1
|
Frings NR, Morgan EF. Risk of bony endplate failure during vertebral fracture. J Mech Behav Biomed Mater 2025; 165:106939. [PMID: 39954303 DOI: 10.1016/j.jmbbm.2025.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The endplate region of the vertebra, which includes the bony endplate (BEP) and underlying subchondral trabecular bone (STB), is critically involved in vertebral fracture (VF). While evidence abounds that failure initiates in the endplate region, the relative risk of failure of the BEP vs. STB has not been established. In this study, micro-finite element models were constructed of L1 vertebrae (n = 21) that were mechanically tested in a prior study and given experimentally matched boundary conditions corresponding to the vertebra's yield point. Volumes of interest (VOIs) were defined corresponding to the BEP and STB; the remainder was defined as the mid-vertebral body (MVB). The proportion of elements within each VOI that yielded was defined as the VOI yield fraction, and this value divided by the yield fraction of the entire model was defined as the normalized yield fraction. While yield fraction did not differ across VOIs (p = 0.179), normalized yield fraction was greater in the BEP than STB and MVB (p < 0.001), indicating a higher risk of yield in the BEP compared to the other two VOIs. None of the yield fractions was correlated with BEP or STB microstructure, and tension (rather than compression) was the dominant mode of tissue level yield. These findings indicate that the BEP, more so than the STB, is likely the site of VF initiation and that current methods of screening for VF risk, because they omit specific analysis of the BEP, are missing the region that matters the most. The endplate region of the vertebra, which includes the bony endplate (BEP) and underlying subchondral bone (SB), is critically involved in vertebral fracture (VF). While evidence abounds that failure initiates in the endplate region, the relative risk of failure of the BEP vs. SB has not been established. In this study, micro-finite element models were constructed of L1 vertebrae (n = 21) that had been mechanically tested in a prior study, and they were given experimentally matched boundary conditions corresponding to the vertebra's yield point. Volumes of interest (VOIs) were defined corresponding to the BEP and SB; the remainder was defined as the mid-vertebral body (MVB). The proportion of yielded elements within each VOI was defined as the VOI yield fraction, and this value divided by the yield fraction of the entire model was defined as the normalized yield fraction. While yield fraction did not differ across VOIs (p = 0.179), normalized yield fraction was greater in the BEP than SB and MVB (p < 0.001), indicating a higher risk of yield in the BEP compared to the other two VOIs. None of the yield fractions was correlated with BEP or SB microstructure, and tension (rather than compression) was the dominant mode of tissue level yield. These findings indicate that the BEP, more so than the SB, is likely the site of VF initiation and that current methods of screening for VF risk, because they omit specific analysis of the BEP, are missing the region that matters the most.
Collapse
Affiliation(s)
- Neilesh R Frings
- Boston University Department of Biomedical Engineering, 44 Cummington Mall Room 403, Boston, MA, 02215, USA; Boston University Center for Multiscale and Translational Mechanobiology, 44 Cummington Mall Room 345, Boston, MA, 02215, USA.
| | - Elise F Morgan
- Boston University Department of Biomedical Engineering, 44 Cummington Mall Room 403, Boston, MA, 02215, USA; Boston University Department of Mechanical Engineering, 110 Cummington Mall Room 101, Boston, MA, 02215, USA; Boston University Center for Multiscale and Translational Mechanobiology, 44 Cummington Mall Room 345, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Yao S, Li Y, Ruan H, Wu L, Zeng H. Gubi Decoction Ameliorates Porous Cartilage Endplate in an Intervertebral Disc Degeneration Model Mouse Through Inhibition of NF-κB Activity and Pyroptosis. J Inflamm Res 2025; 18:5293-5309. [PMID: 40264591 PMCID: PMC12013640 DOI: 10.2147/jir.s492365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background Intervertebral disc (IVD) degeneration (IVDD) is highly prevalent among the elderly population and stands as a leading cause of low back pain. Our prior studies have highlighted the therapeutic potential of Gubi decoction (GBD) in alleviating knee osteoarthritis, however, but the specific mechanism of GBD in treating IVDD is not clear. Objective To ascertain the clear mechanism of GBD for enhancing its therapeutic efficacy in treating lVDD, through comparison of its effects across different doses of GBD and clinical positive control drugs using a mouse IVDD model. Methods In this study, 8-week-old male mice were treated with lumbar spine instability (LSI) surgery to construct IVDD model mice. From day 3 post-LSI surgery, mice in the loxoprofen sodium tablets (LST), GBD-L, GBD-M and GBD-H groups were gavage administration with LST (23.1 mg/kg) and GBD (6.1, 12.2 and 24.4 g/kg body weight, respectively) 5 times a week for 4 and 8 weeks separately. After 8 weeks of LSI modeling, the therapeutic efficacy on IVDD was evaluated through changes in lumbar spine function, histopathological morphology, extracellular matrix (ECM) metabolism, nucleus pulposus (NP) cell viability, and cartilage endplate (CEP) cell pyroptosis; at 4 weeks after modeling, the activation of NF-κB signaling was detected. Results GBD can attenuate the progression of IVDD in mice, resulting in substantially increases disc height index (DHI) and NP matrix, reduced the degree of annulus fibrosus (AF) tear and the formation of cavity in CEP. In parallel, GBD significantly improved the matrix metabolism-related indexes of IVD at 8 weeks after modeling. Mechanically, GBD inhibited the expression of pyroptosis-related indicators NOD-like receptor thermal protein-domain associated protein 3 (NLRP3), cysteinyl aspartate specific-proteinase-1 (CASPASE1), gasdermin D (GSDMD), interleukin-1β (IL-1β) and interleukin-18 (IL-18) in CEP. Furthermore, GBD suppressed nuclear translocation of P65 protein, and decreased the amount of p-I-κB in CEP at 4 weeks after modeling. Conclusion In summary, GBD can effectively inhibit the activation of NF-κB signaling and pyroptosis of ECP, relieve the porosity of ECP, and then delay the IVDD process. GBD may serve as a potential therapeutic agent for IVDD treatment.
Collapse
Affiliation(s)
- Sai Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
- Frontier Innovation Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yanan Li
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Hongfeng Ruan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Lianguo Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Hanbing Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
| |
Collapse
|
3
|
Yan M, Lv X, Zhang S, Song Z, Hu B, Qing X, Kou H, Chen S, Shao Z, Liu H. Alleviation of inflammation in paraventricular nucleus and sympathetic outflow by melatonin efficiently repairs endplate porosities and attenuates spinal hyperalgesia. Int Immunopharmacol 2025; 149:114213. [PMID: 39914282 DOI: 10.1016/j.intimp.2025.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Low back pain, largely attributed to intervertebral disc (IVD) degeneration, is correlated with increased sympathetic nerve activity. Toll-like receptor 4 (TLR4)-mediated inflammation in the paraventricular nucleus (PVN) triggers sympathetic nerve activation, which remains uncharted in IVD degeneration. We hypothesized that lumbar spine instability (LSI) surgery in mice elevated sympathetic outflow by activating TLR4/NF-κB axis in PVN, and exacerbated endplate porosities and spinal hyperalgesia following 4 or 8 weeks LSI surgery. Treatment of melatonin for 8 weeks notably alleviated the inflammation and sympathetic outflow in the PVN, and attenuated sympathetic nerve activity, oxidative stress, endplate porosities and spinal hyperalgesia in the peripheral. These effects were abolished by melatonin receptor antagonist luzindole. Immunofluorescent staining of melatonin receptor 1A (MT1) and 1B (MT2) confirmed that MT2 expression exceeded that of MT1 in PVN. Knockdown of MT2 in PVN blocked the inhibitory effect of melatonin on inflammation and sympathetic activation both in PVN and endplate, as well as spinal hyperalgesia, oxidative stress, and porosities of endplate. Additionally, norepinephrine induces inflammation and oxidative stress, disrupts metabolic homeostasis of endplate cells via α2-adrenergic receptor in vitro. This study suggests that melatonin, via activation of MT2, inhibits inflammation and sympathetic activities both in PVN and endplate, therefore, efficiently repairing endplate porosities and alleviating spinal hyperalgesia induced by LSI.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071 China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China.
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China.
| |
Collapse
|
4
|
Chen J, Yang J, Li R, Huang Z, Huang Z, Wu X, Zhu Q, Ding Y. The Degree of Cervical Intervertebral Disc Degeneration Is Associated With Denser Bone Quality of the Cervical Sub-endplate and Vertebral Body. Orthop Surg 2025; 17:460-469. [PMID: 39632275 PMCID: PMC11787967 DOI: 10.1111/os.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE The relationship between cervical disc degeneration and bone quality of adjacent vertebral body remains controversial. This study aims to investigate the relationship between cervical disc degeneration and bone quality of the adjacent vertebral body and sub-endplate bone with a new MRI-based bone quality score in patients over 50 years with cervical spondylosis. METHODS We retrospectively reviewed 479 cervical disc segments from 131 patients. Disc degeneration at levels C3/C4-C6/C7 was graded using T2-weighted MRI. Vertebral body quality (VBQ) score and sub-endplate bone quality (EBQ) score from C3 to C7 were computed from T1-weighted MRI images. Additionally, bone mineral density (BMD) of the cervical vertebrae was measured in 52 patients using a novel phantom-less quantitative computed tomography (PL-QCT) system. The correlation between bone quality score and Pfirrmann grade was analyzed and risk factors for VBQ and EBQ were further evaluated. RESULTS Significant differences were found in cranial VBQ among different Pfirrmann grades, with a score of 2.55 ± 0.54 for Grade 5 discs, which was lower compared to Grades 4 (2.70 ± 0.56) (p < 0.05) and 3 (2.81 ± 0.58) (p < 0.01). Caudal VBQ for Grade 5 discs (2.43 ± 0.52) was also significantly lower than for Grade 3 discs (2.66 ± 0.54) (p < 0.01). EBQ scores decreased with increasing Pfirrmann grades. Negative correlations were observed between both cranial and caudal VBQ and EBQ scores and Pfirrmann grades. Grades 4 and 5 discs were identified as independent risk factors for decreased caudal VBQ and EBQ, whereas only Grade 5 was a significant risk factor for decreased cranial EBQ. Additionally, a moderate correlation (0.4 < R < 0.6, p < 0.05) was noted between vertebral body BMD and VBQ at each cervical level. CONCLUSION In individuals over 50 years with cervical spondylosis, the severity of disc degeneration was closely correlated with denser bone quality in both the caudal vertebral body and sub-endplate, as measured by VBQ and EBQ scores. These findings suggest that worsening disc degeneration is associated with increased bone density in specific areas of the cervical spine.
Collapse
Affiliation(s)
- Jia‐Yu Chen
- Department of Spinal SurgeryThe First People's Hospital of ChenzhouChenzhouChina
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jia‐Chen Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ruo‐Yao Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zu‐Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiu‐Hua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qing‐An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yin Ding
- Department of Orthopedics, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterNanjing Medical UniversityChangzhouChina
| |
Collapse
|
5
|
Zheng B, Zhang X, Kong X, Li J, Huang B, Li H, Ji Z, Wei X, Tao S, Shan Z, Ling Z, Liu J, Chen J, Zhao F. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024; 9:e177789. [PMID: 39316443 PMCID: PMC11601718 DOI: 10.1172/jci.insight.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Ames CP, Smith JS, Nicolau RJ. Tomographic Assessment of Fusion Rate, Implant-Endplate Contact Area, Subsidence, and Alignment With Lumbar Personalized Interbody Implants at 1-Year Follow-Up. Int J Spine Surg 2024; 18:S41-S49. [PMID: 39191476 PMCID: PMC11483439 DOI: 10.14444/8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Incongruity between irregularly shaped vertebral endplates and the uniform surfaces of stock interbody fusion cages has been identified as contributing to cage subsidence, pseudarthrosis, and unpredictable alignment. Advances in manufacturing techniques have driven the development of personalized interbody cages (PICs) that can match individual endplate morphology and provide the exact shape and size needed to fill the disc space and achieve the planned correction. This study used computed tomography (CT) imaging to evaluate the implant-endplate contact area, fusion, subsidence, and achievement of planned alignment correction in patients receiving PIC devices. METHODS This retrospective study included patients treated for adult spinal deformity at a single site and implanted with PIC devices at L4 to L5 or L5 to S1 for segmental stabilization and alignment correction, who received 1-year postoperative CT images as part of their standard of care. An evaluation using 3-dimensional thin-section scans was conducted. Implant-endplate contact and signs of fusion were assessed in each CT slice across both endplates. The degree of subsidence as well as measures of segmental and global lumbar alignment were also assessed. RESULTS Fifteen patients were included in the study, with a mean age of 68.2 years. Follow-up ranged between 9 and 14 months. Twenty-six total lumbar levels were implanted; 20 with PIC devices via the anterior lumbar interbody fusion approach, 2 with stock cages via the anterior lumbar interbody fusion approach, and 4 with PIC devices via the transforaminal lumbar interbody fusion approach. CT analysis of PIC-implanted levels found an overall implant-endplate contact area ratio of 93.9%, a subsidence rate of 4.5%, a fusion rate of 100%, and satisfactory segmental and global lumbar correction compared with the preoperative plan. CONCLUSIONS PIC implants can provide nearly complete contact with endplate surfaces regardless of the individual endplate morphology. Subsidence, fusion, and alignment assessments in this tomographic study illustrated results consistent with the benefits of a personalized interbody implant. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Christopher P Ames
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Justin S Smith
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
7
|
Wang H, Huang J, Tao L, Liu D, Song C. Efficacy and safety of minodronate in the treatment of postmenopausal osteoporosis with low back pain: a single-centre, randomized and open-label controlled trial. Trials 2024; 25:534. [PMID: 39135126 PMCID: PMC11321119 DOI: 10.1186/s13063-024-08364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Low back pain is one of the most common symptoms of osteoporosis. The pain can seriously affect patients' mood and quality of life; it can also further aggravate bone loss, causing a serious social burden. Minodronate is an oral bisphosphonate that needs to be administered daily. It significantly reduces levels of bone turnover markers (BTMs) and rapidly improves symptoms of low back pain in patients with osteoporosis. Osteoporosis requires long-term treatment, and daily dosing reduces patient compliance. Minodronate has a better safety profile than other bisphosphonates. The objective of the trial is to explore the efficacy and safety of minodronate in the treatment of low back pain in postmenopausal osteoporosis patients. METHODS This is a single-centre, randomized, open-label controlled trial with a 24-week duration. Seventy-two eligible patients will be randomly divided into 4 groups. Subjects will be randomized at a 1:1 ratio to receive either minodronate (1 mg/day) or alendronate (10 mg/day) every day; senior women (≥ 75 years old) and older women (< 75 years old) will be at a ratio of 1:2. The primary outcome is the time required for the visual analogue scale (VAS) score to decline by ≥ 10 from baseline. The secondary outcome is the changes in VAS scores from baseline, the frequency and dosage of rescue medication, BTMs, bone mineral density (BMD), and variations in upper gastrointestinal (GI) symptom scores from baseline (including heartburn, pain, and bloating). DISCUSSION This study will provide objective evidence for the efficiency and safety of minodronate. Furthermore, it will be helpful to evaluate the quantitative relationship between BTMs and BMD in patients with osteoporosis under different ages. TRIAL REGISTRATION This study protocol has been registered with ClinicalTrials.gov ID NCT05645289 ( https://clinicaltrials.gov/search?term=NCT05645289 ) on December 8, 2022. The registry name is Peking University Third Hospital. This study protocol was reviewed and approved by the Peking University Third Hospital Medical Science Research Ethics Committee (M2022465, 2022.08.09, V2.0). The results will be published in scientific peer-reviewed journals. TRIAL STATUS The protocol was registered at ClinicalTrials.gov (registration number: NCT05645289). Recruitment has started in January 2023 and is still ongoing.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Liyuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
8
|
Pan D, Benkato KG, Han X, Zheng J, Kumar V, Wan M, Zheng J, Cao X. Senescence of endplate osteoclasts induces sensory innervation and spinal pain. eLife 2024; 12:RP92889. [PMID: 38896465 PMCID: PMC11186630 DOI: 10.7554/elife.92889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.
Collapse
Affiliation(s)
- Dayu Pan
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kheiria Gamal Benkato
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xuequan Han
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jinjian Zheng
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Vijay Kumar
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mei Wan
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Junying Zheng
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
9
|
Suryadevara M, Mishra GV, Parihar P, Javvaji CK, Sood A, Reddy H, Reddy NS, Shelar SS. Role of End Plate Changes and Paraspinal Muscle Pathology in Lower Back Pain: A Narrative Review. Cureus 2024; 16:e61319. [PMID: 38947594 PMCID: PMC11213362 DOI: 10.7759/cureus.61319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Degenerative changes of the lumbar intervertebral disc are the most significant causes of enduring lower back pain. The possibility of the diagnosis is limited in people with this low back pain. Therefore, it is essential to identify the relevant back pain subgroups. The paraspinal muscles, that is, the muscles that attach to the spine, are necessary for the proper functioning of the spine and the body; insufficiency can result in back pain. Lower back pain disorders are strongly associated with altered function or structure of these paraspinal muscles, especially fibrosis and fatty infiltration. Modic changes are the bone marrow changes of the end plate in the vertebral body seen on MRI. These are strongly related to degeneration of the disc and are common in individuals with back pain symptoms. Articles were selected from Google Scholar using the terms 'Modic changes,' 'end plate changes,' 'paraspinal muscles,' and 'lower back pain. ' This article compiled different studies aiming to enhance the comprehension of biochemical processes resulting in the development of lumbar pain. Search using the keywords 'Modic changes,'' end plate changes lower back pain,' 'paraspinal muscles lower back pain,' and 'Modic changes lower back pain' on Google Scholar yielded 33000, 41000, 49400, and 17,800 results, and 958, 118, 890 and 560 results on Pubmed respectively.
Collapse
Affiliation(s)
- Manasa Suryadevara
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Gaurav V Mishra
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | | - Anshul Sood
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshitha Reddy
- Internal Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | | - Sheetal S Shelar
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Zehr JD, Quadrilatero J, Callaghan JP. Indentation mechanics and native collagen content in the cartilaginous endplate: A comparison between porcine cervical and human lumbar spines. J Mech Behav Biomed Mater 2024; 150:106334. [PMID: 38163418 DOI: 10.1016/j.jmbbm.2023.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
This study characterized the regional indentation mechanics and native collagen content in cartilaginous endplates (CEPs) from the porcine cervical spine, young human lumbar spine, and aged human lumbar spine. Seventeen endplates were included in this study: six porcine cervical, nine young human lumbar, and two aged human lumbar. Width and depth measurements were obtained using a digital caliper and used to size-normalize and identify the central, anterior, posterior, and lateral regions. Regional microindentation tests were performed using a serial robot, where surface locations were loaded/unloaded at 0.1 mm/s and held at a constant 10 N force for 30 s. Loading stiffness and creep displacement were obtained from force-displacement data. Immunofluorescence staining for type I and type II collagen was subsequently performed on sagittal sections of all endplate regions. 255 images were obtained from which fluorescence intensity, sub-surface void area, and cartilage thickness were measured. CEPs from the young human lumbar spine were, on average, 27% more compliant, 0.891 mm thicker, had a lower fluorescence intensity for native collagen proteins within the cartilage (-58%) and subchondral bone (-24%), and had a sub-surface void area that was 19.7 times greater than porcine cervical CEPs. Compared to aged human lumbar CEPs, young human lumbar CEPs were 57% stiffer, 0.568 mm thicker, had a higher fluorescence intensity for native collagen proteins within the cartilage (+30%) and subchondral bone (+46%), and had a sub-surface void area that was 10.6 times smaller. Although not a perfect mechanical and structural surrogate, porcine cervical CEPs provided initial conditions that may be more representative of the young and healthy human lumbar spine compared to aged human cadaveric specimens. The indentation properties presented may have further applications to finite element models of the human lumbar spine.
Collapse
Affiliation(s)
- Jackie D Zehr
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jack P Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
11
|
Zehr JD, Quadrilatero J, Callaghan JP. Initiation and accumulation of loading induced changes to native collagen content and microstructural damage in the cartilaginous endplate. Spine J 2024; 24:161-171. [PMID: 37487932 DOI: 10.1016/j.spinee.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND CONTEXT Injury to the cartilaginous endplate (CEP) is linked to clinically relevant low back disorders, including intervertebral disc degeneration and pain reporting. Despite this link to clinical disorders, the CEP injury pathways and the modulating effect of mechanical loading parameters on the pace of damage accumulation remains poorly understood. PURPOSE This study examined the effect of cyclic loading on the initiation and accumulation of changes to native collagen content (type I, type II) and microstructural damage in the central region of cadaveric porcine CEPs. STUDY DESIGN In vitro longitudinal study. METHODS One hundred fourteen porcine cervical spinal units were included (N=6 per group). The study contained a control group (no cyclic loading) and 18 experimental groups that differed by loading duration (1,000, 3,000, 5,000 cycles), joint posture (flexed, neutral), and cyclic peak compression variation (10%, 20%, 40%). Multicolor immunofluorescence staining was used to quantify loading induced changes to type I (ie, subchondral bone) and type II (ie, endplate) native collagen content (fluorescence area, fluorescence intensity) and microstructural damage (pore area [transverse plane], void area along the CEP-bone border [sagittal plane]). RESULTS Significant main effects of loading duration and posture were observed for fluorescence area and fluorescence intensity of type I and II collagen. In the transverse plane, type II fluorescence area significantly decreased following 1,000 cycles (-12%), but a significant change in fluorescence intensity was not observed until 3,000 cycles (-17%). Type II fluorescence area (-14%) and intensity (-10%) were both significantly less in flexed postures compared to neutral. Similar trends were observed for type I collagen in the sagittal plane sections. Generally, significant changes to fluorescence area were accompanied by the development of microstructural voids along the endplate-subchondral bone border. CONCLUSIONS These findings demonstrate that microstructural damage beneath the endplate surface occurs before significant changes to the density of native type I and II collagen fibers. Although flexed postures were associated with greater and accelerated changes to native collagen content, the injury initiation mechanism appears similar to neutral. CLINICAL SIGNIFICANCE Neutral joint postures can delay the initiation and pace of microdamage accumulation in the CEP during low-to-moderate demand lifting tasks. Furthermore, the management of peak compression exposures appeared relevant only when a neutral posture was maintained. Therefore, clinical low back injury prevention and load management efforts should consider low back posture in parallel with applied joint forces.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
12
|
Di M, Weng Y, Wang G, Bian H, Qi H, Wu H, Chen C, Dou Y, Wang Z, Ma X, Xu B, Zhu S, Lu WW, Yang Q. Cortical Endplate Bone Density Measured by Novel Phantomless Quantitative Computed Tomography May Predict Cage Subsidence more Conveniently and Accurately. Orthop Surg 2023; 15:3126-3135. [PMID: 37853959 PMCID: PMC10694013 DOI: 10.1111/os.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Previous studies have shown that bone mineral density (BMD) is a predictor of cage subsidence. Phantom-less quantitative computed tomography (PL-QCT) can measure volumetric bone mineral density (vBMD) of lumbar trabecular and cortical bone. The study of endplate vBMD (EP-vBMD) is important in predicting cage settlement after extreme lateral interbody fusion (XLIF). This study aimed to determine the risk factors for postoperative cage subsidence after XLIF, particularly focusing on the relationship between vBMD measured by automatic PL-QCT and cage subsidence. METHODS Patients who underwent XLIF surgery from January 2018 to October 2020 with a minimum of 6 months of follow-up were retrospectively included. Cage subsidence was defined as >2 mm cage sinking on the adjacent endplate in follow-up imaging evaluation. Outcome measures were localized vBMDs included EP-vBMDs with different region of interest (ROI) heights measured by PL-QCT based on a customized muscle-fat algorithm. Shapiro-Wilk test, one-way ANOVA, Mann-Whitney test, Fisher exact test, univariable and multivariable logistic regression and receiver operating characteristic (ROC) curve analysis were executed in this study. RESULTS One hundred and thirteen levels of 78 patients were included in the analysis. The mean age was 65 ± 7.9 years for 11 males and 67 females. Cage subsidence occurred on 45 (39.8%) surgical levels. There was no significant difference in demographics, fused levels, or preoperative radiographic parameters. 1.25-mm EP-vBMD (0.991 [0.985,0.997], p = 0.004) and P-TB-vBMD (cage-positioned trabecular volumetric bone mineral density) (0.988 [0.977-0.999], p = 0.026) were cage-subsidence relevant according to univariate analysis. Low 1.25-mm EP-vBMD (0.992 [0.985, 0.999], p = 0.029) was an independent risk factor according to multifactorial analysis. CONCLUSION Preoperative low EP-vBMD was an independent risk factor for postoperative cage subsidence after XLIF. EP-vBMD measured by most cortex-occupied ROI may be the optimal vBMD parameter for cage subsidence prediction.
Collapse
Affiliation(s)
- Mingyuan Di
- Graduate SchoolTianjin Medical UniversityTianjinChina
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Yuanzhi Weng
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of Medicine, The University of Hong KongPokfulamChina
- Department of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Guohua Wang
- Graduate SchoolTianjin Medical UniversityTianjinChina
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Hanming Bian
- Graduate SchoolTianjin Medical UniversityTianjinChina
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Huan Qi
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of Medicine, The University of Hong KongPokfulamChina
- Department of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Hongjin Wu
- Graduate SchoolTianjin Medical UniversityTianjinChina
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Chao Chen
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Yiming Dou
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Zhi Wang
- Tianjin Hospital of Tianjin UniversityTianjinChina
| | - Xinlong Ma
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Baoshan Xu
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Shan Zhu
- Tianjin Hospital of Tianjin UniversityTianjinChina
| | - Weijia William Lu
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of Medicine, The University of Hong KongPokfulamChina
- Department of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Qiang Yang
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| |
Collapse
|
13
|
Li W, Zhao H, Zhou S, Xiong Z, Zhong W, Guan J, Liu T, Yang Y, Yu X. Does vertebral osteoporosis delay or accelerate lumbar disc degeneration? A systematic review. Osteoporos Int 2023; 34:1983-2002. [PMID: 37578509 PMCID: PMC10651704 DOI: 10.1007/s00198-023-06880-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
The effect of vertebral osteoporosis on disc degeneration is still debated. The purpose of this study was to provide a systematic review of studies in this area to further reveal the relationship between the two. Relevant studies were searched in electronic databases, and studies were screened according to inclusion and exclusion criteria, and finally, basic information of the included studies was extracted and summarized. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 34 publications spanning 24 years were included in our study. There were 19 clinical studies, including 12 prospective studies and 7 retrospective studies. Of these, 7 considered vertebral osteoporosis to be positively correlated with disc degeneration, 8 considered them to be negatively correlated, and 4 considered them to be uncorrelated. Two cadaveric studies were included, one considered the two to be negatively correlated and one considered them not to be correlated. Seven animal studies were included, of which five considered a positive correlation between vertebral osteoporosis and disc degeneration and two considered a negative correlation between the two. There were also 6 studies that used anti-osteoporosis drugs for intervention, all of them were animal studies. Five of them concluded that vertebral osteoporosis was positively associated with disc degeneration, and the remaining one concluded that there was no correlation between the two. Our systematic review shows that the majority of studies currently consider an association between vertebral osteoporosis and disc degeneration, but there is still a huge disagreement whether this association is positive or negative. Differences in observation time and follow-up time may be one of the reasons for the disagreement. A large number of clinical and basic studies are still needed in the future to further explore the relationship between the two.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Shibo Zhou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhencheng Xiong
- West China Medical School, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Wenqing Zhong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jianbin Guan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tao Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
14
|
Schönnagel L, Zhu J, Guven AE, Camino-Willhuber G, Tani S, Caffard T, Haffer H, Muellner M, Chiapparelli E, Amoroso K, Arzani A, Moser M, Shue J, Tan ET, Carrino JA, Jöns T, Sama AA, Girardi FP, Cammisa FP, Hughes AP. Understanding the Interplay Between Paraspinal Muscle Atrophy and Lumbar Endplate Degeneration: A 3-Year Longitudinal Study. Spine (Phila Pa 1976) 2023; 48:1627-1634. [PMID: 37698271 DOI: 10.1097/brs.0000000000004826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
STUDY DESIGN Retrospective analysis of longitudinal data. OBJECTIVE To assess the association between the paraspinal musculature (PM) and lumbar endplate degeneration. BACKGROUND The PM is essential for spinal stability, while the vertebral endplate is pivotal for nutrient transport and force distribution. The clinical importance of both has been highlighted in recent literature, though little is known about their interaction. METHODS We identified patients with lumbar MRI scans due to low back pain, with a 3-year interval between MRI scans. Endplate damage was assessed by the total endplate score (TEPS) at each lumbar level. The PM was evaluated for its functional cross-sectional area and fatty infiltration (FI) at the L4 level. We used a generalized mixed model to analyze the association between PM parameters and TEPS at timepoint one, adjusting for age, sex, BMI, diabetes, hypertension, and smoking status. The association with the progression of endplate damage was analyzed through an ordinal regression model, additionally adjusted for TEPS at baseline. RESULTS In all, 329 patients were included, with a median follow-up time of 3.4 years. Participants had a median age of 59 and a BMI of 25.8 kg/m 2 . In the univariate analysis, FI of the posterior PM was significantly associated with TEPS at baseline (β: 0.08, P <0.001) and progression of TEPS [Odds Ratio (OR): 1.03, P =0.020] after adjustment for confounders. The β and OR in this analysis are per percent of FI. In a binary analysis, patients with FI≥40% had an OR of 1.92 ( P =0.006) for the progression of TEPS. CONCLUSIONS This is the first longitudinal study assessing the relationship between PM and endplate degeneration, demonstrating the association between PM atrophy and the progression of endplate degeneration. This insight may aid in identifying patients at risk for degenerative lumbar conditions and guide research into preventive measures.
Collapse
Affiliation(s)
- Lukas Schönnagel
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jiaqi Zhu
- Biostatistics Core, Hospital for Special Surgery, New York City, NY
| | - Ali E Guven
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gaston Camino-Willhuber
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Soji Tani
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
- Department of Orthopaedic Surgery, School of Medicine, Showa University Hospital, Tokyo, Japan
| | - Thomas Caffard
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Henryk Haffer
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Muellner
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Krizia Amoroso
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Artine Arzani
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Manuel Moser
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
- Department of Neurosurgery, Cantonal Hospital Graubünden, Loëstrasse, Chur, Switzerland
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, NY
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, NY
| | - Thomas Jöns
- Berlin Simulation & Training Center, Department of Anatomy Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew A Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Federico P Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Frank P Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| | - Alexander P Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY
| |
Collapse
|
15
|
Ling Z, Crane J, Hu H, Chen Y, Wan M, Ni S, Demehri S, Mohajer B, Peng X, Zou X, Cao X. Parathyroid hormone treatment partially reverses endplate remodeling and attenuates low back pain in animal models of spine degeneration. Sci Transl Med 2023; 15:eadg8982. [PMID: 37967203 DOI: 10.1126/scitranslmed.adg8982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Low back pain (LBP) is one of the most prevalent diseases affecting quality of life, with no disease-modifying therapy. During aging and spinal degeneration, the balance between the normal endplate (EP) bilayers of cartilage and bone shifts to more bone. The aged/degenerated bony EP has increased porosity because of osteoclastic remodeling activity and may be a source of LBP due to aberrant sensory innervation within the pores. We used two mouse models of spinal degeneration to show that parathyroid hormone (PTH) treatment induced osteogenesis and angiogenesis and reduced the porosity of bony EPs. PTH increased the cartilaginous volume and improved the mechanical properties of EPs, which was accompanied by a reduction of the inflammatory factors cyclooxygenase-2 and prostaglandin E2. PTH treatment furthermore partially reversed the innervation of porous EPs and reversed LBP-related behaviors. Conditional knockout of PTH 1 receptors in the nucleus pulposus (NP) did not abolish the treatment effects of PTH, suggesting that the NP is not the primary source of LBP in our mouse models. Last, we showed that aged rhesus macaques with spontaneous spinal degeneration also had decreased EP porosity and sensory innervation when treated with PTH, demonstrating a similar mechanism of PTH action on EP sclerosis between mice and macaques. In summary, our results suggest that PTH treatment could partially reverse EP restructuring during spinal regeneration and support further investigation into this potentially disease-modifying treatment strategy for LBP.
Collapse
Affiliation(s)
- Zemin Ling
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Janet Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shadpour Demehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bahram Mohajer
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration is a contributor to chronic back pain. While a part of the natural aging process, early or rapid intervertebral disc degeneration is highly heritable. In this review, we summarize recent progress towards unraveling the genetics associated with this degenerative process. RECENT FINDINGS Use of large cohorts of patient data to conduct genome-wide association studies (GWAS) for intervertebral disc disease, and to lesser extent for aspects of this process, such as disc height, has resulted in a large increase in our understanding of the genetic etiology. Genetic correlation suggests that intervertebral disc disease is pleiotropic with risk factors for other diseases such as osteoporosis. The use of Mendelian Randomization is slowly establishing what are the causal relationships between intervertebral disc disease and factors previously correlated with this disease. The results from these human genetic studies highlight the complex nature of this disease and have the potential to lead to improved clinical management of intervertebral disc disease. Much additional work should now be focused on characterizing the causative relationship various co-morbid conditions have with intervertebral disc degeneration and on finding interventions to slow or halt this disease.
Collapse
Affiliation(s)
- David C Ou-Yang
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA
| | - Christopher J Kleck
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA.
| |
Collapse
|
17
|
Kornilova LE, Sokov EL, Kornilova AA, Dlin SV, Urazov VV, Naumova EV. [Intraosseous blockades and local injection of HYALREPAIR-02 Chondroreparant combination in low back pain treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:59-64. [PMID: 38147383 DOI: 10.17116/jnevro202312312159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Studying the effectiveness of the combined use of intraosseous blockades (IOB) and intramuscular local injection therapy using bottled forms of HYALREPAIR-02 Chondroreparant 02/10 in patients with lumbar dorsopathy and recurrent back pain syndrome. MATERIAL AND METHODS 30 patients (16 men and 14 women) with chronic recurrent lumbar dorsopathy with pain and myofascial syndromes were examined. Group 1 included 17 patients, whose treatment included the use of IOB and intramuscular local injection therapy using bottled forms of HYALREPAIR-02 Chondroreparant 02/10. Group 2 included 13 patients who received only IOB. To assess the pain syndrome, a visual analogue pain scale (VAS), a Russian version of the McGill Pain Questionnaire (MPBI), and a body diagram questionnaire were used. RESULTS After the course of treatment, in both groups there was a decrease in the severity of pain according to VAS, RMBO, and a decrease in the area of pain distribution according to the Body Scheme questionnaire (p<0.05). The values on the RMBO questionnaire in both groups also decreased by more than 2 times compared to the initial value. A statistically more significant regression of pain syndrome and a decrease in disability were noted in group 1 (p<0.05). 2 months after the end of the course of treatment, the pain syndrome did not recur in any patient. Within 3 to 6 months, back pain recurred in 4 (23.5%) patients of the 1st group and in 6 (46.2%) patients of the 2nd group. A total of 90 IOB procedures were performed; no complications or side effects were noted. CONCLUSION The combination of IOB and intramuscular local injection therapy using the vial form of HYALREPAIR-02 Chondroreparant in the treatment of patients with degenerative diseases of the spine and back pain is an effective and safe method of therapy. Such treatment strategy allowed to relieve back pain more effectively and improved long-term clinical outcome.
Collapse
Affiliation(s)
- L E Kornilova
- Peoples' Friendship University of Russia, Moscow, Russia
| | - E L Sokov
- Peoples' Friendship University of Russia, Moscow, Russia
| | | | - S V Dlin
- Clinic for the Treatment of the Spine and Joints of Dr. Dlin, Moscow, Russia
| | - V V Urazov
- Peoples' Friendship University of Russia, Moscow, Russia
| | | |
Collapse
|
18
|
Zehr JD, Barrett JM, Callaghan JP. Cyclic loading history alters the joint compression tolerance and regional indentation responses in the cartilaginous endplate. J Mech Behav Biomed Mater 2022; 136:105542. [PMID: 36327666 DOI: 10.1016/j.jmbbm.2022.105542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
This study quantified the effect of subthreshold loading histories that differed by joint posture (neutral, flexed), peak loading variation (10%, 20%, 40%), and loading duration (1000, 3000, 5000 cycles) on the post-loading Ultimate Compressive Tolerance (UCT), yield force, and regional Cartilaginous End Plate (CEP) indentation responses (loading stiffness and creep displacement). One hundred and fourteen porcine spinal units were included. Following conditioning and cyclic compression exposures, spinal units were transected and one endplate from each vertebra underwent subsequent UCT or microindentation testing. UCT testing was conducted by compressing a single vertebra at a rate of 3 kN/s using an indenter fabricated to a representative intervertebral disc size and shape. Force and actuator position were sampled at 100 Hz. Non-destructive uniaxial CEP indentation was performed at five surface locations (central, anterior, posterior, right, left) using a Motoman robot and aluminum indenter (3 mm hemisphere). Force and end-effector position were sampled at 10 Hz. A significant three-way interaction was observed for UCT (p = 0.038). Compared to neutral, the UCT was, on average, 1.9 kN less following each flexed loading duration. No effect of variation was observed in flexion; however, 40% variation caused the UCT to decrease by an average of 2.13 kN and 2.06 kN following 3000 and 5000 cycles, respectively. The indentation stiffness in the central CEP mimicked the UCT response. These results demonstrate a profound effect of posture on post-loading UCT and CEP behaviour. Control of peak compression exposures became particularly relevant only when a neutral posture was maintained and beyond the midpoint of the predicated lifespan.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jeff M Barrett
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
19
|
Korhonen T, Järvinen J, Pesälä J, Haapea M, Niinimäki J. Modic changes associated with greater pain relief following anesthetization of the adjacent lumbar intervertebral disc: A retrospective study of chronic low back pain patients. Eur J Radiol 2022; 157:110589. [DOI: 10.1016/j.ejrad.2022.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
|
20
|
Li R, Zhang W, Xu Y, Ma L, Li Z, Yang D, Ding W. Vertebral endplate defects are associated with bone mineral density in lumbar degenerative disc disease. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2935-2942. [PMID: 35881201 DOI: 10.1007/s00586-022-07329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Evidence has shown that lumbar vertebral endplate defects are clinically relevant and closely related to disc degeneration, but the relationship between endplate defects and bone mineral density (BMD) remains unclear. This study aimed to explore the association between endplate defects and BMD-related values in patients with lumbar degenerative disc disease (LDD). METHODS Three hundred and twenty-five Chinese adult subjects diagnosed with LDD underwent dual energy X-ray absorptiometry. Endplate defects were classified using lumbar MRI. Groups were subdivided based on the occurrence rates of defect endplates. BMD at the lumbar vertebral and bilateral femur necks was compared between groups, and the association between endplate defects and lumbar BMD-related values was analyzed and adjusted for confounders including age, sex, serum levels of 25-hydroxy vitamin D (25(OH)D), calcium (Ca) and phosphorus (P). RESULTS Of 325 patients and 3250 endplates, 59.72% had defects, and 188 patients were divided into the higher defect rate group (occurrence rate > 50%). The higher defect rate group was associated with older age, more common postmenopausal females, higher osteoporosis rates and lower serum Ca and P levels. Lumbar BMD was greater than that at bilateral femur necks and was not equal to osteoporosis diagnosis. Endplate defects were more prevalent in lower segments. The occurrence of endplate defects was positively associated with lumbar BMD-related values in the partial correlation analysis. The association between endplate defects and lumbar BMD varies for subtypes and segments, with a trend of positive association in rim and erosive subtypes after adjusting for confounders. CONCLUSIONS The present study demonstrated that the occurrence of endplate defects was associated with greater lumbar BMD values in patients with LDD. This association varies for different defect subtypes and segments. The results indicated that endplate defects should be taken into consideration in osteoporosis treatment to alleviate disc degeneration.
Collapse
Affiliation(s)
- Ruoyu Li
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Wei Zhang
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Yafei Xu
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Lei Ma
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Zhaohui Li
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Dalong Yang
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Wenyuan Ding
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
21
|
Oxidative Stress and Intervertebral Disc Degeneration: Pathophysiology, Signaling Pathway, and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1984742. [PMID: 36262281 PMCID: PMC9576411 DOI: 10.1155/2022/1984742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Intervertebral disc degeneration (IDD), characterized as decreased proteoglycan content, ossification of endplate, and decreased intervertebral height, is one of the major reasons of low back pain, which seriously affects the quality of life and also brings heavy economic burden. However, the mechanisms leading to IDD and its therapeutic targets have not been fully elucidated. Oxidative stress refers to the imbalance between oxidation and antioxidant systems, between too many products of reactive oxygen species (ROS) and the insufficient scavenging function. Excessive ROS can damage cell lipids, nucleic acids and proteins, which has been proved to be related to the development of a variety of diseases. In recent years, an increasing number of studies have reported that oxidative stress is involved in the pathological process of IDD. Excessive ROS can accelerate the IDD process via inducing the pathological activities, such as inflammation, apoptosis, and senescence. In this review, we focused on pathophysiology and molecular mechanisms of oxidative stress-induced IDD. Moreover, the present review also summarized the possible ideas for the future therapy strategies of oxidative stress-related IDD.
Collapse
|
22
|
Optimization of Spinal Reconstructions for Thoracolumbar Burst Fractures to Prevent Proximal Junctional Complications: A Finite Element Study. Bioengineering (Basel) 2022; 9:bioengineering9100491. [DOI: 10.3390/bioengineering9100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The management strategies of thoracolumbar (TL) burst fractures include posterior, anterior, and combined approaches. However, the rigid constructs pose a risk of proximal junctional failure. In this study, we aim to systemically evaluate the biomechanical performance of different TL reconstruction constructs using finite element analysis. Furthermore, we investigate the motion and the stress on the proximal junctional level adjacent to the constructs. We used a T10-L3 finite element model and simulated L1 burst fracture. Reconstruction with posterior instrumentation (PI) alone (U2L2 and U1L1+(intermediate screw) and three-column spinal reconstruction (TCSR) constructs (U1L1+PMMA and U1L1+Cage) were compared. Long-segment PI resulted in greater global motion reduction compared to constructs with short-segment PI. TCSR constructs provided better stabilization in L1 compared to PI alone. Decreased intradiscal and intravertebral pressure in the proximal level were observed in U1L1+IS, U1L1+PMMA, and U1L1+Cage compared to U2L2. The stress and strain energy of the pedicle screws decreased when anterior reconstruction was performed in addition to PI. We showed that TCSR with anterior reconstruction and SSPI provided sufficient immobilization while offering additional advantages in the preservation of physiological motion, the decreased burden on the proximal junctional level, and lower risk of implant failure.
Collapse
|
23
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
24
|
Mechanically induced histochemical and structural damage in the annulus fibrosus and cartilaginous endplate: a multi-colour immunofluorescence analysis. Cell Tissue Res 2022; 390:59-70. [PMID: 35790585 DOI: 10.1007/s00441-022-03649-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins-collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (- 54.9 and - 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (- 35.6 and - 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (-31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.
Collapse
|
25
|
Zehra U, Tryfonidou M, Iatridis JC, Illien-Jünger S, Mwale F, Samartzis D. Mechanisms and clinical implications of intervertebral disc calcification. Nat Rev Rheumatol 2022; 18:352-362. [PMID: 35534553 PMCID: PMC9210932 DOI: 10.1038/s41584-022-00783-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
Low back pain is a leading cause of disability worldwide. Intervertebral disc (IVD) degeneration is often associated with low back pain but is sometimes asymptomatic. IVD calcification is an often overlooked disc phenotype that might have considerable clinical impact. IVD calcification is not a rare finding in ageing or in degenerative and scoliotic spinal conditions, but is often ignored and under-reported. IVD calcification may lead to stiffer IVDs and altered segmental biomechanics, more severe IVD degeneration, inflammation and low back pain. Calcification is not restricted to the IVD but is also observed in the degeneration of other cartilaginous tissues, such as joint cartilage, and is involved in the tissue inflammatory process. Furthermore, IVD calcification may also affect the vertebral endplate, leading to Modic changes (non-neoplastic subchondral vertebral bone marrow lesions) and the generation of pain. Such effects in the spine might develop in similar ways to the development of subchondral marrow lesions of the knee, which are associated with osteoarthritis-related pain. We propose that IVD calcification is a phenotypic biomarker of clinically relevant disc degeneration and endplate changes. As IVD calcification has implications for the management and prognosis of degenerative spinal changes and could affect targeted therapeutics and regenerative approaches for the spine, awareness of IVD calcification should be raised in the spine community.
Collapse
Affiliation(s)
- Uruj Zehra
- Department of Anatomy, University of Health Sciences, Lahore, Pakistan
| | - Marianna Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Fackson Mwale
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital and Department of Surgery, McGill University, Montreal, QC, Canada
| | - Dino Samartzis
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
26
|
Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, Lv X, Liu H, Chen S. New Progress in Basic Research of Macrophages in the Pathogenesis and Treatment of Low Back Pain. Front Cell Dev Biol 2022; 10:866857. [PMID: 35669508 PMCID: PMC9163565 DOI: 10.3389/fcell.2022.866857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain (LBP) is quite common in clinical practice, which can lead to long-term bed rest or even disability. It is a worldwide health problem remains to be solved. LBP can be induced or exacerbated by abnormal structure and function of spinal tissue such as intervertebral disc (IVD), dorsal root ganglion (DRG) and muscle; IVD degeneration (IVDD) is considered as the most important among all the pathogenic factors. Inflammation, immune response, mechanical load, and hypoxia etc., can induce LBP by affecting the spinal tissue, among which inflammation and immune response are the key link. Inflammation and immune response play a double-edged sword role in LBP. As the main phagocytic cells in the body, macrophages are closely related to body homeostasis and various diseases. Recent studies have shown that macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus, expressed in various structures of the IVD, and the number is positively correlated with the degree of IVDD. Moreover, macrophages play a phagocytosis role or regulate the metabolism of DRG and muscle tissues through neuro-immune mechanism, while the imbalance of macrophages polarization will lead to more inflammatory factors to chemotaxis and aggregation, forming an "inflammatory waterfall" effect similar to "positive feedback," which greatly aggravates LBP. Regulation of macrophages migration and polarization, inhibition of inflammation and continuous activation of immune response by molecular biological technology can markedly improve the inflammatory microenvironment, and thus effectively prevent and treat LBP. Studies on macrophages and LBP were mainly focused in the last 3-5 years, attracting more and more scholars' attention. This paper summarizes the new research progress of macrophages in the pathogenesis and treatment of LBP, aiming to provide an important clinical prevention and treatment strategy for LBP.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xiangrong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deming Bao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Lin H, Chen F, Wang Z, Mo J, Lin T, Liu W. Cervical and first thoracic spine Hounsfield Units assessing and its relationship with clinical outcomes and cervical sagittal parameters in patients undergoing anterior cervical spine surgery. World Neurosurg 2022; 164:e169-e176. [DOI: 10.1016/j.wneu.2022.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
28
|
Yeni YN, Dix MR, Xiao A, Oravec DJ, Flynn MJ. Measuring the thickness of vertebral endplate and shell using digital tomosynthesis. Bone 2022; 157:116341. [PMID: 35092890 PMCID: PMC8858866 DOI: 10.1016/j.bone.2022.116341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/07/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
The vertebral endplate and cortical shell play an important structural role and contribute to the overall strength of the vertebral body, are at highest risk of initial failure, and are involved in degenerative disease of the spine. The ability to accurately measure the thickness of these structures is therefore important, even if difficult due to relatively low resolution clinical imaging. We posit that digital tomosynthesis (DTS) may be a suitable imaging modality for measurement of endplate and cortical shell thickness owing to the ability to reconstruct multiplanar images with good spatial resolution at low radiation dose. In this study, for 25 cadaveric L1 vertebrae, average and standard deviation of endplate and cortical shell thickness were measured using images from DTS and microcomputed tomography (μCT). For endplate thickness measurements, significant correlations between DTS and μCT were found for all variables when comparing thicknesses measured in both the overall endplate volume (R2 = 0.25-0.54) and when measurements were limited to a central range of coronal or sagittal slices (R2 = 0.24-0.62). When compared to reference values from the overall shell volume, DTS thickness measurements were generally nonsignificant. However, when measurement of cortical shell thickness was limited to a range of central slices, DTS outcomes were significantly correlated with reference values for both sagittal and coronal central regions (R2 = 0.21-0.49). DTS may therefore offer a means for measurement of endplate thickness and, within a limited sagittal or coronal measurement volume, for measurement of cortical shell thickness.
Collapse
Affiliation(s)
- Yener N Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America.
| | - Michael R Dix
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America; School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Angela Xiao
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| | - Daniel J Oravec
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| | - Michael J Flynn
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| |
Collapse
|
29
|
Hu H, Chen Y, Huang F, Chen B, Zou Z, Tan B, Yi H, Liu C, Wan Y, Ling Z, Zou X. Panax notoginseng saponins attenuate intervertebral disc degeneration by reducing the end plate porosity in lumbar spinal instability mice. JOR Spine 2021; 4:e1182. [PMID: 35005448 PMCID: PMC8717113 DOI: 10.1002/jsp2.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
Although painkillers could alleviate some of the symptoms, there are no drugs that really cope with the intervertebral disc degeneration (IDD) at present, so it is urgent to find a cure that could prevent or reverse the progression of IDD. During the development of IDD, the cartilaginous end plates (EPs) become hypertrophic and porous by the increase of osteoclast activities, which hinder the penetration of nutrition. The compositional and structural degeneration of the EP may cause both nutritional as well as mechanical impairment to the nucleus pulposus (NP) so that developing drugs that target the degenerating EP may be another option in addition to targeting the NP. In the lumbar spine instability mouse model, we found increased porosity in the cartilaginous EP, accompanied by the decrease in total intervertebral disc volume. Panax notoginseng saponins (PNS), a traditional Chinese patent drug with anti-osteoclastogenesis effect, could alleviate IDD by inhibiting aberrant osteoclast activation in the porous EP. Further in vitro experiment validated that PNS inhibit the receptor activator of nuclear factor kappa-Β ligand-induced osteoclast differentiation, while the transcriptional activation of PAX6 may be involved in the mechanism, which had been defined as an inhibitory transcription factor in osteoclastogenesis. These findings may provide a novel therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Hao Hu
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Yan Chen
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Fangli Huang
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Bolin Chen
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Zhiyuan Zou
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Bizhi Tan
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Hualin Yi
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Chun Liu
- Precision Medicine InstituteSun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Yong Wan
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Zemin Ling
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Xuenong Zou
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| |
Collapse
|
30
|
Wu Y, Loaiza J, Banerji R, Blouin O, Morgan E. Structure-function relationships of the human vertebral endplate. JOR Spine 2021; 4:e1170. [PMID: 34611592 PMCID: PMC8479528 DOI: 10.1002/jsp2.1170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Although deformation and fracture of the vertebral endplate have been implicated in spinal conditions such as vertebral fracture and disc degeneration, few biomechanical studies of this structure are available. The goal of this study was to quantify the mechanical behavior of the vertebral endplate. METHODS Eight-five rectangular specimens were dissected from the superior and/or inferior central endplates of human lumbar spine segments L1 to L4. Micro-computed tomography (μCT) imaging, four-point-bend testing, and ashing were performed to quantify the apparent elastic modulus and yield stress (modulus and yield stress, respectively, of the porous vertebral endplate), tissue yield stress (yield stress of the tissue of the vertebral endplate, excluding pores), ultimate strain, fracture strain, bone volume fraction (BV/TV), bone mineral density (BMD), and various measures of tissue density and composition (tissue mineral density, ash fraction, and ash density). Regression was used to assess the dependence of mechanical properties on density and composition. RESULTS Wide variations in elastic and failure properties, and in density and tissue composition, were observed. BMD and BV/TV were good predictors of many of the apparent-level mechanical properties, including modulus, yield stress, and in the case of the inferior vertebral endplate, failure strains. Similar values of the mechanical properties were noted between superior and inferior vertebral endplates. In contrast to the dependence of apparent stiffness and strength on BMD and BV/TV, none of the mechanical properties depended on any of the tissue-level density measurements. CONCLUSION The dependence of many of the mechanical properties of the vertebral endplate on BV/TV and BMD suggests possibilities for noninvasive assessment of how this region of the spine behaves during habitual and injurious loading. Further study of the nonmineral components of the endplate tissue is required to understand how the composition of this tissue may influence the overall mechanical behavior of the vertebral endplate.
Collapse
Affiliation(s)
- Yuanqiao Wu
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Johnfredy Loaiza
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Rohin Banerji
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Olivia Blouin
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Elise Morgan
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
31
|
Cui S, Zhou Z, Chen X, Wei F, Richards RG, Alini M, Grad S, Li Z. Transcriptional profiling of intervertebral disc in a post-traumatic early degeneration organ culture model. JOR Spine 2021; 4:e1146. [PMID: 34611583 PMCID: PMC8479529 DOI: 10.1002/jsp2.1146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The goal of this study is to characterize transcriptome changes and gene regulation networks in an organ culture system that mimics early post-traumatic intervertebral disc (IVD) degeneration. METHODS To mimic a traumatic insult, bovine caudal IVDs underwent one strike loading. The control group was cultured under physiological loading. At 24 hours after one strike or physiological loading, RNA was extracted from nucleus pulposus (NP) and annulus fibrosus (AF) tissue. High throughput next generation RNA sequencing was performed to identify differentially expressed genes (DEGs) between the one strike loading group and the control group. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes analyses were performed to analyze DEGs and pathways. Protein-protein interaction (PPI) network was analyzed with cytoscape software. DEGs were verified using qRT-PCR. Degenerated human IVD tissue was collected for immunofluorescence staining to verify the expression of DEGs in human disc tissue. RESULTS One strike loading resulted in significant gene expression changes compared with physiological loading. In total 253 DEGs were found in NP tissue and 208 DEGs in AF tissue. Many of the highly dysregulated genes have known functions in disc degeneration and extracellular matrix (ECM) homeostasis. ACTB, ACTG, PFN1, MYL12B in NP tissue and FGF1, SPP1 in AF tissue were verified by qRT-PCR and immunofluorescence imaging. The identified DEGs were involved in focal adhesion, ECM-receptor interaction, PI3K-AKT, and cytokine-cytokine receptor interaction pathways. Three clusters of PPI networks were identified. GO enrichment revealed that these DEGs were mainly involved in inflammatory response, the ECM and growth factor signaling and protein folding biological process. CONCLUSION Our study revealed different DEGs, pathways, biological process and PPI networks involved in post-traumatic IVD degeneration. These findings will advance the understanding of the pathogenesis of IVD degeneration, and help to identify novel biomarkers for the disease diagnosis.
Collapse
Affiliation(s)
- Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyu Zhou
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Xu Chen
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Fuxin Wei
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - R. Geoff Richards
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | | | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
32
|
Small Extracellular Vesicles Derived from Adipocytes Attenuate Intervertebral Disc Degeneration in Rats by Rejuvenating Senescent Nucleus Pulposus Cells and Endplate Cells by Delivering Exogenous NAMPT. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9955448. [PMID: 34434488 PMCID: PMC8382538 DOI: 10.1155/2021/9955448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023]
Abstract
Cellular senescence is a key factor in the development of intervertebral disc degeneration (IVDD). Age-associated decreases in NAD+ levels play a critical role in regulating cellular senescence. Previous studies have found that small extracellular vesicles (sEVs) secreted by adipocytes (Adipo-sEVs) or adipose tissue are abundant in nicotinamide phosphoribosyltransferase (NAMPT), which is the key NAD+ biosynthetic enzyme in mammals. Systemic injection of these sEVs significantly improves physical activity and extends the lifespan of aged mice by increasing NAD+ levels. However, to date, the therapeutic potential of Adipo-sEVs in other age-associated disease models, such as IVDD, has not been explored. In this study, we investigated the therapeutic effects of Adipo-sEVs on senescence of nucleus pulposus cells (NPCs) and cartilaginous endplate cells (EPCs). In vitro, Adipo-sEVs could rejuvenate the senescence of NPCs and EPCs. Age-related dysfunctions were also ameliorated by Adipo-sEVs by delivering NAMPT and activating NAD+ biosynthesis and the Sirt1 pathway. Further in vivo experiments revealed that Adipo-sEV-mediated delivery of NAMPT attenuated IVDD in rats by rejuvenating senescent NPCs and EPCs. Collectively, the results indicate a new cell-free tool and provide a promising sEV-mediated delivery method of NAMPT as a therapeutic approach for IVDD clinically.
Collapse
|
33
|
Yang B, Klineberg E, O'Connell GD. Intervertebral Disc Mechanics With Nucleotomy: Differences Between Simple and Dual Loading. J Biomech Eng 2021; 143:081002. [PMID: 33729477 DOI: 10.1115/1.4050538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 11/08/2022]
Abstract
Painful herniated discs are treated surgically by removing extruded nucleus pulposus (NP) material (nucleotomy). NP removal through enzymatic digestion is also commonly performed to initiate degenerative changes to study potential biological repair strategies. Experimental and computational studies have shown a decrease in disc stiffness with nucleotomy under single loading modalities, such as compression-only or bending-only loading. However, studies that apply more physiologically relevant loading conditions, such as compression in combination with bending or torsion, have shown contradicting results. We used a previously validated bone-disc-bone finite element model (Control) to create a Nucleotomy model to evaluate the effect of dual loading conditions (compression with torsion or bending) on intradiscal deformations. While disc joint stiffness decreased with nucleotomy under single loading conditions, as commonly reported in the literature, dual loading resulted in an increase in bending stiffness. More specifically, dual loading resulted in a 40% increase in bending stiffness under flexion and extension and a 25% increase in stiffness under lateral bending. The increase in bending stiffness was due to an increase and shift in compressive stress, where peak stresses migrated from the NP-annulus interface to the outer annulus. In contrast, the decrease in torsional stiffness was due to greater fiber reorientation during compression. In general, large radial strains were observed with nucleotomy, suggesting an increased risk for delamination or degenerative remodeling. In conclusion, the effect of nucleotomy on disc mechanics depends on the type and complexity of applied loads.
Collapse
Affiliation(s)
- Bo Yang
- Department of Mechanical Engineering, University of California Berkeley, Etcheverry Hall, Berkeley, CA 94720
| | - Eric Klineberg
- Department of Orthopaedic Surgery, University of California, Davis, Davis Medical Center, Sacramento, CA 95817
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California Berkeley, 5122 Etcheverry Hall, #1740, Berkeley, CA 94720; Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94142
| |
Collapse
|
34
|
Din RU, Cheng X, Yang H. Diagnostic Role of Magnetic Resonance Imaging in Low Back Pain Caused by Vertebral Endplate Degeneration. J Magn Reson Imaging 2021; 55:755-771. [PMID: 34309129 DOI: 10.1002/jmri.27858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Low back pain (LBP) is a common health issue worldwide with a huge economic burden on healthcare systems. In the United States alone, the cost is estimated to be $100 billion each year. Intervertebral disc degeneration is considered one of the primary causes of LBP. Moreover, the critical role of the vertebral endplates in disc degeneration and LBP is becoming apparent. Endplate abnormalities are closely correlated with disc degeneration and pain in the lumbar spine. Imaging modalities such as plain film radiography, computed tomography, and fluoroscopy are helpful but not very effective in detecting the causes behind LBP. Magnetic resonance imaging (MRI) can be used to acquire high-quality three-dimensional images of the lumbar spine without using ionizing radiation. Therefore, it is increasingly being used to diagnose spinal disorders. However, according to the American College of Radiology, current referral and justification guidelines for MRI are not sufficiently clear to guide clinical practice. This review aimed to evaluate the role of MRI in diagnosing LBP by considering the correlative contributions of vertebral endplates. The findings of the review indicate that MRI allows for fine evaluations of endplate morphology, endplate defects, diffusion and perfusion properties of the endplate, and Modic changes. Changes in these characteristics of the endplate were found to be closely correlated with disc degeneration and LBP. The collective evidence from the literature suggests that MRI may be the imaging modality of choice for patients suffering from LBP. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Rahman Ud Din
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | | | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
35
|
McMorran JG, Gregory DE. The Influence of Axial Compression on the Cellular and Mechanical Function of Spinal Tissues; Emphasis on the Nucleus Pulposus and Annulus Fibrosus: A Review. J Biomech Eng 2021; 143:050802. [PMID: 33454730 DOI: 10.1115/1.4049749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/08/2022]
Abstract
In light of the correlation between chronic back pain and intervertebral disc (IVD) degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus (NP)-annulus fibrosus (AF) interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates (EPs), the NP, and the AF, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized NP on the AF, and how injuries interrupting support to the AF may contribute to IVD degeneration.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5; Department of Health Sciences, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| |
Collapse
|
36
|
Kirnaz S, Capadona C, Lintz M, Kim B, Yerden R, Goldberg JL, Medary B, Sommer F, McGrath LB, Bonassar LJ, Härtl R. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int J Spine Surg 2021; 15:10-25. [PMID: 34376493 DOI: 10.14444/8052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human intervertebral disc (IVD) is a complex organ composed of fibrous and cartilaginous connective tissues, and it serves as a boundary between 2 adjacent vertebrae. It provides a limited range of motion in the torso as well as stability during axial compression, rotation, and bending. Adult IVDs have poor innate healing potential due to low vascularity and cellularity. Degenerative disc disease (DDD) generally arises from the disruption of the homeostasis maintained by the structures of the IVD, and genetic and environmental factors can accelerate the progression of the disease. Impaired cell metabolism due to pH alteration and poor nutrition may lead to autophagy and disruption of the homeostasis within the IVD and thus plays a key role in DDD etiology. To develop regenerative therapies for degenerated discs, future studies must aim to restore both anatomical and biomechanical properties of the IVDs. The objective of this review is to give a detailed overview about anatomical, radiological, and biomechanical features of the IVDs as well as discuss the structural and functional changes that occur during the degeneration process.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Marianne Lintz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Rachel Yerden
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| |
Collapse
|
37
|
Ashinsky B, Smith HE, Mauck RL, Gullbrand SE. Intervertebral disc degeneration and regeneration: a motion segment perspective. Eur Cell Mater 2021; 41:370-380. [PMID: 33763848 PMCID: PMC8607668 DOI: 10.22203/ecm.v041a24] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Back and neck pain have become primary reasons for disability and healthcare spending globally. While the causes of back pain are multifactorial, intervertebral disc degeneration is frequently cited as a primary source of pain. The annulus fibrosus (AF) and nucleus pulposus (NP) subcomponents of the disc are common targets for regenerative therapeutics. However, disc degeneration is also associated with degenerative changes to adjacent spinal tissues, and successful regenerative therapies will likely need to consider and address the pathology of adjacent spinal structures beyond solely the disc subcomponents. This review summarises the current state of knowledge in the field regarding associations between back pain, disc degeneration, and degeneration of the cartilaginous and bony endplates, the AF-vertebral body interface, the facet joints and spinal muscles, in addition to a discussion of regenerative strategies for treating pain and degeneration from a whole motion segment perspective.
Collapse
Affiliation(s)
| | | | | | - S E Gullbrand
- Corporal Michael J. Crescenz VA Medical Centre, Research, Building 21, Rm A214, 3900 Woodland Ave, Philadelphia, PA 19104,
| |
Collapse
|
38
|
Analysis of the Curvature and Morphologic Features of the Lumbar Vertebral Endplates Through the Transverse Section: A Radioanatomical Study. World Neurosurg 2021; 150:e500-e510. [PMID: 33744426 DOI: 10.1016/j.wneu.2021.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Knowledge concerning the curvature of the vertebrae through the transverse section is of clinical significance. However, relevant reports are scarce. This study investigated the features based on the cross-sections of lumbar vertebral endplates to provide information for clinical practice. METHODS Computed tomography images of 78 subjects were retrospectively reviewed. The geometric morphometrics was performed, and the curvature of the vertebral endplates was calculated by the self-written MATLAB algorithm. The principal component analysis, the canonical variate analysis, the discriminant function analysis, and the Mann-Whitney U test were performed. Statistical significance was set at P < 0.05. RESULTS No gender difference was found. In contrast, a morphologic difference was found between the superior and inferior lumbar vertebral endplates and between different segments. More specifically, the shape of the endplates gradually changes from the renal shape at superior L1 to the shell-like shape at inferior L5. The mean curvature values of the lateral anterior border were all around 0.60 cm-1, whereas the mean curvature values of the lateral posterior borders range from 0.66 to 1.09 cm-1 from L1 to L5. From L1 to L3, the mean and maximum curvature of the lateral posterior superior vertebral endplates decrease. The trend could also be found on the lateral posterior border of the inferior endplates from L1 to L3. CONCLUSIONS The current study described morphologic variations and curvature of the lumbar vertebral endplates, which have not been reported previously. The different curvature distribution could provide important information for surgeons and manufacturers.
Collapse
|
39
|
Lv X, Chen S, Gao F, Hu B, Wang Y, Ni S, Kou H, Song Z, Qing X, Wang S, Liu H, Shao Z. Resveratrol-enhanced SIRT1-mediated osteogenesis in porous endplates attenuates low back pain and anxiety behaviors. FASEB J 2021; 35:e21414. [PMID: 33583095 DOI: 10.1096/fj.202002524r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Low back pain (LBP) is a major clinical problem that lacks effective treatments. The sensory innervation in porous vertebral endplates and anxiety contributes to spinal hyperalgesia. We hypothesized that SIRT1 activator resveratrol alleviates LBP and anxiety via promotion of osteogenesis in the porous endplates. The hyperalgesia and anxiety-related behaviors; sensory innervation, inflammation and porosity of endplates; and osteogenic/osteoclastic factors expression were measured following resveratrol treatment after lumbar spine instability (LSI) surgery. To explore whether resveratrol promotes endplates osteogenesis and thus alleviates LBP through activation of SIRT1 in the osteoprogenitor cells of endplates, SIRT1OSX-/- mice were employed. Additionally, the levels of inflammation markers, phosphorylation of cAMP response element-binding protein (pCREB), and brain-derived neurotrophic factor (BDNF) in hippocampus were evaluated. After 4 or 8 weeks LSI surgery, the mice suffered from hyperalgesia and anxiety, which were efficiently attenuated by resveratrol at 8 weeks. Resveratrol treatment-enhanced osteogenesis and decreased endplates porosities accompanied with the reduction of TNFα, IL-1β, and COX2 levels and CGRP+ nerve fibers innervation in porous endplates. Resveratrol-mediated endplates osteogenesis, decreased endplates porosities, and analgesic and antianxiety effects were abrogated in SIRT1OSX-/- mice. Furthermore, resveratrol relieved inflammation and increased pCREB and BDNF expression in the hippocampus after 8 weeks, which alleviate anxiety-related behaviors. This study provides that resveratrol-mediated porous endplates osteogenesis via the activation of SIRT1 markedly blocked sensory innervation and inflammation in endplates, therefore, alleviating LSI surgery-induced LBP and hippocampus-related anxiety.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkui Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuangfei Ni
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Sources of lumbar back pain during aging and potential therapeutic targets. VITAMINS AND HORMONES 2021; 115:571-583. [PMID: 33706962 DOI: 10.1016/bs.vh.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lumbar back pain during aging is a major clinical problem, the origins and underlying mechanisms of which are challenging to study. Degenerative changes occur in various parts of the functional spinal unit, such the vertebral endplate and intervertebral disc. The homeostasis of these structural components is regulated by signaling molecules, such as transforming growth factor-β and parathyroid hormone. Previous efforts to understand sources of lumbar back pain focused on sensory innervation in the degenerative intervertebral disc, but intervertebral disc degeneration is frequently asymptomatic. An in vivo mouse model of lumbar spine aging and degeneration, combined with genetic technology, has identified endplate innervation as a major source of lumbar back pain and a potential therapeutic target. In this review, we consider how each structural component of the functional spinal unit contributes to lumbar back pain, how the homeostasis of each component is regulated, and how these findings can be used to develop potential therapies.
Collapse
|
41
|
Wojtków M, Głowacki M, Pezowicz C. Multiscale structural characterization of the vertebral endplate in animal models. J Anat 2021; 239:70-80. [PMID: 33521970 DOI: 10.1111/joa.13402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Research in the field of spinal biomechanics, including analyses of the impact of implants on the stability of the spine, is conducted extensively in animal models. One of the basic problems in spinal implantation is the transfer and distribution of loads carried by the spine on the surfaces of the vertebral bodies. An important factor in proper cooperation of spinal implants with the vertebrae is the endplate (EP), which is why the EP in the animal model used for testing should be as similar as possible to the human EP. Therefore, this study involved multiscale structural and morphometric analyses of the animal models most commonly used in spinal biomechanics research, i.e. pig, ovine, and bovine tail. The tests were performed on 28 lumbar porcine, ovine, and bovine vertebrae. Both cranial and caudal EPs were analysed in three selected areas: anterior, middle, and posterior EPs. The conducted tests included a morphometric analysis of the trabecular bone (TB) layer of the EP as well as microscopic analysis at the mesoscale (total thickness) and microscale (thickness of the individual EP layers). The porcine EP had a characteristic increased circumferential thickness (~3 mm) with a significant narrowing in the central region (50%-60%). The convex cranial ovine EP had a constant thickness throughout the cross-section and the concave caudal EP showed ~35% narrowing in the central region. The thickest EPs were observed in the bovine tail model with negligibly small narrowing in the central region (~5%). The thickness of the cartilaginous layer in the porcine and bovine models reached up to 1 mm in the peripheral regions and decreased in the central part. The growth plate layer had a similar thickness in all the models. On the other hand, the narrowing of the total thickness of the EPs in the central region was mainly due to a decrease in the VEP thickness. In the ovine and bovine models, the central region of the EP was characterized by large isotropy and trabeculae of mixed or rod-like shape. By contrast, in the pig, this region had plate-like trabeculae of anisotropic nature. The porcine model was identified as best reflecting the shape and structure of the human EP and as the best surrogate model for the human EP model. This choice is particularly important in the context of biomechanical research.
Collapse
Affiliation(s)
- Magdalena Wojtków
- Department of Mechnics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Celina Pezowicz
- Department of Mechnics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
42
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
43
|
Ashinsky BG, Gullbrand SE, Wang C, Bonnevie ED, Han L, Mauck RL, Smith HE. Degeneration alters structure-function relationships at multiple length-scales and across interfaces in human intervertebral discs. J Anat 2020; 238:986-998. [PMID: 33205444 DOI: 10.1111/joa.13349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and associated back pain place a significant burden on the population. IVD degeneration is a progressive cascade of cellular, compositional, and structural changes, which results in a loss of disc height, disorganization of extracellular matrix architecture, tears in the annulus fibrosus which may involve herniation of the nucleus pulposus, and remodeling of the bony and cartilaginous endplates (CEP). These changes to the IVD often occur concomitantly, across the entire motion segment from the disc subcomponents to the CEP and vertebral bone, making it difficult to determine the causal initiating factor of degeneration. Furthermore, assessments of the subcomponents of the IVD have been largely qualitative, with most studies focusing on a single attribute, rather than multiple adjacent IVD substructures. The objective of this study was to perform a multiscale and multimodal analysis of human lumbar motion segments across various length scales and degrees of degeneration. We performed multiple assays on every sample and identified several correlations between structural and functional measurements of disc subcomponents. Our results demonstrate that with increasing Pfirrmann grade there is a reduction in disc height and nucleus pulposus T2 relaxation time, in addition to alterations in motion segment macromechanical function, disc matrix composition and cellular morphology. At the cartilage endplate-vertebral bone interface, substantial remodeling was observed coinciding with alterations in micromechanical properties. Finally, we report significant relationships between vertebral bone and nucleus pulposus metrics, as well as between micromechanical properties of the endplate and whole motion segment biomechanical parameters, indicating the importance of studying IVD degeneration as a whole organ.
Collapse
Affiliation(s)
- Beth G Ashinsky
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Sarah E Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Chao Wang
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lin Han
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Harvey E Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
44
|
Wang X, Xu F, Fu Y, Chen H, Gao X, Huang Q. Traumatic vertebral fractures involve the anterior end plate more than the posterior end plate: A retrospective study. Medicine (Baltimore) 2020; 99:e21572. [PMID: 32846765 PMCID: PMC7447371 DOI: 10.1097/md.0000000000021572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Traumatic end plate fractures (EPFs) refers to the EPF caused by trauma, rather than the pathological status of the end plate (EP). However, some old traumatic EPFs may be mistaken as osteoporotic in the elderly. The objective of this study is to describe the radiological features of traumatic EPF in different traumatic fracture type patients presenting in the Emergency department setting. And to compare the result with osteoporotic vertebral fracture (VF).This study retrospectively analyzed the anatomical location of acute thoracolumbar vertebral traumatic EPFs in males (age≤55 years) and females (age≤50 years). The anatomic distribution of EPFs, the anterior and posterior wall fracture were analyzed in patients, who were scanned with 1 or more of the following methods: radiography, CT, and magnetic resonance imaging.There were 194 cases of acute spine trauma involving at least 1 EPF, including 118 males and 76 females. The involved vertebra was mostly at L1 (29.7%), followed by T12 (18.3%), and then by L2 (12.9%). Excluding those with both upper and lower EP involvements, the ratio of superior EPF to inferior EPF was 33.5 for males and 45.5 for females. With the EP divided into 5 segments of equal length in the anteroposterior direction in different fracture types, fractures occurred mostly at a2 segment (71.48% for superior EPs and 7.60% for inferior EPs), followed by a1 segment (66.16% for superior EPs). The upper third of the anterior and posterior walls were most prone to fracture in traumatic vertebral fracture.Traumatic EPFs more likely involve the anterior EP more than the posterior EP and is correlated with fracture type. These characteristics may help radiologist differential diagnosis between traumatic and osteoporotic EPF.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Radiology, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine
| | - Feirong Xu
- Department of Radiology, Ningbo Women and Children's Hospital
| | - Yuan Fu
- Department of Radiology, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine
| | - Huanhuan Chen
- Department of Radiology, Ningbo Second Hospital, Zhejiang
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Qiuli Huang
- Department of Radiology, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine
| |
Collapse
|
45
|
Ashinsky BG, Bonnevie ED, Mandalapu SA, Pickup S, Wang C, Han L, Mauck RL, Smith HE, Gullbrand SE. Intervertebral Disc Degeneration Is Associated With Aberrant Endplate Remodeling and Reduced Small Molecule Transport. J Bone Miner Res 2020; 35:1572-1581. [PMID: 32176817 PMCID: PMC8207249 DOI: 10.1002/jbmr.4009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
The intervertebral disc is the largest avascular structure in the body, and cells within the disc rely on diffusive transport via vasculature located within the vertebral endplate to receive nutrients, eliminate waste products, and maintain disc health. However, the mechanisms by which small molecule transport into the disc occurs in vivo and how these parameters change with disc degeneration remain understudied. Here, we utilize an in vivo rabbit puncture disc degeneration model to study these interactions and provide evidence that remodeling of the endplate adjacent to the disc occurs concomitant with degeneration. Our results identify significant increases in endplate bone volume fraction, increases in microscale stiffness of the soft tissue interfaces between the disc and vertebral bone, and reductions in endplate vascularity and small molecule transport into the disc as a function of degenerative state. A neural network model identified changes in diffusion into the disc as the most significant predictor of disc degeneration. These findings support the critical role of trans-endplate transport in disease progression and will improve patient selection to direct appropriate surgical intervention and inform new therapeutic approaches to improve disc health. © 2020 American Society for Bone and Mineral Research. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Beth G Ashinsky
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Edward D Bonnevie
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sai A Mandalapu
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao Wang
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Robert L Mauck
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey E Smith
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Shaha RK, Merkel DR, Anderson MP, Devereaux EJ, Patel RR, Torbati AH, Willett N, Yakacki CM, Frick CP. Biocompatible liquid-crystal elastomers mimic the intervertebral disc. J Mech Behav Biomed Mater 2020; 107:103757. [DOI: 10.1016/j.jmbbm.2020.103757] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 03/28/2020] [Indexed: 12/01/2022]
|
47
|
Zhan JW, Wang SQ, Feng MS, Wei X, Yu J, Yin XL, Han T, Zhu LG. Constant compression decreases vascular bud and VEGFA expression in a rabbit vertebral endplate ex vivo culture model. PLoS One 2020; 15:e0234747. [PMID: 32584845 PMCID: PMC7316323 DOI: 10.1371/journal.pone.0234747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
SUMMARY OF BACKGROUND DATA The vascular buds in the vertebral endplate (VEP) are the structural foundation of nutrient exchange in the intervertebral disc (IVD). VEGF is closely related to angiogenesis in the endplate and intervertebral disc degeneration (IDD). OBJECTIVE To investigate the effects of static load on vascular buds and VEGF expression in the VEP and to further clarify the relation between IDD and VEGF. METHODS IVD motion segments were harvested from rabbit lumbar spines and cultured under no-loading conditions (controls) or in custom-made apparatuses under a constant compressive load (0.5 MPa) for up to 14 days. Tissue integrity and the number of vascular buds were determined, and the concentrations and expression of Aggrecan, COL2a1, and VEGFA in the VEPs were assessed after 3, 7, and 14 days of culturing and then compared with those of fresh tissues. RESULTS Under the constant compression, the morphological integrity of the VEPs was gradually disrupted, and immunohistochemistry results showed a significant decrease in the levels of Agg and COL2a1. During the static load, the number of vascular buds in the VEPs was gradually reduced from the early stage of culture, and ELISA showed that the constant compressive load caused a significant decrease in the VEGFA and VEGFR2 protein concentrations, which were consistent with the immunohistochemistry results. Western blot and RT-PCR results also showed that the loading state caused a significant decrease in VEGFA expression compared with that of fresh and control samples. CONCLUSIONS Constant compression caused degeneration of the VEP as well as a decreased number of vascular buds, thereby accelerating disc degeneration. VEGFA is involved in this process. We anticipate that regulating the expression of VEGFA may improve the condition of the lesions to the vascular buds in the endplates, thus enhancing the nutritional supply function in IVD and providing new therapeutic targets and strategies for the effective prevention and treatment of IDD.
Collapse
Affiliation(s)
- Jia-Wen Zhan
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shang-Quan Wang
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min-Shan Feng
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Scientific Research Office, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Yu
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xun-Lu Yin
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Han
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Guo Zhu
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
48
|
McKay M, Jackman TM, Hussein AI, Guermazi A, Liu J, Morgan EF. Association of vertebral endplate microstructure with bone strength in men and women. Bone 2020; 131:115147. [PMID: 31706053 PMCID: PMC6930346 DOI: 10.1016/j.bone.2019.115147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Epidemiological and biomechanical evidence indicates that the risk of vertebral fracture differs between men and women, and that vertebral fracture frequently involves failure of the endplate region. The goal of this study was to compare the bone microstructure of the endplate region-defined as the (bony) vertebral endplate and underlying subchondral trabecular bone-between sexes and to determine whether any such sex differences are associated with vertebral strength. The bone density (volume fraction, apparent density and tissue mineral density) of the superior-most 2 mm of the vertebra, and the bone density and trabecular architecture of the next 5 mm were quantified using micro-computed tomography in human T8 (12 female, 16 male) and L1 (13 female, 12 male) vertebrae. Average density of the vertebra (integral bone mineral density (BMD)) was determined by quantitative computed tomography and compressive strength by mechanical testing. Few differences were found between male and female vertebrae in the density of the endplate region; none were found in trabecular architecture. However, whereas endplate volume fraction was positively correlated with integral BMD in male vertebrae (r = 0.654, p < .001), no correlation was found in the female vertebrae (r = 0.157, p = .455). Accounting for the density of the endplate region improved predictions of vertebral strength (p < .034) and eliminated sex-specificity in the strength prediction that was based on integral BMD alone. These results suggest that the density of the endplate region influences vertebral fracture and that non-invasive assessment of this region's density can contribute to predictions of vertebral strength in men and women.
Collapse
Affiliation(s)
- MeiLissa McKay
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Timothy M Jackman
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Amira I Hussein
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118, USA
| | - Jingjiang Liu
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
49
|
Volpe RH, Mistry D, Patel VV, Patel RR, Yakacki CM. Dynamically Crystalizing Liquid-Crystal Elastomers for an Expandable Endplate-Conforming Interbody Fusion Cage. Adv Healthc Mater 2020; 9:e1901136. [PMID: 31805223 DOI: 10.1002/adhm.201901136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Indexed: 12/31/2022]
Abstract
Degenerative disc disease (DDD) is the leading cause of low back pain and radiating leg pain. DDD is commonly treated surgically using spinal fusion techniques, but in many cases failure occurs due to insufficient immobilization of the vertebrae during fusion. The fabrication and demonstration of a 3D-printed semi-crystalline liquid crystal elastomer (LCE) spinal fusion cage that addresses these challenges in particular subsidence are described. During implantation of the fusion cage, the LCE is rubbery and capable of deforming around and conforming to delicate anatomy. In the hours following implantation, the device crystallizes into a rigid, structural material with the modulus increasing tenfold from 8 to 80 MPa. In the crystalline regime, a 3D-printed prototype device is capable of enduring 1 million cycles of physiologic compressive loading with minimal creep-induced ratcheting. Effects of LCE molecular architecture on the rate and magnitude of modulus increase, material processability, and mechanical properties are explored. This fundamental characterization informs a proof-of-concept device-the first bulk 3D printed LCE demonstrated to date. Moreover, the novel deployment strategy represents an exciting new paradigm of spinal fusion cages, which addresses real clinical challenges in expandable interbody fusion cages.
Collapse
Affiliation(s)
- Ross H. Volpe
- Department of Mechanical Engineering University of Colorado Denver CO 80204 USA
| | - Devesh Mistry
- Department of Mechanical Engineering University of Colorado Denver CO 80204 USA
| | - Vikas V. Patel
- Department of Orthopedics University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| | - Ravi R. Patel
- Department of Mechanical Engineering University of Colorado Denver CO 80204 USA
| | | |
Collapse
|
50
|
Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat Commun 2019; 10:5643. [PMID: 31822662 PMCID: PMC6904550 DOI: 10.1038/s41467-019-13476-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal pain is a major clinical problem, however, its origins and underlying mechanisms remain unclear. Here we report that in mice, osteoclasts induce sensory innervation in the porous endplates which contributes to spinal hypersensitivity in mice. Sensory innervation of the porous areas of sclerotic endplates in mice was confirmed. Lumbar spine instability (LSI), or aging, induces spinal hypersensitivity in mice. In these conditions, we show that there are elevated levels of PGE2 which activate sensory nerves, leading to sodium influx through Nav 1.8 channels. We show that knockout of PGE2 receptor 4 in sensory nerves significantly reduces spinal hypersensitivity. Inhibition of osteoclast formation by knockout Rankl in the osteocytes significantly inhibits LSI-induced porosity of endplates, sensory innervation, and spinal hypersensitivity. Knockout of Netrin-1 in osteoclasts abrogates sensory innervation into porous endplates and spinal hypersensitivity. These findings suggest that osteoclast-initiated porosity of endplates and sensory innervation are potential therapeutic targets for spinal pain. Spinal pain is a major clinical problem. Here the authors show that osteoclasts create porous area of endplates of the vertebrae and sensory innervation of porous endplates by Netrin-1 release from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice.
Collapse
|