny A, Bertolino G. A numerical study towards shape memory alloys application in orthotic management of pediatric knee lateral deviations. Sci Rep 2023; 13:2134. [PMID: 36747043 PMCID: PMC9902535 DOI: 10.1038/s41598-023-29254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Exerting a constant load would likely improve orthosis effectiveness in treating knee lateral deviations during childhood and early adolescence. Shape memory alloys are potential candidates for such applications due to their so called pseudoelastic effect. The present study aims to quantitatively define the applicable mechanical loads, in order to reduce treatment duration while avoiding tissular damage and patient discomfort. This is essential for performing a more efficient design of correction devices. We use a patient-specific finite elements model of a pediatric knee to determine safe loading levels. The achievable correction rates are estimated using a stochastic three-dimensional growth model. Results are compared against those obtained for a mechanical stimulus decreasing in proportion to the achieved correction, emulating the behavior of conventional orthoses. A constant flexor moment of 1.1 Nm is estimated to change femorotibial angle at a rate of (7.4 ± 4.6) deg/year (mean ± std). This rate is similar to the achieved by more invasive growth modulation methods, and represents an improvement in the order of 25% in the necessary time for reducing deformities of (10 ± 5) deg by half, as compared with conventional orthoses.
Collapse
Affiliation(s)
- M G Alonso
- División Física de Metales, CNEA, 8400, Bariloche, Argentina.
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina.
| | - A Yawny
- División Física de Metales, CNEA, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina
- CONICET, Patagonia Norte, 8400, Bariloche, Argentina
| | - G Bertolino
- División Física de Metales, CNEA, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina
- CONICET, Patagonia Norte, 8400, Bariloche, Argentina
| |
Collapse
|
4
|
Ahmad F, Torres-Gonzalez L, Sabet A, Simcock X, Fernandez JJ. Avascular Necrosis of an Adolescent Distal Radius: A Literature Review. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023. [DOI: 10.1016/j.jhsg.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
|
5
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
6
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
7
|
Alonso G, Yawny A, Bertolino G. How do bones grow? A mathematical description of the mechanobiological behavior of the epiphyseal plate. Biomech Model Mechanobiol 2022; 21:1585-1601. [PMID: 35882677 DOI: 10.1007/s10237-022-01608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Growth modulation is an emerging method for the treatment of skeletal deformities originating in the long bones or the vertebral bodies. It requires the controlled application of mechanical loads to the affected bone, causing an alteration of the growth and ossification process occurring in a cartilaginous region called epiphyseal growth plate or physis. In order to avoid the possibility of under- or over-correction, quantification of the applied forces is necessary. Pursuing this goal, here we propose a phenomenological model of mechanobiological effects on the epiphyseal growth plate, based on the observed similarity between the mechanobiologically induced growth and viscoelastic material behavior. The model incorporates mechanical loading effects on growth direction, growth rate and ossification speed; it also allows to evaluate the occurrence of transient effects. Model consistency was tested against a rather large set of experiments existing in the literature. A generic simplified geometrical model of bones was established for this. Analytical solutions for growth and ossification evolution were obtained for different loading conditions, allowing to test the ability of the model to describe bone growth under various kinds of mechanical loading conditions. Model-predicted changes regarding epiphyseal growth plate thickness as well as longitudinal growth speed are consistent with experiments in which static tension or compression were applied to long bones. Results suggest that when the mechanical load is sinusoidally variable, conflicting data existing in the literature could be explained by a previously unconsidered effect of the the applied load initial phase. The model can accurately fit data regarding torsional loads effects on growth. Mechanobiological data for humans is very scarce. For this reason, when possible, the model parameters values were estimated, for the proposed generic geometry, after growth measurements in animal models available in the literature. Although it is not possible to assert their validity for humans, the proposed model along with the obtained parameters values give a rational foundation to be used in more advanced computational studies.
Collapse
Affiliation(s)
- Gastón Alonso
- División Física de Metales, CNEA, Centro Atómico Bariloche, Bariloche, 8400, Río Negro, Argentina. .,Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Alejandro Yawny
- División Física de Metales, CNEA, Centro Atómico Bariloche, Bariloche, 8400, Río Negro, Argentina.,CONICET, Buenos Aires, Argentina.,Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela Bertolino
- División Física de Metales, CNEA, Centro Atómico Bariloche, Bariloche, 8400, Río Negro, Argentina.,CONICET, Buenos Aires, Argentina.,Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
8
|
Miyamoto S, Yoshikawa H, Nakata K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep 2021; 15:101088. [PMID: 34141832 PMCID: PMC8188257 DOI: 10.1016/j.bonr.2021.101088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Mechanical loading contributes to bone development, growth, and metabolism. However, the mechanisms underlying long bone mineralization via changes in loading during the growth period are unclear. The aim of the present study was to investigate the regulatory mechanisms underlying endochondral ossification and endosteal mineralization by developing an ex vivo organ culture model with cyclic axial mechanical loads. The metacarpal bones of 3-week-old C57BL/6 mice were exposed to mechanical loading (0, 7.8, and 78 mN) for 1 h/day for 4 days. Histomorphometry revealed that axial mechanical loading regulated the thickness of the calcified zone in the growth plate and endosteal mineralization in the diaphysis in a load-dependent manner. Mechanical loading also resulted in load-dependent upregulation of endochondral ossification and bone mineralization-related genes, including bone morphogenetic protein 2 (Bmp2). Recombinant human BMP-2 administration caused similar changes in tissue structures. Conversely, inhibition of the BMP-Smad pathway diminished the stimulatory effects of mechanical loading and BMP-2 administration, suggesting that the effects of mechanical loading may be exerted through activation of the BMP-Smad pathway with the results of gene ontology and pathway analyses. Mechanical loading increased alkaline phosphatase activity and decreased carbonic anhydrase IX (Car9) mRNA expression, resulting in a significant pH increase in the culture supernatant. We hypothesize that, through activation of the BMP-Smad pathway, mechanical loading downregulates Car9, which may alkalize the local milieu, thereby inducing bone formation and long bone mineralization. Our results showed that cyclic axial mechanical loading increased endochondral ossification and endosteal mineralization in developing mouse long bones, which may have resulted from changes in the pH, ALP activity, and Pi/PPi of the extracellular environment. These findings advance our understanding of the regulation of mineralization mechanisms by mechanical loading mediated through activation of the BMP-Smad pathway.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
D'Andrea CR, Alfraihat A, Singh A, Anari JB, Cahill PJ, Schaer T, Snyder BD, Elliott D, Balasubramanian S. Part 1. Review and meta-analysis of studies on modulation of longitudinal bone growth and growth plate activity: A macro-scale perspective. J Orthop Res 2021; 39:907-918. [PMID: 33377536 DOI: 10.1002/jor.24976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 02/04/2023]
Abstract
Growth modulation is an emerging method for treatment of angular skeletal deformities such as adolescent idiopathic scoliosis (AIS). The Hueter-Volkmann law, by which growth is stimulated in tension and inhibited in compression, is widely understood, and applied in current growth-modulating interventions such as anterior vertebral body tethering (AVBT) for AIS. However, without quantification of the growth rate effects of tension or compression, the possibility of under- or over- correction exists. A definitive mechanical growth modulation relationship relating to treatment of such skeletal deformities is yet to exist, and the mechanisms by which growth rate is regulated and altered are not fully defined. Review of current literature demonstrates that longitudinal (i.e., lengthwise) growth rate in multiple animal models depend on load magnitude, anatomical location, and species. Additionally, alterations in growth plate morphology and viability vary by loading parameters such as magnitude, frequency, and whether the load was applied persistently or intermittently. The aggregate findings of the reviewed studies will assist in work towards increasingly precise and clinically successful growth modulation methods. Part 1 of this review focuses on the effects of mechanical loading, species, age, and anatomical location on the macro-scale alterations in longitudinal bone growth, as well as factors that affect growth plate material properties. Part 2 considers the effects on micro-scale alterations in growth plate morphology such as zone heights and proportions, chondrocyte viability, and related gene and protein expression.
Collapse
Affiliation(s)
- Christian R D'Andrea
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ausilah Alfraihat
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Anita Singh
- Department of Biomedical Engineering, Widener University, Chester, Pennsylvania, USA
| | - Jason B Anari
- Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Patrick J Cahill
- Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas Schaer
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dawn Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Lee D, Erickson A, Dudley AT, Ryu S. Mechanical stimulation of growth plate chondrocytes: Previous approaches and future directions. EXPERIMENTAL MECHANICS 2019; 59:1261-1274. [PMID: 31787777 PMCID: PMC6884322 DOI: 10.1007/s11340-018-0424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Growth plate cartilage resides near the ends of long bones and is the primary driver of skeletal growth. During growth, both intrinsically and extrinsically generated mechanical stresses act on chondrocytes in the growth plate. Although the role of mechanical stresses in promoting tissue growth and homeostasis has been strongly demonstrated in articular cartilage of the major skeletal joints, effects of stresses on growth plate cartilage and bone growth are not as well established. Here, we review the literature on mechanobiology in growth plate cartilage at macroscopic and microscopic scales, with particular emphasis on comparison of results obtained using different methodological approaches, as well as from whole animal and in vitro experiments. To answer these questions, macroscopic mechanical stimulators have been developed and applied to study mechanobiology of growth plate cartilage and chondrocytes. However, the previous approaches have tested a limited number of stress conditions, and the mechanobiology of a single chondrocyte has not been well studied due to limitations of the macroscopic mechanical stimulators. We explore how microfluidics devices can overcome these limitations and improve current understanding of growth plate chondrocyte mechanobiology. In particular, microfluidic devices can generate multiple stress conditions in a single platform and enable real-time monitoring of metabolism and cellular behavior using optical microscopy. Systematic characterization of the chondrocytes using microfluidics will enhance our understanding of how to use mechanical stresses to control the bone growth and the properties of tissue-engineered growth plate cartilage.
Collapse
Affiliation(s)
- D. Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
| | - A. Erickson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
| | - A. T. Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Corresponding Authors:; Tel: +1-402-559-2820. ; Tel: +1-402-472-4313
| | - S. Ryu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588
- Corresponding Authors:; Tel: +1-402-559-2820. ; Tel: +1-402-472-4313
| |
Collapse
|
11
|
Lee D, Erickson A, Dudley AT, Ryu S. A Microfluidic Platform for Stimulating Chondrocytes with Dynamic Compression. J Vis Exp 2019. [PMID: 31566611 DOI: 10.3791/59676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mechanical stimuli are known to modulate biological functions of cells and tissues. Recent studies have suggested that compressive stress alters growth plate cartilage architecture and results in growth modulation of long bones of children. To determine the role of compressive stress in bone growth, we created a microfluidic device actuated by pneumatic pressure, to dynamically (or statically) compress growth plate chondrocytes embedded in alginate hydrogel cylinders. In this article, we describe detailed methods for fabricating and characterizing this device. The advantages of our protocol are: 1) Five different magnitudes of compressive stress can be generated on five technical replicates in a single platform, 2) It is easy to visualize cell morphology via a conventional light microscope, 3) Cells can be rapidly isolated from the device after compression to facilitate downstream assays, and 4) The platform can be applied to study mechanobiology of any cell type that can grow in hydrogels.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet
| | - Andrew T Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center;
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln;
| |
Collapse
|
12
|
Vaca-González JJ, Guevara JM, Moncayo MA, Castro-Abril H, Hata Y, Garzón-Alvarado DA. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. Cartilage 2019; 10:157-172. [PMID: 28933195 PMCID: PMC6425540 DOI: 10.1177/1947603517730637] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
Collapse
Affiliation(s)
- Juan J. Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel A. Moncayo
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Hector Castro-Abril
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Yoshie Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
13
|
Vaca-González JJ, Escobar JF, Guevara JM, Hata YA, Gallego Ferrer G, Garzón-Alvarado DA. Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry 2018; 126:1-11. [PMID: 30471483 DOI: 10.1016/j.bioelechem.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
The growth plate is a cartilaginous layer present from the gestation period until the end of puberty where it ossifies joining diaphysis and epiphysis. During this period several endocrine, autocrine, and paracrine processes within the growth plate are carried out by chondrocytes; therefore, a disruption in cellular functions may lead to pathologies affecting bone development. It is known that electric fields impact the growth plate; however, parameters such as stimulation time and electric field intensity are not well documented. Accordingly, this study presents a histomorphometrical framework to assess the effect of electric fields on chondroepiphysis explants. Bones were stimulated with 3.5 and 7 mV/cm, and for each electric field two exposure times were tested for 30 days (30 min and 1 h). Results evidenced that electric fields increased the hypertrophic zones compared with controls. In addition, a stimulation of 3.5 mV/cm applied for 1 h preserved the columnar cell density and its orientation. Moreover, a pre-hypertrophy differentiation in the center of the chondroepiphysis was observed when explants were stimulated during 1 h with both electric fields. These findings allow the understanding of the effect of electrical stimulation over growth plate organization and how the stimulation modifies chondrocytes morphophysiology.
Collapse
Affiliation(s)
- J J Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia; Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J F Escobar
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - J M Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Y A Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - D A Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia; Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
14
|
Lee D, Erickson A, You T, Dudley AT, Ryu S. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology. LAB ON A CHIP 2018; 18:2077-2086. [PMID: 29897088 PMCID: PMC6467204 DOI: 10.1039/c8lc00320c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | | | | | | | | |
Collapse
|
15
|
Zimmermann EA, Bouguerra S, Londoño I, Moldovan F, Aubin CÉ, Villemure I. In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression. J Biomech 2017; 56:76-82. [PMID: 28365062 DOI: 10.1016/j.jbiomech.2017.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 03/05/2017] [Indexed: 01/31/2023]
Abstract
Longitudinal bone growth in children/adolescents occurs through endochondral ossification at growth plates and is influenced by mechanical loading, where increased compression decreases growth (i.e., Hueter-Volkmann Law). Past in vivo studies on static vs dynamic compression of growth plates indicate that factors modulating growth rate might lie at the cellular level. Here, in situ viscoelastic deformation of hypertrophic chondrocytes in growth plate explants undergoing stress-controlled static vs dynamic loading conditions was investigated. Growth plate explants from the proximal tibia of pre-pubertal rats were subjected to static vs dynamic stress-controlled mechanical tests. Stained hypertrophic chondrocytes were tracked before and after mechanical testing with a confocal microscope to derive volumetric, axial and lateral cellular strains. Axial strain in hypertrophic chondrocytes was similar for all groups, supporting the mean applied compressive stress's correlation with bone growth rate and hypertrophic chondrocyte height in past studies. However, static conditions resulted in significantly higher lateral (p<0.001) and volumetric cellular strains (p≤0.015) than dynamic conditions, presumably due to the growth plate's viscoelastic nature. Sustained compression in stress-controlled static loading results in continued time-dependent cellular deformation; conversely, dynamic groups have less volumetric strain because the cyclically varying stress limits time-dependent deformation. Furthermore, high frequency dynamic tests showed significantly lower volumetric strain (p=0.002) than low frequency conditions. Mechanical loading protocols could be translated into treatments to correct or halt progression of bone deformities in children/adolescents. Mimicking physiological stress-controlled dynamic conditions may have beneficial effects at the cellular level as dynamic tests are associated with limited lateral and volumetric cellular deformation.
Collapse
Affiliation(s)
- Elizabeth A Zimmermann
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada; Research Center at Sainte-Justine University Hospital, Montréal, Canada
| | - Séréna Bouguerra
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Irene Londoño
- Research Center at Sainte-Justine University Hospital, Montréal, Canada
| | - Florina Moldovan
- Research Center at Sainte-Justine University Hospital, Montréal, Canada; Department of Dental Medicine, University of Montréal, Montréal, Canada
| | - Carl-Éric Aubin
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada; Research Center at Sainte-Justine University Hospital, Montréal, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada; Research Center at Sainte-Justine University Hospital, Montréal, Canada.
| |
Collapse
|
16
|
Sun K, Liu F, Wang J, Guo Z, Ji Z, Yao M. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes. In Vitro Cell Dev Biol Anim 2016; 53:141-148. [PMID: 27605110 DOI: 10.1007/s11626-016-0090-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/14/2016] [Indexed: 11/27/2022]
Abstract
The study is aimed to investigate the effect of stretch stress with different intensities on the differentiation and apoptosis of human plate chondrocytes. In the present study, the human epiphyseal plate chondrocytes were isolated and cultured in vitro. Toluidine blue staining and type II collagen immunohistochemical staining were used to identify the chondrocytes. Mechanical stretch stresses with different intensities were applied to intervene cells at 0-, 2000-, and 4000-μ strain for 6 h via a four-point bending system. The expression levels of COL2, COL10, Bax, Bcl-2, and PTHrp were detected by quantitative RT-PCR. Under the intervention of 2000-μ strain, the expression levels of COL2, COL10, and PTHrp increased significantly compared with the control group (P < 0.05), and the expression level of PCNA was also increased, but the difference was not statistically significant (P > 0.05). Under 4000-μ strain, however, the expression levels of PCNA, COL2, and PTHrp decreased significantly compared with the control group (P < 0.05), and the expression level of COL10 decreased slightly (P > 0.05). The ratio of Bcl-2/Bax gradually increased with the increase of stimulus intensity; both of the differences were detected to be statistically significant (P < 0.05). In conclusion, the apoptosis of growth plate chondrocytes is regulated by mechanical stretch stress. Appropriate stretch stress can effectively promote the cells' proliferation and differentiation, while excessive stretch stress inhibits the cells' proliferation and differentiation, even promotes their apoptosis. PTHrp may play an important role in this process.
Collapse
Affiliation(s)
- Keming Sun
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Fangna Liu
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Junjian Wang
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Zhanhao Guo
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Zejuan Ji
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China
| | - Manye Yao
- Department of Pediatric Orthopedics, Zhengzhou Children's Hospital, Gangdu Street 255, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
17
|
Zhou W, Liu G, Yang S, Ye S. Investigation for Effects of Cyclical Dynamic Compression on Matrix Metabolite and Mechanical Properties of Chondrocytes Cultured in Alginate. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Shunan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
18
|
Kaviani R, Londono I, Parent S, Moldovan F, Villemure I. Compressive mechanical modulation alters the viability of growth plate chondrocytes in vitro. J Orthop Res 2015; 33:1587-93. [PMID: 26019113 DOI: 10.1002/jor.22951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/25/2015] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the effect of compressive modulation parameters (mode, magnitude, duration, as well as frequency and amplitude for cyclic modulation) on the viability of growth plate chondrocytes. Swine ulnar growth plate explants (n = 60) were randomly distributed among 10 groups: baseline (n = 1 × 6); culture control (n = 1 × 6); static (n = 3 × 6); and dynamic (n = 5 × 6). Static and dynamic samples were modulated in vitro using a bioreactor. Different compression magnitudes (0.1 MPa or 0.2 MPa), durations (12 h or 24 h), frequencies (0.1 Hz or 1.0 Hz), and amplitudes (30% or 100%) were investigated. Viability was assessed by automatic quantification of number of live/dead cells from confocal images of Live/Dead labeled tissues. Chondrocyte viability was found to be dependent on compression magnitude, duration, frequency, and amplitude in a way that increasing each parameter decreased viability in certain zones of growth plate. More specifically, proliferative and hypertrophic chondrocytes were found to be more sensitive to the applied compression. This study provides an in vitro protocol for studying the effects of compressive modulation on biomechanical and biological responses of growth plate explants, which will be useful in finding efficient and non-detrimental parameters for mechanical modulation of bone growth exploited in scoliosis fusionless treatments.
Collapse
Affiliation(s)
- Rosa Kaviani
- Mechanical Engineering Department, Biomedical Engineering Institute, Ecole Polytechnique of Montreal, Montreal, Quebec, Canada.,Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
| | - Irene Londono
- Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
| | - Stefan Parent
- Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Florina Moldovan
- Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,Department of Stomatology, University of Montreal, Montreal, Canada
| | - Isabelle Villemure
- Mechanical Engineering Department, Biomedical Engineering Institute, Ecole Polytechnique of Montreal, Montreal, Quebec, Canada.,Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation. Biomech Model Mechanobiol 2015; 15:933-46. [DOI: 10.1007/s10237-015-0733-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
20
|
Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device. Spine (Phila Pa 1976) 2015; 40:369-76. [PMID: 25584943 DOI: 10.1097/brs.0000000000000777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Computer simulations to analyze the biomechanics of a novel compression-based fusionless device (hemistaple) that does not cross the disc for the treatment of adolescent idiopathic scoliosis. OBJECTIVE To biomechanically model, simulate, and analyze the hemistaple action using a human finite element model (FEM). SUMMARY OF BACKGROUND DATA A new fusionless growth sparing instrumentation device (hemistaple), which locally compresses the growth plate without spanning the disc, was previously developed and successively tested on different animal models. METHODS Patient-specific FEMs of the spine, rib cage, and pelvis were built using radiographs of 10 scoliotic adolescents (11.7 ± 0.9 yr; Cobb thoracic: 35° ± 7°, lumbar: 24° ± 6°). A validated algorithm allowed simulating the growth (0.8-1.1 mm/yr/vertebra) and growth modulation process (Hueter-Volkmann principle) during a period of 2 years. Four instrumentation configurations on the convex curves were individually simulated (Config 1: 5 thoracic vertebrae with hemistaples on superior endplates; Config 2: same as Config 1 with hemistaples on both endplates; Config 3: same as Config 1 + 4 lumbar vertebrae; Config 4: same as Config 2 + 4 lumbar vertebrae). RESULTS Without hemistaples, on average the thoracic and lumbar Cobb angles, respectively, progressed from 35° to 56° and 24° to 30°, whereas the vertebral wedging at curve apices progressed from 5° to 12°. With the hemistaple Config 1, the Cobb angles progressed but were limited to 42° and 26°, whereas the wedging ended at 8°. With Config 3, Cobb and wedging were kept nearly constant (38°, 21°, 7°). With hemistaples on both endplates (Config 2, Config 4), the Cobb and wedging were all reduced (thoracic Cobb for Config 2 and 4: 24° and 15°; lumbar Cobb: 21° and 11°; wedging: 2° and 1°). CONCLUSION This study suggests that the hemistaple has the biomechanical potential to control the scoliosis progression and highlights the importance of the instrumentation configuration to correct the spinal deformities. It biomechanically supports the new fusionless device concept as an alternative for the early treatment of idiopathic scoliosis. LEVEL OF EVIDENCE 5.
Collapse
|
21
|
Guevara JM, Moncayo MA, Vaca-González JJ, Gutiérrez ML, Barrera LA, Garzón-Alvarado DA. Growth plate stress distribution implications during bone development: a simple framework computational approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 118:59-68. [PMID: 25453383 DOI: 10.1016/j.cmpb.2014.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Mechanical stimuli play a significant role in the process of long bone development as evidenced by clinical observations and in vivo studies. Up to now approaches to understand stimuli characteristics have been limited to the first stages of epiphyseal development. Furthermore, growth plate mechanical behavior has not been widely studied. In order to better understand mechanical influences on bone growth, we used Carter and Wong biomechanical approximation to analyze growth plate mechanical behavior, and explore stress patterns for different morphological stages of the growth plate. To the best of our knowledge this work is the first attempt to study stress distribution on growth plate during different possible stages of bone development, from gestation to adolescence. Stress distribution analysis on the epiphysis and growth plate was performed using axisymmetric (3D) finite element analysis in a simplified generic epiphyseal geometry using a linear elastic model as the first approximation. We took into account different growth plate locations, morphologies and widths, as well as different epiphyseal developmental stages. We found stress distribution during bone development established osteogenic index patterns that seem to influence locally epiphyseal structures growth and coincide with growth plate histological arrangement.
Collapse
Affiliation(s)
- J M Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - M A Moncayo
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - J J Vaca-González
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - M L Gutiérrez
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - L A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - D A Garzón-Alvarado
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
22
|
Xu T, Yang K, You H, Chen A, Wang J, Xu K, Gong C, Shao J, Ma Z, Guo F, Qi J. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes. Bone 2013; 56:304-11. [PMID: 23831868 DOI: 10.1016/j.bone.2013.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 01/17/2023]
Abstract
Mechanical loading has been widely considered to be a crucial regulatory factor for growth plate development, but the exact mechanisms of this regulation are still not completely understood. In the growth plate, parathyroid hormone-related protein (PTHrP) regulates chondrocyte differentiation and longitudinal growth. Cyclic mechanical strain has been demonstrated to influence growth plate chondrocyte differentiation and metabolism, whereas the relationship between cyclic mechanical strain and PTHrP expression is not clear. The objective of this study was to investigate whether short-term cyclic tensile strain regulates PTHrP expression in postnatal growth plate chondrocytes in vitro and to explore whether the organization of cytoskeletal F-actin microfilaments is involved in this process. To this end, we obtained growth plate chondrocytes from 2-week-old Sprague-Dawley rats and sorted prehypertrophic and hypertrophic chondrocytes using immunomagnetic beads coated with anti-CD200 antibody. The sorted chondrocytes were subjected to cyclic tensile strain of varying magnitude and duration at a frequency of 0.5 Hz. We found that cyclic strain regulates PTHrP expression in a magnitude- and time-dependent manner. Incubation of chondrocytes with cytochalasin D, an actin microfilament-disrupting reagent, blocked the induction of PTHrP expression in response to strain. The results suggest that short-term cyclic tensile strain induces PTHrP expression in postnatal growth plate prehypertrophic and hypertrophic chondrocytes and that PTHrP expression by these chondrocytes may subsequently affect growth plate development. The results also support the idea that the organization of cytoskeletal F-actin microfilaments plays an important role in mechanotransduction.
Collapse
Affiliation(s)
- Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Physeal cartilage exhibits rapid consolidation and recovery in intact knees that are physiologically loaded. J Biomech 2013; 46:1516-23. [DOI: 10.1016/j.jbiomech.2013.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/23/2013] [Accepted: 03/30/2013] [Indexed: 11/20/2022]
|
24
|
Pichler K, Herbert V, Schmidt B, Fischerauer EE, Leithner A, Weinberg AM. Expression of matrix metalloproteinases in human growth plate chondrocytes is enhanced at high levels of mechanical loading. Bone Joint J 2013; 95-B:568-73. [DOI: 10.1302/0301-620x.95b4.30639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs), responsible for extracellular matrix remodelling and angiogenesis, might play a major role in the response of the growth plate to detrimental loads that lead to overuse injuries in young athletes. In order to test this hypothesis, human growth plate chondrocytes were subjected to mechanical forces equal to either physiological loads, near detrimental or detrimental loads for two hours. In addition, these cells were exposed to physiological loads for up to 24 hours. Changes in the expression of MMPs -2, -3 and -13 were investigated. We found that expression of MMPs in cultured human growth plate chondrocytes increases in a linear manner with increased duration and intensity of loading. We also showed for the first time that physiological loads have the same effect on growth plate chondrocytes over a long period of time as detrimental loads applied for a short period. These findings confirm the involvement of MMPs in overuse injuries in children. We suggest that training programmes for immature athletes should be reconsidered in order to avoid detrimental stresses and over-expression of MMPs in the growth plate, and especially to avoid physiological loads becoming detrimental. Cite this article: Bone Joint J 2013;95-B:568–73.
Collapse
Affiliation(s)
- K. Pichler
- Medical University of Graz, Department
of Orthopedic Surgery, Auenbruggerplatz 5, Graz
A-8036, Austria
| | - V. Herbert
- Medical University of Graz, Department
of Pediatric Surgery, Auenbruggerplatz 45, Graz
A-8036, Austria
| | - B. Schmidt
- Medical University of Graz, Department
of Pediatric Surgery, Auenbruggerplatz 45, Graz
A-8036, Austria
| | - E. E. Fischerauer
- Medical University of Graz, Department
of Pediatric Surgery, Auenbruggerplatz 45, Graz
A-8036, Austria
| | - A. Leithner
- Medical University of Graz, Department
of Orthopedic Surgery, Auenbruggerplatz 5, Graz
A-8036, Austria
| | - A-M. Weinberg
- Medical University of Graz, Department
of Orthopedic Surgery, Auenbruggerplatz 5, Graz
A-8036, Austria
| |
Collapse
|
25
|
Fischerauer EE, Manninger M, Seles M, Janezic G, Pichler K, Ebner B, Weinberg AM. BMP-6 and BMPR-1a are up-regulated in the growth plate of the fractured tibia. J Orthop Res 2013; 31:357-63. [PMID: 23097200 DOI: 10.1002/jor.22238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Abstract
Bone overgrowth is a known phenomenon occurring after fracture of growing long bones with possible long-term physical consequences for affected children. Here, the physeal expression of bone morphogenetic proteins (BMPs) was investigated in a fracture-animal model to test the hypothesis that a diaphyseal fracture stimulates the physeal expression of these known key regulators of bone formation, thus stimulating bone overgrowth. Sprague-Dawley rats (male, 4 weeks old), were subjected to a unilateral mid-diaphyseal tibial fracture. Kinetic expression of physeal BMP-2, -4, -6, -7, and BMP receptor-1a (BMPR-1a) was analyzed in a monthly period by quantitative real time-polymerase chain reaction and immunohistochemistry. On Days 1, 3, 10, and 14 post-fracture, no changes in physeal BMPs gene-expression were detected. Twenty-nine days post-fracture, when the fracture was consolidated, physeal expression of BMP-6 and BMPR-1a was significantly upregulated in the growth plate of the fractured and contra-lateral intact bone compared to control (p<0.005). This study demonstrates a late role of BMP-6 and BMPR-1a in fracture-induced physeal growth alterations and furthermore, may have discovered the existence of a regulatory "cross-talk" mechanism between the lower limbs whose function could be to limit leg-length-discrepancies following the breakage of growing bones.
Collapse
Affiliation(s)
- Eva E Fischerauer
- Department of Paediatric and Adolescence Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
26
|
Valteau B, Grimard G, Londono I, Moldovan F, Villemure I. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation. Bone 2011; 49:996-1004. [PMID: 21784187 DOI: 10.1016/j.bone.2011.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 11/27/2022]
Abstract
Longitudinal bone growth, which occurs in growth plates, has important implications in pediatric orthopedics. Mechanical loads are essential to normal bone growth, but excessive loads can lead to progressive deformities. In order to compare the effects of in vivo static and dynamic loading on bone growth rate and growth plate histomorphometry, a finely controlled, normalized and equivalent compression was applied for a period of two weeks on the seventh caudal vertebra (Cd7) of rats during their pubertal growth spurt. The load was sustained (0.2MPa, 0.0Hz) in the static group and sinusoidally oscillating (0.2MPa±30%, 0.1Hz) in the dynamic group. Control and sham (operated but no load applied) groups were also studied. Cd7 growth rate was statistically reduced by 19% (p<0.001) for both static and dynamic groups when compared to the sham group. Loading effects on growth plate histomorphometry were greater in the static than dynamic groups with significant reductions (p<0.001) observed for growth plate thickness, proliferative chondrocyte number per column and hypertrophic chondrocyte height in the static group when compared to the sham group. Significant differences (p<0.01) were also found between static and dynamic groups for growth plate thickness and proliferative chondrocyte number per column while the difference nearly reached significance (p=0.014) for hypertrophic chondrocyte height. This in vivo study shows that static and dynamic loading are equally effective in modulating bone growth of rat caudal vertebrae. However, dynamic loading causes less detrimental effects on growth plate histomorphometry compared to static loading. This knowledge is greatly relevant for the improvement and/or development of new minimally invasive approaches, which are based on the local modulation of bone growth, to correct several progressive musculoskeletal deformities.
Collapse
Affiliation(s)
- Barthélémy Valteau
- École Polytechnique de Montréal, Department of Mechanical Engineering, P.O. Box 6079, Station centre-ville, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|